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Abstract

We study the n-dimensional wave equation with an elasto-plastic nonlinear stress-strain
relation. We investigate the case of heterogeneous materials, i.e. x-dependent parameters
that are periodic at the scale η > 0. We study the limit η → 0 and derive the plasticity
equations for the homogenized material. We prove the well-posedness for the original and
the effective system with a finite-element approximation. The approximate solutions are
also used in the homogenization proof which is based on oscillating test function and an
adapted version of the div-curl Lemma.
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1 Introduction

We are interested in the description of deformation waves in plastic materials and in the
derivation of effective (or homogenized) models. For the description of the problem we use a
polygonal reference volume Ω ⊂ Rn occupied by the plastic material, a time interval (0, T )
and ΩT := Ω× (0, T ). The dependent variables are the deformation u : ΩT → Rn with the
symmetric gradient ∇su = 1

2(∇u+ (∇u)t) : ΩT → Rn×n (strain), which we decompose into
its elastic part and its plastic part ∇su = εe + εp, and the stress tensor σ : ΩT → Rn×n.
The wave equation with density % and volume load f then reads

%∂2
t u−∇ · σ = f (1.1)

on ΩT , it expresses conservation of momentum and is valid for elastic and plastic materials.
Elastic materials are characterized by a linear dependence between strain ∇su and stress σ.
Plastic materials show an elastic response for deformations ∇su within a subset of Rn×n,
beyond the boundary of this set (the flow surface), even small forces can result in large
deformations. We use the common model where the stress in the material depends only
on the elastic part of the strain, and the relation is linearly determined by the compliance
tensor C

Cσ = ∇su− εp. (1.2)
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2 Homogenization of the Prandtl-Reuss model with hardening

We investigate the Prandtl-Reuss model with linear hardening (see [1, 15]), which reads

∂tεp ∈ ∂χ(σ − bεp). (1.3)

Here b ∈ R+ is a hardening parameter, and the nonlinear function χ : Rn×n → R∪{+∞} is
an indicator function which is discontinuous at the flow surface.

One of our results is an existence result for the above problem, where we use a solution
concept that is adapted to energy estimates. Our method of proof relies on a regularization
of the equations and a finite element scheme to construct approximate solutions. Uniform
estimates for the approximate solutions allow to take limits, the limit functions turn out to
be strong variational solutions. Theorem 1.1 provides an existence result for the original
system with variable parameters and, additionally, an existence result for the homogenized
system.

Our main interest lies in the homogenization of the above equations (1.1)–(1.3). We
assume that the material characteristics C, b, %, and χ depend on x ∈ Ω in a periodic way.
More precisely, for the unit cube Y := [0, 1[n with periodic identifications of the boundaries,
we assume that with C : Y → Rn×n the first material parameter is Cη(x) = C(x/η), and
similarly for the other parameters. The vector of unknowns in the η-problem is

(uη(x, t), ση(x, t), εηp(x, t)) = (displacement vector, stress tensor, plastic strain tensor).

Our interest is to find a homogenized model that allows to calculate directly the weak limits
(u, σ, εp) of the above solutions for η → 0.

The homogenized model has the form of a two-scale model [6], i.e. some quantities
depend not only on the coarse scale parameters x and t, but additionally on the fine scale
parameter y ∈ Y . The main unknowns in the homogenized problem are

(u(x, t), z(x, t, y), w(x, t, y)) = (displacement vector, stress tensor, plastic strain tensor).

The equations for the η-problem and the homogenized system are given as problems (Pη)
and (P) in Subsection 1.5. With our main result, Theorem 1.2, we show that solutions of
problem (Pη) converge to solutions of problem (P).

The method of proof is to start from a solution to problem (P), to construct from
these functions a family of approximate solutions to problem (Pη), and to use them as
test-functions in problem (Pη). An important technical problem is that system (P) does
not provide the regularity that is needed to make this method rigorous. This problem was
solved in [5, 24, 25] with a regularization procedure. Our approach is to use the finite element
approximate solution to problem (P) for the construction of test-functions. as it was used
in [28, 29].

Literature. As a general reference for plasticity equations we mention the books [1, 15],
a more general treatment of hysteresis equations is given in [8, 30]. Existence results for
plasticity equations can be found in all these books, additionally e.g. in [4] and in all the
references below concerning homogenization. The reference [1] covers very general laws,
classified as “constitutive equations of monotone type”. This class includes our problem
(Pη), but not the limit problem (P).

The existence result for problem (Pη) stated in Theorem 1.1 is basically a special case of
existence results proved in [17, 1, 10]. However, Theorem 1.1 is a slight improvement over
these results, since the volume force f need only have one time derivative, whereas in the
cited results two time derivatives of f are required.



B. Schweizer and M. Veneroni 3

In the case of the quasistatic problem, existence of solutions for the constitutive equations
(1.1)-(1.3) has first been proven in [14, 16]. Reference [4] concerns an existence theory for
the quasistatic approximation of viscoelasticity with nonlinear kinematic hardening (or no
hardening).

Homogenization of the (spatially) one-dimensional case was studied in [11, 13, 29]. The
one-dimensional case is much more accessible than the general case, since with the divergence
of the stress all derivatives of the stress are controlled.

Homogenization of plasticity equations in higher space dimension has been treated with
different techniques. The two-scale convergence method [6, 26] was employed for the quasi-
static (no ∂2

t u-term)† visco-elasticity (χ ∈ C0) in [33], for the Kelvin-Voigt model (χ ∈ C0)
in [32], for Maxwell and for Prandtl-Reuss without strain hardening (b = 0) in [34]. We note
that in some publications the name “Prager model” is used instead of “Prandtl-Reuss with
hardening” (e.g. in [29, 31]), and in [32], which does not contain the rigorous homogenization
of that model. Gamma-convergence served the investigation of rate-independent systems
in [21]. The tools of Steklov regularization and phase-shift convergence were adopted in
the homogenization of quasi-static monotone constitutive equations [5, 24, 25]. We refer
additionally to [2, 3] for the development of these tools.

