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Abstract: The recently introduced needle problem approach for the homogeniza-
tion of non-periodic problems was originally designed for the homogenization of
elliptic problems. After a short review of the needle problem approach we demon-
strate in this note how the stationary results can be transferred to time-dependent
problems. The standard parabolic problem of the corresponding heat equation in a
heterogeneous material is considered. Furthermore, we include an application to a
hysteresis problem which appears in the theory of porous media.
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1 Introduction
The aim of this note is to show how general elliptic homogenization results can
be transferred to time-dependent problems. More precisely, in [7] we studied the
homogenization of the elliptic equation

−∇ · (aε∇uε) = f in Q,
uε = ψ on ∂Q,

(1.1)

where Q is a Lipschitz bounded domain in Rn and ψ : Q → R is affine. Under a
weak averaging assumption on the coefficients aε, we introduced a new method to
prove that solutions uε of (1.1) converge to the solution of an elliptic equation with
a constant coefficient a∗. In particular, we do not require periodicity or ergodicity
of the coefficients aε.

We are now interested in how this result can be can be transferred to a parabolic
problem of the form

∂tu
ε = ∇ · (aε∇uε) in Q× (0, T ) (1.2)

and to the hysteresis problem with a monotone relation H

∂tz
ε = ∇ · (aε∇uε) in Q× (0, T ),

∂tz
ε = −H(zε − uε) in Q× (0, T ),

(1.3)
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completed with boundary data and initial conditions.
The underlying idea is that if existence, uniqueness and suitable a priori es-

timates are known for the solutions of the time- and ε-dependent problems, then
classical compactness arguments allow for a subsequence of solutions to converge
to some limit function as ε→ 0. The homogenization of elliptic equations can then
be applied to a time-integrated version of the original equations, in order to identify
the limit found by compactness to the solution of the homogenized problem.

Regarding the literature on homogenization of elliptic equations, which is im-
mense and still rapidly growing, we refer the reader to the exceptional compendium
[10], and to the references therein. We recall the monograph [2], which treats also
the case of stochastic coefficients, and [1], regarding the Γ-convergence of stochas-
tic functionals. About homogenization of equations related to the hysteresis prob-
lem studied in Section 3.2, we name the analysis done in the periodic case in [6]
and in the stochastic case in [5, 11].

In Section 2 we fix the notation, we review the new method of homogenization
introduced in [7], and we give the precise statement regarding problem (1.1). In
Section 3 we show the application to the time-dependent problems (1.2) and (1.3).

2 The elliptic needle problem in homogenization
We will review in this first section the needle problem approach to the homoge-
nization of elliptic problems. The main feature of this new approach, introduced
in [7], is that the assumption on the oscillatory coefficient is very general. We do
neither assume periodicity nor a stochastic construction, but only demand that the
coefficients satisfy a weak averaging property, namely that the coefficients allow
averaging in the sense of Definition 2.1.

Notation. In all results below, Q ⊂ Rn is a bounded open set with Lipschitz
boundary, Rn×n

sym is the vector space of symmetric n × n matrices on R. We make
use of the following spaces of functions on the domain Q. L∞(Q;Rn×n

sym ) is the
space of measurable, essentially bounded, Rn×n

sym -valued functions, H1(Q) is the
Sobolev space of functions u ∈ L2(Q) such that ∂iu ∈ L2(Q) for all i = 1, . . . , n,
and H1

0 (Q) is the closure, with respect to the H1(Q) norm, of C∞c (Q) (smooth
functions with compact support).

For ε > 0, let (aε)ε, be a given family of coefficients with aε ∈ L∞(Q;Rn×n
sym ),

satisfying the uniform ellipticity and boundedness condition

α1|η|2 ≤ aε(x)η · η ≤ α2|η|2, ∀ η ∈ Rn, for a.e.x ∈ Rn, (2.1)

for constants 0 < α1 < α2.
In order to describe the averaging property, we use an arbitrary simplex S ⊂ Q.

By Lax-Milgram’s Lemma (or F. Riesz’s Theorem, since aε is symmetric), to given
S ⊂ Q, ξ ∈ Rn, and b ∈ R, there exists a unique weak solution uε : S → R of the
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problem

−∇ · (aε∇uε) = 0 in S,
uε(x) = ξ · x+ b on ∂S.