Homogenization is also a recent subject in investigations from the engineering point of
view, e.g. in [18, 19, 9]. The only references for rigorous homogenization in the stochastic
case seem to be [11, 29], which are restricted to the one-dimensional case. We emphasize
that, as in the contribution [28] regarding hysteresis in porous media, the homogenized
system is transformed, in the one-dimensional case, into a system of simpler structure than
in the case of higher dimensional plasticity equations: it is not a general two-scale system
with doubled spatial variables x and y, but a system in only x and t with an averaged
hysteresis operator of Prandtl-Ishlinskii type.

Our results are closest to [5] and [34], but we treat the wave equation and b 6= 0 (and
an oscillatory density). The main distinction is that we use a different method, namely the
very direct and general (compare [23]) tool of oscillating test functions developed by Tartar
(e.g. appendix of [27], see also [7]). The main advantage of this method is that, in principle,
it can be used also in the stochastic case, see [29].

Plan of the paper. In Subsection 1.1 we present the rheological model, discussing the
structural assumptions and reviewing some classical results of convex analysis. In Subsection
1.2 we state the homogenization problem (Pη)and the limit problem (P). Subsections 1.3 and
1.4 contain the choice of boundary data and the definition of strong solutions, respectively.
The main results are stated in Subsection 1.5.

In Section 2 we prove the existence and uniqueness of strong solutions to problems (Pη)
and (P), as stated in Theorem 1.1. The proof of the homogenization Theorem 1.2 is given
in Section 3.

1.1 The rheological model

The aim of this Section is to explain in detail the plasticity model introduced in (1.3). Under
the hypothesis of small displacements, the stress tensor depends only on the linear strain,
i.e. on the symmetrized gradient of the displacement ∇su := 1

2

(
∇u+∇uT

)
. The linear

operator C maps stress tensors to strain tensors and we therefore introduce some notation
regarding tensors.

†in the description of other models of the literature we indicate in brackets the main distinction to our model.
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We denote the space of second order tensors by T 2 = L(Rn,Rn), and symmetric tensors
by T 2

s . As a scalar product on the space T 2 we adopt the standard product σ : ε =∑n
i,j=1 σijεij , with the induced norm |σ|2 = σ : σ =

∑n
i,j=1 σ

2
ij . The space of fourth order

tensors is denoted by T 4 := L(T 2, T 2). With indices we write C = {cklij} ∈ T 4 and, for

ξ = {ξij} ∈ T 2, (Cξ)ij =
∑

k,l c
kl
ij ξkl.

Review of convex analysis

We review some basic facts of convex analysis. We give the statements in the case when X is
a separable Hilbert space, with scalar product “·”, having in mind the application X = T 2

s .
Let

ϕ : X → R ∪ {+∞}, convex and lower-semicontinuous, with ϕ ≡/+∞. (1.4)

The domain of ϕ is
dom(ϕ) := {σ ∈ X : ϕ(σ) < +∞} .

The Legendre-Fenchel conjugate ϕ∗ is given by

ϕ∗ : X → R ∪ {+∞}, ε 7→ sup
σ∈X
{ε · σ − ϕ(σ)}.

The subdifferential ∂ϕ : dom(ϕ)→ P(X) is the set

∂ϕ(σ) = {ε ∈ X such that ϕ(ξ) ≥ ϕ(σ) + ε · (ξ − σ) ∀ ξ ∈ X} .

A multivalued operator f : dom(f) ⊂ X → P(X) is said to be monotone if

(σ1 − σ2) · (ε1 − ε2) ≥ 0, ∀ εi ∈ dom(f), ∀σi ∈ f(εi), (i = 1, 2).

Some useful properties of convex functions are summarized in the following lemma, for a
proof we refer to [12].

Lemma 1.1. For every ϕ as in (1.4) holds

(i) ϕ∗ is convex, lower-semicontinuous, and dom(ϕ∗) 6= ∅,
(ii) ∂ϕ, ∂ϕ∗ are monotone operators,

(iii) ϕ(σ) + ϕ∗(ε) ≥ σ · ε, ∀σ, ε ∈ X.

(iv) σ ∈ dom(ϕ) and ε ∈ ∂ϕ(σ) ⇔ ε ∈ dom(ϕ∗) and σ ∈ ∂ϕ∗(ε).
(v) ε ∈ dom(ϕ∗) and σ ∈ ∂ϕ∗(ε) ⇔ ϕ(σ) + ϕ∗(ε) = σ · ε.

The equality in (v) is known as Fenchel’s equality, while (iii) is referred to as Fenchel’s
inequality.

Decomposition into spheric and deviatoric part

In our setting of plasticity, the plastic response is given by a flow surface in T 2
s , which defines

the convex function χ, and by a parameter b of linear hardening. In order to describe real
materials, it is important to note that the flow surface is contained in a lower dimensional
subspace of T 2

s , the deviatoric tensors. This reflects the fact that the material responds in
an elastic way to deformations that correspond to purely volumetric changes. We therefore
use an orthogonal decomposition of T 2

s into spheric and deviatoric components [15],

T 2
s = S2 +D2, σ = σS + σD,
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the first component associated to volumetric changes, the latter associated to other defor-
mations. For σ ∈ T 2

s , the projections onto spheric part σS and deviatoric part σD are given
by

σS := PS(σ) :=
1

n
tr(σ)IT 2 , σD := PD(σ) := σ − σS ,

where IT 2 is the identity tensor in T 2 and n is the space dimension. We note that the
subspaces S2 = PS(T 2

s ) and D2 = PD(T 2
s ) are orthogonal, i.e., σS : σD = 0 for all σS ∈ S2

and σD ∈ D2.

The indicator function χ (including von-Mises and Tresca models)

We represent the yield criterion of the studied material by a set ω and a function χω

ω ⊂ D2 is a bounded closed convex set, 0 ∈ ω,

χω : T 2 → R ∪ {+∞} χω(σ) :=

{
0 if σD ∈ ω,
+∞ if σD /∈ ω.

(1.5)

We want to allow ω to depend on the spatial variable x. In the homogenization process we
will assume that the spatial dependence is highly oscillatory, therefore the set ω is assumed
to depend on the fine-scale variable y.

As a special case of our setting, we discuss here the von-Mises yield criterion with a
variable positive radius γ ∈ C(Y ;R). It reads

ωM (y) :=
{
σ ∈ D2 such that |σ| ≤ γ(y)

}
.