(2.2)

Definition 2.1 We say that the coefficients aε allow averaging of the constitutive
relation with the matrix a∗ ∈ Rn×n

sym if the following is satisfied: for every simplex
S ⊂ Q, every b ∈ R, and every vector ξ ∈ Rn, the solutions uε of (2.2) satisfy

lim
ε→0
−
∫
S

aε∇uε = a∗ξ . (2.3)

We remark that property (2.3) is satisfied, for example, for periodic coefficients
aε and for ergodic stochastic coefficients (see, e.g., [7, Appendix A]).

Moreover, if the coefficients aε satisfy condition (2.1), then property (2.3) im-
plies that also the homogenized matrix a∗ is uniformly elliptic and bounded, with
the same constants. Or, in other words, that the eigenvalues of a∗ are contained in
the interval [α1, α2]. This fact can be seen as a consequence of H-convergence or
Γ-convergence, but for convenience of the reader we provide a short independent
proof in the following

Lemma 2.2 For ε > 0, let (aε)ε, be a given family of coefficients with aε ∈
L∞(Q;Rn×n

sym ), satisfying (2.1). If aε allow averaging of the constitutive relation
with the matrix a∗ ∈ Rn×n

sym in the sense of Definition 2.1, then

α1|ξ|2 ≤ a∗ξ · ξ ≤ α2|ξ|2, ∀ ξ ∈ Rn. (2.4)

Proof: Let uε : S → R be the unique solution of problem (2.2), for given S ⊂ Q,
b ∈ R, and ξ ∈ Rn. Let ν be the outward unit normal to ∂S. Then∫

S

aε∇uε · ∇uε =

∫
∂S

aε∇uε · ν uε =

∫
∂S

aε∇uε · ν (ξ · x+ b) =

∫
S

aε∇uε · ξ.

Therefore, by (2.3)

lim
ε→0
−
∫
S

aε∇uε · ∇uε = lim
ε→0
−
∫
S

aε∇uε · ξ = a∗ξ · ξ. (2.5)

Since aε are symmetric, uε is also a minimizer of the following problem∫
S

aε∇uε ·∇uε = min

{∫
S

aε∇v ·∇v : v ∈ H1(S), v(x) = ξ · x+ b on ∂S.
}

and in particular, choosing v(x) = ξ · x+ b and using (2.1),

−
∫
S

aε∇uε · ∇uε ≤ −
∫
S

aεξ · ξ ≤ α2|ξ|2. (2.6)

On the other hand, by (2.1), Jensen’s inequality and the boundary condition in (2.2),

−
∫
S

aε∇uε · ∇uε ≥ α1−
∫
S

|∇uε|2 ≥ α1

∣∣∣∣−∫
S

∇uε
∣∣∣∣2 = α1|ξ|2. (2.7)

We conclude the proof of (2.4) by combining (2.6), (2.7), and passing to the limit
as ε→ 0 by (2.5). 2



4

2.1 The needle problem
Let Q be a Lipschitz bounded domain in Rn and ψ : Q→ R be affine. The needle
problem is designed as an approximation of the elliptic equation

−∇ · (aε∇uε) = f in Q,
uε = ψ on ∂Q,

by functions in H1(Q) which are piecewise linear on the boundary of a triangula-
tion of the domain. In our approach, we use an auxiliary elliptic problem, indepen-
dent of the parameter ε, to transform the right-hand side f into a jump condition
for the fluxes aε∇uε on the boundary of the triangulation. Regarding the jump con-
ditions, which are indeed due to the choice of discretization, we note that unlike,
e.g., discontinuous Galerkin methods, solutions of the needle problem are continu-
ous on Q, and only their gradients are allowed to jump in order to accommodate an
external forcing on the rigid frame constituted by the boundaries of the triangles.
We first state the problem, and then detail its construction.

Definition 2.3 (The needle problem) We are given a bounded Lipschitz domain
Q ⊂ Rn, a triangulation Th of Qh ⊂ Q with interfaces Γh :=

⋃
k ∂Tk, and a

piecewise affine function ψ prescribing a boundary condition. We introduce the
function space

Nh :=
{
φ ∈ H1

0 (Q) : φ|∂Tk
is affine for all Tk ∈ Th, φ ≡ 0 on Q \Qh

}
.