In this model, we can compute explicitly the conjugate function and the subdifferentials,
the latter are always understood as subdifferential for fixed value of y ∈ Y .

∂χωM (σ; y) =
{
ε ∈ T 2

s such that εS = 0, ε : (ξ − σ) ≤ 0, ∀ ξ ∈ T 2
s s. th. ξD ∈ ωM (y)

}
=


∅ if σD /∈ ωM ,
0 if σD ∈ ωM and |σD| < γ(y),
{λσD, λ ≥ 0} if σD ∈ ωM and |σD| = γ(y),

χ∗ωM (ε; y) = max
σD∈ωM (y)

{ε : σ} =

{
+∞ if εS 6= 0,
γ(y)|εD| if εS = 0,

∂χ∗ωM (ε; y) =


∅ if εS 6= 0,
ωM (y) if εD = 0,

γ(y)εD/|εD| if |εD| > 0,

where we identified the one-point set {γ(y)εD/|εD|} of the last line with its element.
Another frequently used model is given by the Tresca criterion

ωTr(y) :=

{
σ ∈ D2 : max

i,j=1,...,n
|λi(σ)− λj(σ)| ≤ γ(y)

}
, (1.6)

where λi(σ) are the eigenvalues of σ.

Remark 1.2. An indicator function χ = χω, as in (1.5), has an important feature: even
though ∂χ∗ is a multivalued operator, the map ε 7→ ∂χ∗(ε) : ε is single valued and nonneg-
ative. In fact, owing to Lemma 1.1–(v),

σ : ε = χ∗(ε) + χ(σ) = χ∗(ε) ≥ 0, ∀ ε ∈ dom(χ∗), ∀σ ∈ ∂χ∗(ε).
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We note that the boundedness of ω implies that dom(χ∗) = D2, and that 0 ∈ ω implies
χ∗ ≥ 0.

We emphasize that the subdifferential inclusion of (1.3)

∂tεp ∈ ∂χ(σ − bεp),

always demands, in particular, that σ−bεp ∈ dom(χ). It additionally demands the following.
(i) for σD−bεp inside ω ⊂ D2, the material response is ∂tεp = 0. (ii) on the yield surface, i.e.
for σD − bεp ∈ ∂ω ⊂ D2, the tensor ξ := σD − bεp determines the affine material response.
Loosely speaking, the flow of the plastic strain εp occurs in direction ξ.

Structural assumptions, positivity and continuity

In order to model highly heterogeneous media, we assume that the material parameters are
given by maps C : Y → T 4, b, % : Y → R+, where Y := [0, 1[n is the periodic unit cell and
T 2
s is the space of fourth order tensors, i.e. linear maps Rn×n → Rn×n. We assume that

C ∈ C0(Y ; T 4), b ∈ C0(Y ;R+) satisfy, for some α, β > 0 :

C(y)σ : σ ≥ α|σ|2, b(y) ≥ β for all y ∈ Y, for all σ ∈ Rn×n.
(1.7)

We also demand Cklij = Cijkl in order to have ∂t(σ : Cσ) = 2σ : C∂tσ.
We assume that the convex function χ( · ; y) is given by

χ(σ ; y) := χω(y)(σ) with ω(y) ⊂ D2 as in (1.5),

|χ∗(σ ; y1)− χ∗(σ ; y2)| ≤ m(|y2 − y1|)|σ| ∀ y1, y2 ∈ Y,
(1.8)

where the continuous function m, with m(0) = 0, is an upper bound for the continuity mod-
ulus of χ∗(σ ; ·). This model includes the von-Mises and the Tresca criterion for continuous
γ(y). Finally, we denote by % ∈ L∞(Y ;R) the density of the material. We assume that there
exists %m > 0 such that

%(y) ≥ %m a.e. in Y. (1.9)

We note that the positivity of all coefficients as above is crucial for our method. The
positivity assumption on b restricts the method to models with kinematic hardening and
excludes e.g. the case of perfect plasticity.

Regularized model

The proofs of Theorem 1.1 and of Theorem 1.2 are based on the existence of a regularization
of χ. We assume that there exists a family of convex functions {χδ}δ, depending on δ ∈ (0, 1)
and on the parameter y ∈ Y , which satisfies the following requirements.

χδ : T 2
s → R is convex (1.10a)

lim
δ→0

χδ(σ ; y) = χ(σ ; y), ∀σ ∈ T 2
s , (1.10b)

for all y ∈ Y . We additionally ask that χδ ≥ −cδ on T 2
s , in order to fix the rate of

convergence and give an explicit bound in the a priori estimates. For example, it is possible
to choose χδ as the Yosida transform of χ, also referred to as the inf-convolution of χ and
| · |2/(2δ)

χδ(σ) := inf
ξ∈T 2

s

{
χ(ξ) +

|ξ − σ|2

2δ

}
.
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1.2 Statement of the homogenization problems

Denoting by η > 0 the small length scale of the periodicity cells, we consider

Cη(x) = C

(
x

η

)
, bη(x) = b

(
x

η

)
, %η(x) = %

(
x

η

)
, χη( · ;x) = χ

(
· ;
x

η

)
. (1.11)

We now formulate (1.1)–(1.3) for oscillatory coefficients.

Problem (Pη). Find uη : ΩT → Rn and ση, εηp : ΩT → T 2
s solving

%η∂
2
t u

η −∇ · ση = f, (1.12a)

Cησ
η = ∇suη − εηp, (1.12b)

∂tε
η
p ∈ ∂χη(ση − bηεηp). (1.12c)

We next state the homogenized two-scale problem, which contains y ∈ Y as an additional
independent variable. An interesting aspect of the homogenized problem (P) is the additional
unknown v in (1.13b), which models local variations of the displacement vector. It plays the
role of a Lagrange parameter for the local incompressibility constraint (1.13d).

Limit Problem (P). For given %̄ > 0, find u : ΩT → Rn, v : ΩT × Y → Rn, and
w, z : ΩT × Y → T 2

s , solving

%̄∂2
t u−∇ ·

(∫
Y
z dy

)
= f, (1.13a)

Cz = ∇sxu+∇syv − w, (1.13b)

∂tw ∈ ∂χ(z − bw ; y), (1.13c)

divyz = 0. (1.13d)

In these equations, w is a plastic strain variable and z is a stress variable.