For a given function gh : Γh → R, the needle problem is to find uεh ∈ ψ +Nh such
that ∫

Q

aε∇uεh · ∇φ =

∫
Γh

ghφ ∀φ ∈ Nh . (2.8)

The needle problem depends on a grid of elements with typical size h. We
choose a polygonal subset Qh ⊂ Q which is large in the sense that x ∈ Q,
dist(x, ∂Q) ≥ h implies x ∈ Qh. The domain Qh is discretized with open sim-
plices such that

Th := {Tk}k∈Λh
is a subdivision of Qh, diam(Tk) < h, ∀k ∈ Λh .

We consider the corresponding finite element space of continuous and piecewise
linear functions with vanishing boundary values,

Yh :=
{
φ ∈ H1

0 (Q) : φ|Tk
is affine for all Tk ∈ Th, φ ≡ 0 on Q \Qh

}
.

This formulation could be regarded as a variational crime, in the sense of [8]. We
show in [7] how the errors thus introduced can be estimated and controlled.

With the matrix a∗ ∈ Rn×n of Definition 2.1, with f ∈ L2(Q) and the given
affine boundary condition ψ, we consider the following auxiliary problem.

Find Uh ∈ ψ + Yh with
∫
Q

(a∗∇Uh) · ∇φ =

∫
Q

fφ, ∀φ ∈ Yh. (2.9)
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By Lax-Milgram’s Lemma and standard finite element approximations there exists
a unique solution Uh of (2.9). Moreover, for an affine boundary condition ψ there
holds

Uh ⇀ u∗ in H1(Q)

for h→ 0, where u∗ is the solution of

−∇ · (a∗∇u∗) = f in Q,
u∗ = ψ on ∂Q.

Our next aim is to transform the right-hand side f into jump conditions for the
fluxes a∗∇Uh across edges of the grid Th. We will extract the relevant information
on jumps from the finite element solution Uh of system (2.9). Let Γh be the set of
interior interfaces and Γkj be the interface of two simplices Tk and Tj ,

Γh :=

(⋃
k

∂Tk

)
\∂Qh =

⋃
k<j

Γkj, Γkj := T k ∩ T j .

We furthermore use the notation ν(k) for the outer normal to Tk on ∂Tk. For a
function ϕ ∈ L2(Q;Rn), such that ϕ|Tk

has a trace on ∂Tk for all k, the jump
across Γkj is defined as

JϕKkj := ϕ|Tk
· ν(k) + ϕ|Tj

· ν(j) =
(
ϕ|Tk
− ϕ|Tj

)
· ν(k).

By definition, there holds JϕKkj = JϕKjk. We consider the jump as a scalar function
on Γh. With the solution Uh of (2.9), we define gh : Γh → R as the function

gh|Γkj
:= Ja∗∇UhKkj. (2.10)

The gradients∇Uh are constant in each simplex Tk, hence gh : Γh → R is constant
on each interface Γkj .

Remark 2.4 The finite element solution Uh was defined in (2.9) with f . We can
characterize Uh with gh as the unique solution of

Uh ∈ ψ + Yh, with Ja∗∇UhKkj = gh|Γkj
∀k < j. (2.11)

Problem (2.11) is equivalent to problem (2.9).

The remark indicates that the right hand side f has been transformed into the
jump condition gh. This is even clearer if we observe that, for all φ ∈ Yh,∫

Q

fφ =

∫
Q

a∗∇Uh · ∇φ =
∑
k

∫
∂Tk

(a∗∇Uh · ν(k))φ =

∫
Γh

ghφ,

since a∗∇Uh is constant in each Tk. Considering only functions φ ∈ Yh, we have
therefore equivalently replaced f ∈ L2(Q) by gh.
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Let Hn−1 denote the (n − 1)-dimensional Hausdorff measure. Since by the
trace theorem any function u ∈ H1(Q) has trace u|Γh

∈ H1/2(Γh), we observe that
the application

u 7→
∫

Γh

u|Γh
gh dHn−1

defines a linear and continuous functional on H1(Q). In this sense, ghHn−1|Γh
∈

H−1(Q). In particular, in that case, the Lax-Milgram theorem is applicable and
yields the unique existence of a solution uεh ∈ ψ +Nh of the needle problem.