1.3 Initial and boundary conditions

Special care must be taken of compatibility requirements on the initial data.

Compatible initial data for problem (P η). Initial values for problem (1.12) are
given by u0, u1 ∈ H1(Ω,Rn) and σ0 ∈ L2(Ω, T 2

s ) with divσ0 ∈ L2(Ω,Rn), and we impose
the initial and boundary conditions

uη(·, 0) = u0, ∂tu
η(·, 0) = u1, ση(·, 0) = σ0 in Ω (1.14)

ση · ν = 0 on ∂Ω× (0, T ), (1.15)

where ν is the outward-directed unit normal vector on ∂Ω. In order to satisfy (1.12c) we
demand that the plastic strain, according to (1.12b) initially given by

εηp,0 := ∇su0 − Cησ0, (1.16)

satisfies the compatibility conditions

σ0 − bηεηp,0 ∈ dom(χη), (εηp,0)S = 0 in Ω. (1.17)

It would also be possible to allow for oscillating initial displacements uη0. We restrict to
non-oscillating for an easier form of the compatibility condition below.
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Compatible initial data for problem (P). For the homogenized problem (1.13),
initial and boundary conditions are given by u∗0, u

∗
1 ∈ H1(Ω,Rn), v0 ∈ L2(Ω;H1(Y,Rn)),

and z0 ∈ L2(Ω× Y, T 2
s ) through

u(·, 0) = u∗0, ∂tu(·, 0) = u∗1, v(·, 0) = v0, z(·, 0) = z0 in Ω (1.18)

z · ν = 0 on ∂Ω× (0, T ), (1.19)

where we used z̄(x) =
∫
Y z(x, .) for the Y -average. We demand divyz0 = 0 and div z̄0 ∈

L2(Ω,Rn) for the Y -average z̄0(x) =
∫
Y z0(x, .).

With the help of (1.13b) we can extract from the above data also the initial condition
for w as

w0(x, y) := ∇su∗0(x) +∇syv0(x, y)− C(y)z0(x, y). (1.20)

We assume the compatibility conditions

z0 − bw0 ∈ dom(χ), (w0)S = 0 in Ω× Y. (1.21)

Relation of the initial values for original and limit problem. We demand the
relations

u∗0 = u0, u∗1 = u1, w0(x, y) = ∇su0(x)− C(y)σ0(x). (1.22)

Loosely speaking, we calculate w0 from the initial data u0 and σ0 of the η-problem and
demand that the initial data v0 and z0 satisfy (1.20) as in a Hopf decomposition. We
emphasize that the choice of trivial initial conditions (for position, velocity, and stress) is
compatible for both problems and satisfies (1.22).

1.4 Solution concepts.

We can now define a concept of strong solution for our problems.

Definition 1.3 (Strong solutions). Let f ∈ H1(0, T ;L2(Ω)) be given. A vector (uη, εηp, ση) ∈
L2(ΩT ;Rn) × L2(ΩT ; T 2

s )2 is called a strong solution to Problem (P η) if the distributional
derivatives satisfy

∂2
t u

η, ∂t∇uη, ∂tεηp, ∂tση ∈ L∞(0, T ;L2(Ω)), (1.23)

equations (1.12a), (1.12b) are satisfied in the sense of distributions and relation (1.12c) is
satisfied almost everywhere in ΩT .

A vector (u, v, w, z) ∈ L2(ΩT ;Rn)×L2(ΩT ×Y ;Rn)×L2(ΩT ×Y ; T 2
s )2 is called a strong

solution to Problem (P) if the distributional derivatives satisfy

∂2
t u, ∂t∇u ∈ L∞(0, T ;L2(Ω)), (1.24)

∂t∇yv, ∂tw, ∂tz ∈ L∞(0, T ;L2(Ω× Y )), (1.25)

equations (1.13a), (1.13b), and (1.13d) are satisfied in the sense of distributions and equation
(1.13c) is satisfied almost everywhere in ΩT × Y .

In both problems we additionally demand that the initial conditions are satisfied in the
sense of traces, the boundary condition through the weak formulation of equations (1.12a)
and (1.13a).
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Remark 1.4. Due to the regularity of strong solutions, equations (1.12b) and (1.13b) hold
pointwise almost everywhere. The weak formulation of (1.12a), which contains the boundary
condition of a vanishing normal component of the stress, is

−
∫

ΩT

%η∂tu
η · ∂tψ +

∫
ΩT

ση : ∇ψ =

∫
ΩT

f · ψ, ∀ψ ∈ C∞c ((0, T )× Ω).

The weak formulation of (1.13a) is analogous.

It will be useful to introduce a second concept of solutions. This concept of variational
solutions, which was already exploited in [29], uses an energy inequality in the characteri-
zation of solutions. It will actually turn out to be equivalent to the first concept, but it can
be verified more easily for weak limits. We emphasize that this use of an energy inequality
was extended into a theory of energetic solutions in [20], and it was used in the analysis of
elastoplasticity problems, e.g., in [31, 32, 22, 33, 34] in order to characterize weak variational
solutions.

Definition 1.5 (Strong variational solutions). Let f ∈ H1(0, T ;L2(Ω)) be given. A vector
(uη, εηp, ση) ∈ L2(ΩT ;Rn) × L2(ΩT ; T 2

s )2 is called a strong variational solution to Problem
(P η) if

(i)η it has the regularity of a strong solution (1.23),

(ii)η it solves equations (1.12a) and (1.12b) in the distributional sense in ΩT ,

(iii)η ση − bηεηp ∈ dom(χη) a.e. in ΩT ,

(iv)η it satisfies the energy inequality

1

2

∫
Ω
%η|∂tuη|2 + bη|εηp|2 + ση :Cησ

η
∣∣∣t
0

+

∫
Ωt

χ∗η(∂tε
η
p) ≤

∫
Ωt

f · ∂tuη (1.26)

for almost every t ∈ (0, T ).