A formulation of (2.8) on single simplices is as follows: we search for uεh ∈
ψ +Nh with

−∇ · (aε∇uεh) = 0 in Tk, ∀Tk ∈ Th ,∫
Γh

(Jaε∇uεhK− gh)φ = 0 ∀φ ∈ Nh.

2.2 Homogenization of elliptic equations
We recall the main result of [7] on the non-periodic homogenization of elliptic
equations.

Theorem 2.5 Let Q ⊂ Rn be an n-dimensional bounded domain with Lipschitz
boundary, with n = 2 or n = 3. Let f ∈ L2(Q) be arbitrary and let ψ ∈ H1(Q)
be affine. We assume that the coefficients (aε)ε satisfy the ellipticity relation (2.1)
and that they allow averaging of the constitutive relation with the matrix a∗ in the
sense of Definition 2.1. Then the sequence (uε)ε of weak solutions of

−∇ · (aε∇uε) = f in Q,
uε = ψ on ∂Q,

(2.12)

satisfies

uε ⇀ u∗ weakly in H1(Q),

aε∇uε ⇀ a∗∇u∗ weakly in L2(Q;Rn),

where u∗ is the weak solution of

−∇ · (a∗∇u∗) = f in Q,
u∗ = ψ on ∂Q.

(2.13)

On the proof. The theorem is shown by a comparison of the original problem with
the needle problem. More precisely, in [7], we show the convergence estimates

lim
h→0

lim
ε→0
‖uεh − uε‖H1(Q) = 0, (2.14)

uεh ⇀ Uh weakly in H1(Q), as ε→ 0, (2.15)
aε∇uεh ⇀ a∗∇Uh weakly in L2(Q;Rn), as ε→ 0, (2.16)

Uh ⇀ u∗ weakly in H1(Q), as h→ 0, (2.17)
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where uε is the solution of (2.12), Uh solves the finite elements approximation
(2.9), uεh is the solution of the needle problem (2.8) where the prescribed jump gh
is given by (2.10), and u∗ is the solution of (2.13). While convergence (2.17) is
a standard fact of finite elements discretization, the other three convergences are
more delicate. The limit in (2.14) is obtained combining classical energy estimates
with an improved version of div-curl lemma on a mesh Th which is adapted to the
sequence uε in order to avoid singularities. The convergence in (2.15)-(2.16) stems
from Definition 2.1, which is shown to imply homogenization of elliptic equations
with f = 0 and affine boundary conditions on simplices. Since h is arbitrary in
(2.15)-(2.16), these four estimates provide the desired result.

3 Time-dependent results
We turn now to the application of the elliptic homogenization result in Theorem 2.5
to two time-dependent problems. In Section 3.1 we recall the classical case of the
heat equation, and in Section 3.2 we show how elliptic homogenization can be
transferred to a time-dependent problem with hysteresis.

In an abstract language, we can describe the results in this subsection as follows:
hypothesis (2.3) on coefficients aε implies, by Theorem 2.5, the H-convergence
of aε to a∗, i.e., the weak convergence (uε, aε∇uε) → (u∗, a∗∇u∗) in H1(Q) ×
L2(Q;Rn), for solutions of the correspondent elliptic problems (see, e.g., [10, Def-
inition 6.4], [9]). This H-convergence is exploited now in order to conclude ho-
mogenization results in time-dependent problems.

3.1 The heat equation
It is straightforward to transfer homogenization results for elliptic problems to the
corresponding parabolic problems, see e.g. [2]. For the sake of completeness, in
order to show that the needle-problem approach provides new results for parabolic
problems, we include this conclusion here. A non-standard time-dependent prob-
lem will be treated with similar methods in the next subsection.

Theorem 3.1 Let Q ⊂ Rn be bounded, open, with Lipschitz boundary, n = 2
or n = 3, and let T > 0. Let ψ ∈ C1([0, T ];H1(Q)) be such that ψ(t, ·) is
affine for all t ∈ [0, T ], and u0 ∈ H1(Q) be given. We assume that the coefficients
(aε)ε satisfy (2.1) and that they allow averaging of the constitutive relation with the
matrix a∗ in the sense of Definition 2.1. Let (uε)ε be a sequence of weak solutions
of

∂tu
ε = ∇ · (aε∇uε) in Q× (0, T ),

uε = ψ on ∂Q× (0, T ),

uε(t = 0) = u0 on Q.
(3.1)
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Then uε satisfies

uε ⇀ u∗, weakly in L2(0, T ;H1(Q)),

∂tu
ε ⇀ ∂tu

∗, weakly in L2(Q× (0, T )),

aε∇uε ⇀ a∗∇u∗, weakly in L2(Q× (0, T );Rn),

where u∗ is the weak solution of

∂tu
∗ = ∇ · (a∗∇u∗) in Q× (0, T ),

u∗ = ψ on ∂Q× (0, T ),

u∗(t = 0) = u0 on Q.
(3.2)

For notational brevity, the theorem is formulated here for a vanishing right-hand
side f .

Proof: By standard a priori estimates for parabolic problems, there exists a constant
C, depending only on T,Q, u0, ψ, such that the solutions (uε)ε of (3.1) satisfy

‖uε‖L2(0,T ;H1(Q)) + ‖uε‖H1(0,T ;L2(Q)) ≤ C.

In particular, we can find a subsequence uεk and a limit function u such that

uεk → u strongly in L2(0, T ;L2(Q)), (3.3)
∇uεk ⇀ ∇u weakly in L2(0, T ;L2(Q;Rn)), (3.4)
∂tu

εk ⇀ ∂tu weakly in L2(0, T ;L2(Q)). (3.5)

In order to prove Theorem 3.1, we need to show that every limit function u is a
solution of (3.2), that is, u = u∗.

As a first step, we note that Theorem 2.5 can be extended to the case of a
weakly-L2 converging right-hand side.

Lemma 3.2 Let the hypothesis of Theorem 2.5 be satisfied, and let fε ∈ L2(Q) be
such that fε ⇀ f weakly in L2(Q). Then the sequence (uε)ε of weak solutions of

−∇ · (aε∇uε) = fε in Q,
uε = ψ on ∂Q,

satisfies

uε ⇀ u∗ weakly in H1(Q),

aε∇uε ⇀ a∗∇u∗ weakly in L2(Q;Rn),

where u∗ is the weak solution of

−∇ · (a∗∇u∗) = f in Q,
u∗ = ψ on ∂Q.

(3.6)
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Proof: [of Lemma 3.2] We decompose the solution uε additively into two parts. To
this end, let vε and wε be the solutions of

−∇ · (aε∇vε) = fε − f in Q,
vε = 0 on ∂Q,

and

−∇ · (aε∇wε) = f in Q,
wε = ψ on ∂Q.

Owing to Theorem 2.5, the solutions wε satisfy

wε ⇀ u∗ weakly in H1(Q),

aε∇wε ⇀ a∗∇u∗ weakly in L2(Q;Rn),

where u∗ is the weak solution of

−∇ · (a∗∇u∗) = f in Q,
u∗ = ψ on ∂Q.

By linearity, uε = vε + wε. Therefore, equation (3.6) and the lemma are shown
once we verify the appropriate convergences to 0 for vε.

We have a bound ‖vε‖H1(Q) ≤ C by Lax-Milgram’s Lemma. Therefore, from
any subsequence of vε we can extract a subsequence vεk and find v ∈ H1(Q) such
that vεk → v strongly in L2(Q). By the ellipticity condition (2.1) on aε we may
compute

α1‖vεk‖2
H1(Q) ≤

∫
Q

aε∇vεk · ∇vεk =

∫
Q

(fεk − f)vεk → 0,

which implies the desired convergences. 2

We turn now to the proof of Theorem 3.1. Let ϕ ∈ C∞c ((0, T );R) be a smooth
cut-off function. Let uε be the solutions of equation (3.1), and define the averages

W ε(x) :=

∫ T

0

uε(x, s)ϕ(s) ds, F ε(x) := −
∫ T

0

∂su
ε(x, s)ϕ(s) ds,

so that, by (3.4) and (3.5), it holds

W ε ⇀

∫ T

0

u(x, s)ϕ(s) ds weakly in H1(Q), (3.7)

F ε ⇀ −
∫ T

0

∂su(x, s)ϕ(s) ds, weakly in L2(Q). (3.8)

Equation (3.1) translates into the following equation for W ε,

−∇ · (aε∇W ε) = F ε in Q,
W ε = Ψ on ∂Q,
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where

Ψ(x) :=

∫ T

0

ψ(x, s)ϕ(s) ds.