A vector (u, v, w, z) ∈ L2(ΩT ;Rn) × L2(ΩT × Y ;Rn) × L2(ΩT × Y ; T 2
s )2 is called a strong

variational solution to Problem (P) if

(i) it has the regularity of a strong solution (1.24), (1.25),

(ii) it solves equations (1.13a), (1.13b), and (1.13d) in the distributional sense in ΩT ×Y ,

(iii) z − bw ∈ dom(χ), a.e. in ΩT × Y ,

(iv) it satisfies the energy inequality

1

2

(∫
Ω
%̄|∂tu|2 +

∫
Ω×Y

b|w|2 + z : Cz

) ∣∣∣t
0

+

∫
Ωt×Y

χ∗(∂tw) ≤
∫

Ωt

f · ∂tu. (1.27)

for almost every t ∈ (0, T ).

Remark 1.6. Inequality (1.26) is a mathematical formulation of the principle of maximal
dissipation. Consider the standard free energy (see, e.g., [1])

ψ(∇su, εp) :=
1

2
(∇su− εp) : C−1(∇su− εp) +

1

2
bεp : εp,

and the dissipation rate

D(∇su, εp) := −∇εpψ : ∂tεp = (σ − bεp) : ∂tεp.
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By Fenchel’s inequality Lemma 1.1-(iii), using χ(σ − bεp) = 0, there always holds

D(∇su, εp) ≤ χ∗(∂tεp). (1.28)

In this sense, χ∗(∂tεp) is the maximal dissipation rate. It is easy to see that the equality
in (1.28) is achieved by strong solutions of equations (1.1)–(1.3), indeed (1.3) implies, by
Fenchel’s equality in Lemma 1.1-(v),

(σ − bεp) : ∂tεp = χ(σ − bεp) + χ∗(∂tεp).

Since by (1.3) there holds σ − bεp ∈ dom(χ), and thus χ(σ − bεp) = 0, we conclude

D(∇su, εp) = (σ − bεp) : ∂tεp = χ∗(∂tεp).

Similarly, one can show for strong variational solutions, which satisfy inequality (1.26), that∫
ΩT

D(∇su, ε) =

∫
ΩT

f · ∂tu− ∂t
(

1

2
%|∂tu|2 + ψ(∇su, εp)

)
≥
∫

ΩT

χ∗(∂tεp).

We conclude from (1.28) that the dissipation rate must be maximal at all times.

Lemma 1.7. Every strong variational solution according to Definition 1.5 is also a strong
solution in the sense of Definition 1.3. Vice versa, every strong solution is a strong varia-
tional solution.

Proof. We show the result for problem (Pη), the proof for the limit problem (P) is analo-
gous. It is easy to check that every strong solution of problem (Pη) satisfies (1.26) as an
equality. We skip this calculation, which is also contained in the proof of Lemma 2.1. The
regularity assumed in (1.23) is sufficient to perform all the computations rigorously. With
this observation it is shown that every strong solution is a strong variational solution.

Let us prove the converse implication: for a strong variational solution (uη, εηp, ση) of
problem (Pη) we need to show that equation (1.12c) is satisfied a.e. in ΩT . We start from
the energy inequality (1.26) to calculate∫

Ωt

χ∗η(∂tε
η
p) ≤

∫
Ωt

f · ∂tuη −
1

2

∫
Ω
%η|∂tuη|2 + b|εηp|2 + ση : Cησ

η
∣∣∣t
0

=

∫
Ωt

f · ∂tuη −
∫

Ωt

%η∂
2
t u

η · ∂tuη + ∂tε
η
p : bηε

η
p + ση : Cη∂tσ

η

(1.12a)
=

∫
Ωt

ση : ∂t∇uη −
∫

Ωt

∂tε
η
p : bηε

η
p + ση : Cη∂tσ

η

(1.12b)
=

∫
Ωt

ση : ∂t(Cησ
η + εηp)−

∫
Ωt

∂tε
η
p : bηε

η
p + ση : Cη∂tσ

η

=

∫
Ωt

∂tε
η
p :
[
ση − bηεηp

]
.

(1.29)

The last integrand can be estimated by Fenchel’s inequality of Lemma 1.1-(iii) as

∂tε
η
p :
[
ση − bηεηp

]
≤ χ∗η(∂tεηp) + χη(σ

η − bηεηp), a.e. in Ω. (1.30)

Due to property (iii)η of Definition 1.5 we have χη(σ
η−bηεηp) = 0. We can therefore estimate

the integrand of the right hand side of (1.29) by the integrand of the left hand side. We
obtain the equality

∂tε
η
p :
[
ση − bηεηp

]
= χ∗η(∂tε

η
p) + χη(σ

η − bηεηp), a.e. in Ω.
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Properties (iv) and (v) of Lemma 1.1 imply

∂tε
η
p ∈ ∂χη(ση − bηεηp).

This shows (1.12c) and hence the equivalence of the solution concepts.

1.5 Main results

We can state now the main theorems of this paper.

Theorem 1.1. Let f ∈ H1(0, T ;L2(Ω;Rn)) be given, and let initial data and boundary
conditions be as in (1.14)–(1.21). Then, with a constant c that depends on C, b, χ, %, as
defined in (1.7)–(1.10), and on ΩT , but not on η, we have the following existence result with
uniform estimates.

For every η > 0 there exists a unique strong solution (uη, εηp, ση) of problem (P η) with

‖uη‖W 1,∞(0,T ;H1(Ω;Rn)) + ‖∂2
t u

η‖L∞(0,T ;L2(Ω;Rn))

+ ‖εηp‖W 1,∞(0,T ;L2(Ω;T 2
s ))

+ ‖ση‖W 1,∞(0,T ;L2(Ω;T 2
s )) ≤ c

(
‖u0‖H1(Ω;Rn)

+‖u1‖H1(Ω;Rn) + ‖σ0‖L2(Ω;T 2
s ) + ‖divσ0‖L2 + ‖f‖H1(0,T ;L2(Ω))

)
.

There exists a unique strong solution (u, v, w, z) of the homogenized problem (P) with

‖u‖W 1,∞(0,T ;H1(Ω;Rn)) + ‖∂2
t u‖L∞(0,T ;L2(Ω;Rn)) + ‖∇yv‖W 1,∞(0,T ;L2(Ω×Y ;T 2

s ))

+ ‖w‖W 1,∞(0,T ;L2(Ω×Y ;T 2
s )) + ‖z‖W 1,∞(0,T ;L2(Ω×Y ;T 2

s ))

≤ c
(
‖u∗0‖H1(Ω;Rn) + ‖u∗1‖H1(Ω;Rn) + ‖v0‖L2(Ω;H1(Y ;Rn))

+ ‖div z̄0‖L2(Ω) + ‖z0‖L2(Ω×Y ;T 2
s ) + ‖f‖H1(0,T ;L2(Ω))

)
.

Theorem 1.2. Let (uη, εηp, ση) be a sequence of strong solutions of problems (P η) and let
(u, v, w, z) be a strong solution of problem (P), as in Theorem 1.1. Set %̄ =

∫
Y %. Let the

initial data be compatible in the sense of (1.17) and (1.21), and let them be in relation (1.22)
to each other. Then, as η → 0,

∂tu
η → ∂tu strongly in L2(ΩT ),

ση ⇀

∫
Y
z dy, εηp ⇀

∫
Y
w dy weakly in L2(ΩT ).

2 Existence

In this section we prove Theorem 1.1 with the help of approximate equations. We replace
the nonlinear function χ (which has flat parts and infinite slopes) by a regularized function
χδ satisfying hypothesis (1.10a) and (1.10b). Furthermore, we will discretize the equations
in space with a small parameter h, such that the existence to the approximate system will
be a consequence of the Picard-Lindelöf theorem for ordinary differential equations. The
derivation of uniform estimates for the approximate problems allows to perform the limits
δ → 0 and h → 0 and to find solutions to the original problems together with the same
estimates.

For ease of notation we perform all calculations in this section under the hypothesis
% ≡ 1, i.e. %η = %̄ = 1. In Section 3 we allow again the y-dependent density.
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2.1 Regularization and a priori estimates

Let χδ,η( · ) := χδ( · ; x/η), χδ( · ) := χδ( · ; y), and denote

U := Ω× Y, UT := Ω× Y × (0, T ).

In the statement of the regularized problems we use the dual formulation of the subdiffer-
ential inclusion, which is equivalent to the primal formulation by Lemma 1.1 (iv).

Regularized Problem (Pη
δ). Find uηδ : ΩT → Rn and σηδ , ε

η
p,δ : ΩT → T 2

s solving

∂2
t u

η
δ −∇ · σ

η
δ = f

Cησ
η
δ = ∇suηδ − ε

η
p,δ.

σηδ = bηε
η
p,δ +∇χ∗δ,η

(
∂tε

η
p,δ

)
Regularized Limit Problem (Pδ). Find uδ : ΩT → Rn, vδ : UT → Rn, and wδ, zδ : UT →
T 2
s , solving

∂2
t uδ −∇ ·

(∫
Y
zδ dy

)
= f (2.1a)

Czδ = ∇suδ +∇syvδ − wδ (2.1b)

zδ = bwδ +∇χ∗δ(∂tbwδ) (2.1c)

divyzδ = 0. (2.1d)

The following lemma collects the energy estimates for strong solutions. It helps to identify
useful function spaces for the construction of solutions. For our methods, it will be necessary
to improve the estimates by one order in time, which is done in Lemma 2.2.

Lemma 2.1 (Energy estimates for the δ-regularized problem). There exists a constant
c > 0, independent of δ and η, such that strong solutions (uηδ , σ

η
δ , ε

η
p,δ) of (P η

δ ) satisfy

‖εηp,δ‖
2

L∞(0,T ;L2(Ω))
+ ‖σηδ ‖

2
L∞(0,T ;L2(Ω))

+ ‖χ∗δ,η(∂tε
η
p,δ)‖L1(ΩT )

+ ‖χδ,η(σ
η
δ − bηε

η
p,δ)‖L1(ΩT )

+ ‖∂tuηδ‖
2
L∞(0,T ;L2(Ω))

+ ‖uηδ‖
2
L∞(0,T ;H1(Ω))

≤ c
(
‖u0‖2H1(Ω) + ‖u1‖2L2(Ω) + ‖σ0‖2L2(Ω) + ‖f‖2L2(UT ) + δ

)
,

and solutions (uδ, vδ, wδ, zδ) of (Pδ) satisfy

‖wδ‖2L∞(0,T ;L2(U)) + ‖zδ‖2L∞(0,T ;L2(U)) + ‖χ∗δ(∂twδ)‖L1(UT ) + ‖χδ(zδ − bwδ)‖L1(UT )

+ ‖∂tuδ‖2L∞(0,T ;L2(Ω)) + ‖uδ‖2L∞(0,T ;H1(Ω)) + ‖∇yvδ‖2L2(UT )

≤ c
(
‖u∗0‖

2
H1(Ω) + ‖u∗1‖

2
L2(Ω) + ‖v0‖2L2(Ω;H1(Y )) + ‖z0‖2L2(U) + ‖f‖2L2(UT ) + δ

)
. (2.2)

Proof. We multiply equation (2.1a) with ∂tuδ and integrate over Ω to obtain

1

2

d

dt

∫
Ω
|∂tuδ|2 −

∫
Ω
f · ∂tuδ = −

∫
Ω

(∫
Y
zδ dy

)
: ∂t∇suδ

= −
∫
U
zδ : ∂t∇suδ

(2.1b)
= −

∫
U
zδ : ∂t(wδ + Czδ −∇syvδ)

= −
∫
U

(zδ : ∂twδ)−
∫
U

(zδ : B∂tzδ) +

∫
U

(zδ : ∂t∇syvδ)

=: −I1 − I2 + I3. (2.3)
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Using relation (2.1c) and Fenchel’s equality, we compute

I1 =

∫
U

(zδ : ∂twδ) =

∫
U

[
bwδ + zδ − bwδ

]
: ∂twδ

=

∫
U
∂twδ : bwδ +

∫
U

(
χδ(zδ − bwδ) + χ∗δ(∂twδ)

)
=

1

2

d

dt

∫
U
wδ : bwδ +

∫
U
χδ(zδ − bwδ) +

∫
U
χ∗δ(∂twδ)

I2 =
1

2

d

dt

∫
U
zδ : Czδ

I3 =

∫
Ω

∫
Y
zδ : ∂t∇yvδ =

∫
Ω

∫
Y

divyzδ · ∂tvδ
(2.1d)

= 0.