Lemma 3.2 and the convergence (3.8) provide the limit of W ε. We find

W ε ⇀W ∗ weakly in H1(Q), (3.9)
aε∇W ε ⇀ a∗∇W ∗ weakly in L2(Q;Rn), (3.10)

where W ∗ is the weak solution of

−∇ · (a∗∇W ∗) = −
∫ T

0

∂su(x, s)ϕ(s) ds in Q,

W ∗ = Ψ on ∂Q.

With the help of (3.7) and (3.9), we translate this equation for W ∗ into an equation
for u. We find, for an arbitrary test-function φ ∈ H1

0 (Q),∫ T

0

∫
Q

{∂su(x, s)ϕ(s)φ(x) + a∗∇u(x, s) · ∇φ(x)ϕ(s)} dx ds = 0.

By density of the functions ϕ(t)φ(x) in L2(0, T ;H1
0 (Q)) we conclude that the limit

u of uε is the weak solution of

∂tu = ∇ · (a∗∇u) in Q× (0, T ),

u = ψ on ∂Q× (0, T ),

u(t = 0) = u0 on Q.

This concludes the proof of Theorem 3.1. 2

3.2 A parabolic problem with hysteresis
We discuss now a problem that appears in porous media analysis. Hysteresis plays
an important role in wetting processes. If a porous medium is first wetted and
then de-wetted, the pressure-saturation relation is very different during the two
processes. We consider a related hysteresis model; the variable z has the physical
meaning of a saturation, u stands for the pressure.

Related problems were analyzed in [5] and [3]. Both contributions are con-
cerned with the case that the function H of the hysteresis problem is the multi-
valued graph H = sign−1 or a regularization thereof. In [3] an existence result
is derived, we refer also to the references therein. In [5] the homogenization of
the problem in a stochastic setting was analyzed. The homogenization result is
involved since it treats not only multi-valued hysteresis functions, but also hystere-
sis functions H that depend on the spatial position and have a microstructure. In
the contribution at hand, we show that the homogenization limit can be performed
without any further difficulties if we assume that the monotone hysteresis relation
H is smooth and without microscopic oscillations.
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In the proof below we use a formulation of the problem with variational in-
equalities, employing methods of convex analysis. Such methods were also used in
[4] for an outflow problem in porous media analysis, in [7] in a periodic homoge-
nization problem in plasticity, and in [11] in an abstract stochastic homogenization
problem.

Theorem 3.3 Let Q ⊂ Rn be bounded, open, with Lipschitz boundary, n = 2 or
n = 3, and let T > 0. Let ψ ∈ C1([0, T ];H1(Q)) be such that ψ(t, ·) is affine
for all t ∈ [0, T ], and z0 ∈ L2(Q) be given. Let H : R → R be a monotone
function of class C1 with H(0) = 0 and with bounded derivative. We assume that
the coefficients (aε)ε satisfy (2.1) and that they allow averaging of the constitutive
relation with the matrix a∗ in the sense of Definition 2.1. Let (uε, zε)ε be a sequence
of classical solutions of

∂tz
ε = ∇ · (aε∇uε) in Q× (0, T ),

∂tz
ε = −H(zε − uε) in Q× (0, T ),

uε = ψ on ∂Q× (0, T ),

zε(t = 0) = z0 on Q.

(3.11)

Then (uε, zε) satisfies

uε ⇀ u∗, weakly in L2(0, T ;H1(Q)),

∂tz
ε ⇀ ∂tz

∗, weakly in L2(Q× (0, T )),

aε∇uε ⇀ a∗∇u∗, weakly in L2(Q× (0, T );Rn),

where (u∗, z∗) is the unique weak solution of

∂tz
∗ = ∇ · (a∗∇u∗) in Q× (0, T ),

∂tz
∗ = −H(z∗ − u∗) in Q× (0, T ),

u∗ = ψ on ∂Q× (0, T ),

z∗(t = 0) = z0 on Q.