Inserting into (2.3) and integrating in time from 0 to s we find

1

2

(∫
Ω
|∂tuδ|2 +

∫
U
b|wδ|2 +

∫
U
zδ : Czδ

)∣∣∣t=s
t=0

+

∫
U
χδ(zδ − bwδ) +

∫
U
χ∗δ(∂twδ) =

∫
Ωs

f · ∂tuδ.

By positivity of C and b, we can write this as an estimate in function spaces with the help
of the Cauchy-Schwarz inequality.

‖∂tuδ‖2L∞(0,T ;L2(Ω)) + ‖wδ‖2L∞(0,T ;L2(U)) + ‖zδ‖2L∞(0,T ;L2(U)) + ‖χ∗δ(∂twδ)‖L1(UT )

+ ‖χδ(zδ − bwδ)‖L1(UT ) ≤ c
(
‖u∗1‖

2
L2(Ω) + ‖u∗0‖

2
H1(Ω) + ‖z0‖2L2(U) + ‖f‖2L2(ΩT ) + δ

)
.

It remains to conclude the H1(Ω)-type estimate for uδ and the L2(U)-type estimate for ∇yvδ
in (2.2). We exploit relation (2.1b),

wδ(x, y) + C(y)zδ(x, y) = ∇suδ(x) +∇syvδ(x, y).

Integration over Y yields, because of Y -periodicity of vδ and y-independence of uδ,∫
Y

[wδ(x, y) + C(y)zδ(x, y)] dy = ∇suδ(x),

such that Korn’s inequality implies the H1(Ω)-bound for uδ. This, in turn, provides the
estimate for ∇yvδ from relation (2.1b).

We can obtain higher order estimates by differentiating the equation with respect to
time and testing with ∂2

t uδ. We will state and motivate the estimates here and provide the
rigorous proof with a spatial discretization in the next subsection.

Lemma 2.2 (Higher order estimates for the δ-regularized problem). There exists a constant
c > 0, independent of δ and η, such that solutions (uηδ , σ

η
δ , ε

η
p,δ) of (P η

δ ) satisfy

‖∂tuηδ‖
2
L∞(0,T ;H1(Ω)) + ‖∂2

t u
η
δ‖

2
L∞(0,T ;L2(Ω)) + ‖∂tεηp,δ‖

2
L∞(0,T ;L2(Ω))

+ ‖∂tσηδ ‖
2
L∞(0,T ;L2(Ω)) ≤ c

(
‖divσ0‖2L2(Ω) + ‖u1‖2H1(Ω) + ‖f‖2H1(0,T ;L2(Ω))

)
,

and solutions (uδ, vδ, wδ, zδ) of (Pδ) satisfy

‖∂twδ‖2L∞(0,T ;L2(U)) + ‖∂tzδ‖2L∞(0,T ;L2(U)) + ‖∂2
t uδ‖2L∞(0,T ;L2(Ω))

+ ‖∂tuδ‖2L∞(0,T ;H1(Ω)) + ‖∂t∇yvδ‖2L∞(0,T ;L2(U))

≤ c
(
‖div z̄0‖2L2(Ω) + ‖u∗1‖

2
H1(Ω) + ‖f‖2H1(0,T ;L2(Ω))

)
.
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For simplicity, we assume in this calculation χ∗δ ∈ C2(D2), and note that the assumption
can be relaxed to χ∗δ ∈ C1,1(D2) as in (1.10a), by an argument with finite differences. We
differentiate equation (2.1a) with respect to time. The resulting equation is multiplied with
∂2
t uδ and integrated. We set g := ∂tf to find

1

2

d

dt

∫
Ω
|∂2
t uδ|2 −

∫
Ω
g · ∂2

t uδ = −
∫
U
∂tzδ : ∂2

t∇suδ

(2.1b)
= −

∫
U
∂tzδ : ∂2

t (wδ + Czδ −∇syvδ)

= −
∫
U

(∂tzδ : ∂2
twδ)−

∫
U

(∂tzδ : C∂2
t zδ) +

∫
U

(∂tzδ : ∂2
t∇syvδ)

(2.1c)
= −

∫
U
∂t
[
bwδ +∇χ∗δ(∂twδ)

]
: ∂2

twδ

− 1

2

d

dt

∫
U
∂tzδ : C(∂tzδ)−

∫
Ω

∫
Y
∂t(divyzδ) · ∂2

t vδ

= −1

2

d

dt

∫
U
∂twδ : b∂twδ −

∫
U

[
∇2χ∗δ(∂twδ)∂

2
twδ

]
: ∂2

twδ

− 1

2

d

dt

∫
U
∂tzδ : C(∂tzδ).

By convexity of χ∗δ (1.10a), we can estimate(∫
Ω
|∂2
t uδ|2 +

∫
U
b|∂twδ|2 +

∫
U
∂tzδ : C(∂tzδ)

)∣∣∣t=s
t=0
≤ 2

∫
Ωs

g · ∂tuδ. (2.4)

Note that the compatibility condition (1.21) and property (1.10b) of the regularization imply
that ∂twδ|t=0 is bounded in L∞(U), independently of δ. By equation (1.13a) we get

∂2
t uδ|t=0 = div

∫
Y
z0 dy + f |t=0 ∈ L2(Ω).

Differentiating (1.13b) with respect to time and multiplication with ∂tz provides, exploiting
(1.13d), ∫

Ω×Y
C∂tz : ∂tz dx dy =

∫
Ω
∇∂tu :

∫
Y
∂tz dy dx−

∫
Ω×Y

∂tw : ∂tz dy dx,

and hence
‖∂tzδ(0)‖2L2(U) ≤ c

(
‖u∗1‖

2
H1(Ω) + ‖∂twδ(0)‖2L2(U)

)
.