Note that, since by Lemma 2.2 the homogenized matrix a∗ satisfies the same
ellipticity and boundedness conditions of aε, existence and uniqueness of a solution
(u∗, z∗) can be established with exactly the same technique we use for (uε, zε).

Energy estimates. Consider the equations

∂tz
ε = ∇ · (aε∇uε), (3.12)

∂tz
ε = −H(zε − uε). (3.13)

For brevity of notation, we assume that the boundary condition is ψ(t) ≡ 0. We
multiply equation (3.12) with uε and equation (3.13) with uε − zε, and integrate
over Q. Integrating by parts and using the boundary condition in (3.11) we obtain∫

Q

(∂tz
ε)uε = −

∫
Q

aε∇uε · ∇uε,∫
Q

(∂tz
ε)uε =

∫
Q

(∂tz
ε)zε +

∫
Q

H(zε − uε)(zε − uε).
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We integrate in time to find∫ T

0

∫
Q

(∂tz
ε)zε + aε∇uε · ∇uε +H(zε − uε)(zε − uε) = 0.

By monotonicity of H and ellipticity of aε we conclude the energy estimate

sup
t∈(0,T )

1

2

∫
Q

|zε(t)|2 + α1

∫ T

0

∫
Q

|∇uε|2 ≤ 1

2

∫
Q

|z0|2.

We may additionally use Poincaré’s inequality for uε to see that for some C > 0
we have the uniform bound

‖zε‖2
L∞(0,T ;L2(Q)) + ‖uε‖2

L2(0,T ;H1(Q)) ≤ C.

Higher order estimates. We present here a derivation of higher order a priori es-
timates, assuming the regularity zε ∈ W 1,∞(0, T ;L2(Q)) and uε ∈ H1(0, T ;H1(Q))
for every ε. The proof can be performed without the regularity assumption on the
solution, see [3]. In this calculation we exploit that the nonlinear relation H is
differentiable. We differentiate in time equations (3.12) and (3.13)

∂2
t z

ε = ∇ · (aε∇∂tuε), (3.14)
∂2
t z

ε = −H ′(zε − uε)∂t(zε − uε). (3.15)

We multiply equation (3.14) by ∂tuε and equation (3.15) by ∂t(uε−zε). Integrating
by parts and employing the boundary condition in (3.11) we obtain∫

Q

∂2
t z

ε∂tu
ε = −

∫
Q

aε∇(∂tu
ε) · ∇(∂tu

ε),∫
Q

∂2
t z

ε∂tu
ε =

∫
Q

∂2
t z

ε∂tz
ε +

∫
Q

H ′(zε − uε)(∂tuε − ∂tzε)2.

Integrating in time and using the ellipticity of aε and the positivity of H ′ we obtain

sup
t∈(0,T )

1

2

∫
Q

|∂tzε(t)|2 + α1

∫ T

0

∫
Q

|∇∂tuε|2 ≤
1

2

∫
Q

|∂tzε0|2.

In this equation, the expression ∂tzε0 stands for the following. We can combine the
evolution equations in t = 0 into −H(zε0 − uε0) = ∇ · (aε∇uε0). The solution uε0
of this elliptic relation is bounded in H1(Q), independently of ε. The formal time
derivative of z in t = 0 is then the L2-function ∂tzε0 := −H(zε0 − uε0). In other
words, we do not need to prescribe the initial value for ∂tzε, since for classical
solutions it is determined by the initial datum zε0, through equations (3.12) and
(3.13).

We conclude that there exists C > 0 such that

‖∂tzε‖2
L∞(0,T ;L2(Q)) + ‖∂tuε‖2

L2(0,T ;H1(Q)) ≤ C.
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In particular, we can find a subsequence (εk) and limit functions z and u such that

uεk → u strongly in L2(0, T ;L2(Q)), (3.16)
∇uεk ⇀ ∇u weakly in L2(0, T ;L2(Q;Rn)), (3.17)
∂tz

εk ⇀ ∂tz weakly in L2(0, T ;L2(Q)). (3.18)

Proof: [Proof of Theorem 3.3] We proceed as in the proof of the heat equation,
defining

W ε(x) :=

∫ T

0

uε(x, s)ϕ(s) ds, F ε(x) := −
∫ T

0

∂sz
ε(x, s)ϕ(s) ds,

for a smooth cut-off function ϕ ∈ C∞c ((0, T );R). By (3.17), (3.18), it holds

W ε ⇀

∫ T

0

u(x, s)ϕ(s) ds weakly in H1(Q), (3.19)

F ε ⇀ −
∫ T

0

∂sz(x, s)ϕ(s) ds, weakly in L2(Q).

By equation (3.12), W ε solves

−∇ · (aε∇W ε) = F ε in Q,
W ε = Ψ on ∂Q,

where

Ψ(x) :=

∫ T

0

ψ(x, s)ϕ(s) ds,

and ψ is the given boundary condition in (3.11). By Lemma 3.2 and convergence
(3.19), W ε satisfies

W ε ⇀W ∗ weakly in H1(Q), (3.20)
aε∇W ε ⇀ a∗∇W ∗ weakly in L2(Q;Rn),

where W ∗ is the weak solution of

−∇ · (a∗∇W ∗) = −
∫ T

0

∂sz(x, s)ϕ(s) ds in Q,

W ∗ = Ψ on ∂Q.

Proceeding as in Section 3.1, we compare (3.19) and (3.20), obtaining, for an arbi-
trary test-function φ ∈ H1

0 (Q),∫ T

0

∫
Q

{∂sz(x, s)ϕ(s)φ(x) + a∗∇u(x, s) · ∇φ(x)ϕ(s)} dx ds = 0.
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By density of the test functions ϕ(t)φ(x) in L2(0, T ;H1
0 (Q)) we conclude that

every limit (u, z) of (uε, zε) satisfies

∂tz = ∇ · (a∗∇u) in Q× (0, T ),

u = ψ on ∂Q× (0, T ),

z(t = 0) = z0 on Q.

The limit process in the pointwise and nonlinear equation ∂tzε = −H(zε− uε)
is more complicated than the limit process in the linear elliptic equation. The reason
is that (zε − uε) converges only weakly in L2(0, T ;L2(Q)); we have no spatial
estimates for zε. We solve this problem with the help of convex analysis.

We firstly define a primitive of H , the function G : R → R with G′ = H and
G(0) = 0. This function is convex and non-negative by our assumptions on H . We
introduce the convex functional on L2(0, T ;L2(Q))

G(ξ) :=

∫ T

0

∫
Q

G(ξ(x, t) dx dt ∈ R for ξ ∈ L2(0, T ;L2(Q)).

We will use ξε := zε − uε as an argument for G. The delay relation reads
∂tz

ε = −H(zε−uε) = −G′(zε−uε); it is equivalent to the subdifferential inclusion
∂tz

ε ∈ −∂G(ξε), since the subdifferential coincides with the Frechét-derivative.
We can now use the defining relation for the subdifferential and conclude: for
every comparison argument η ∈ L2(0, T ;L2(Q)) holds

G(η) ≥ G(ξε) + 〈−∂tzε, η − ξε〉L2 .

We recognize one total time derivate and re-write as

G(zε − uε) +
d

dt

1

2
‖zε‖2 − (∂tz

ε, η + uε) ≤ G(η).

We integrate over the time interval (0, T ) to find∫ T

0

G(zε − uε) +
1

2
‖zε(T )‖2 −

∫ T

0

(∂tz
ε, η + uε) ≤

∫ T

0

G(η) +
1

2
‖z0‖2.

In this inequality, we can pass to the limit exploiting the convexity (and hence
lower semi-continuity) of G and of the norm, and furthermore exploiting the weak
convergence of ∂tzε and the strong convergence of uε. We find that∫ T

0

G(z − u) +
1

2
‖z(T )‖2 −

∫ T

0

(∂tz, η + u) ≤
∫ T

0

G(η) +
1

2
‖z0‖2.

By writing ‖z(T )‖2 − ‖z0‖2 again as a time integral we find that

−∂tz ∈ ∂G(z − u).
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Since G is convex and differentiable, this is equivalent to

−∂tz = G′(z − u) = H(z − u) a.e. in (0, T )×Q.

This shows the claim. 2

Remark. The convergence proof uses only the property of monotonicity of H .
The existence of H ′ is only used in the derivation of the higher-order estimates.
The statement of Theorem 3.3 could therefore be extended to monotone graphs H
which are subdifferentials of convex functions. This is the case that is considered
in applications.
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