Estimate (2.4) then yields

‖∂2
t uδ‖

2
L∞(0,T ;L2(Ω)) + ‖∂twδ‖2L∞(0,T ;L2(U)) + ‖∂tzδ‖2L∞(0,T ;L2(U))

≤ c
(
‖div z̄0‖2L2(Ω) + ‖u∗1‖

2
H1(Ω) + ‖f‖2H1(0,T ;L2(Ω))

)
.

Treating the remaining two quantities as in the energy estimate, we find the result.

2.2 Discretization and rigorous estimates

We introduce a space-discretization of the limit system (P). Let Ω be polygonal and let

T Ω
h := {Kq}q∈ΛΩ

h
be a subdivision of Ω,



B. Schweizer and M. Veneroni 15

where Kq are simplices such that max{diam(Kq), q ∈ ΛΩ
h } = h and ΛΩ

h is a finite set of
indexes. In the same way, we choose a triangular mesh T Y

τ of Y with maximal diameter
τ . Let Pk(K) be the space of polynomials of degree at most k ≥ 0 on K. Moreover, for
every q ∈ ΛΩ

h , p ∈ ΛYτ we can choose a point xq ∈ K◦q (the internal part of the triangle Kq),

and a point yp ∈ K◦p , for example the baricenters. We can then use the projections PΩ
h , P

Y
τ ,

defined almost everywhere,

PΩ
h (x) := xq if x ∈ K◦q
P Yτ (y) := yp if y ∈ K◦p

to discretize the tensors and functions as

Cτ (y) := C(P Yτ (y)), bτ (y) := b(P Yτ (y)),

Similarly, the discretization of the regularized function χδ is

χδ,τ (ξ; y) := χδ(ξ; P
Y
τ (y)), (2.5)

which implies χ∗δ,τ (ξ; y) := χ∗δ(ξ; P
Y
τ (y)). We define spaces of piecewise linear and piecewise

constant functions as

PLτ (Y ;Rn) :=
{
v ∈ H1(Y ;Rn) : v|K ∈P1(K;Rn), ∀K ∈ T Y

τ

}
PCh(Ω; T 2

s ) := {f : L2(Ω; T 2
s ) : f|K ∈P0(K; T 2

s ), ∀K ∈ T Ω
h },

and will search for the approximate solution in the finite-dimensional spaces

Uh := PLh(Ω;Rn) :=
{
u ∈ H1(Ω;Rn) : u|K ∈P1(K;Rn) ∀K ∈ T Ω

h

}
,

Vh,τ :=
{
v ∈ L2(Ω;H1(Y ;Rn)) : v|K ∈P0(K;PLτ (Y ;Rn)) ∀K ∈ T Ω

h

}
,

Wh,τ :=
{
w : L2(Ω× Y ;Rn×n) : w|Kq×Kp ∈P0(Kq ×Kp) ∀Kq ∈ T Ω

h , Kp ∈ T Y
τ

}
.

The discretized problems and local existence

We now define approximated problems which constitute the core of the proof of existence
for the original problems. The notation is unavoidably involved, so we first summarize the
employed symbols. Starting from the approximation of the homogenized problem (P), the
solutions depend on three parameters.

h is the size of the mesh on Ω,

τ is the size of the mesh on Y,

δ is the regularization parameter for χ.

For every t ∈ (0, T ], the unknowns of the problem are then

uh,τ,δ(t) ∈ Uh, vh,τ,δ(t) ∈ Vh,τ , wh,τ,δ(t), zh,τ,δ(t) ∈Wh,τ .

With the combined function space Xh,τ := Uh × Vh,τ ×Wh,τ ×Wh,τ , we can now define the
space-discretized approximation corresponding to problem (P). Find

(uh,τ,δ, vh,τ,δ, wh,τ,δ, zh,τ,δ) : [0, T ]→ Xh,τ ,
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such that for a.e. t ∈ (0, T ), ∂tuh,τ,δ, ∂
2
t uh,τ,δ ∈ Uh, ∂twh,τ,δ ∈Wh,τ , and the following system

(Ph,τ,δ) of equations is satisfied∫
Ω
∂2
t uh,τ,δ · ψ dx+

∫
Ω

(∫
Y
zh,τ,δ dy

)
: ∇ψ dx =

∫
Ω
f · ψ dx ∀ψ ∈ Uh, (2.6a)

∂twh,τ,δ = (∇χδ,τ )(zh,τ,δ − bτwh,τ,δ; y), a.e. (x, y) ∈ Ω×Y (2.6b)

Cτzh,τ,δ = ∇suh,τ,δ +∇syvh,τ,δ − wh,τ,δ, a.e. (x, y) ∈ Ω×Y (2.6c)∫
Ω

∫
Y
zh,τ,δ : ∇yξ dy dx = 0 ∀ ξ ∈ Vh,τ . (2.6d)

We give some remarks on the above discrete system. Relation (2.6a) consists in dim(Uh)-
equations, and can hence be understood as an evolution equation for the vector uh,τ,δ. All
the functions appearing in (2.6b) and (2.6c) are in Wh,τ , i.e. piecewise constant in x and
y. The nonlinear function ∇χδ,τ is the y-discretized gradient (in the matrix entry) of the
regularized function of (2.5). Finally, from the number of equations, the side condition
(2.6d) can determine vh,τ,δ(t) ∈ Vh,τ .

To pose the initial conditions, we denote by P(x;X) the orthogonal projection of x onto
the space X. We ask that solutions of (2.6) satisfy the initial data

uh,τ,δ(0) = P(u∗0;Uh), ∂tuh,τ,δ(0) = P(u∗1;Uh), (2.7)

vh,τ,δ(0) = P(v0;Vh,τ ), zh,τ,δ(0) = P(z0;Zh,τ ), (2.8)

where
Zh,τ := {z ∈Wh,τ : z satisfies (2.6d)} .

As in the original problem, the initial value for wh,τ,δ is determined, through equation (2.6c),
by

wh,τ,δ(0) = ∇suh,τ,δ(0) +∇syvh,τ,δ(0)− Cτzh,τ,δ(0). (2.9)

Note that, as h → 0, P (u∗0;Uh) → u∗0 ∈ H1(Ω) (and similarly for the other initial data).
Furthermore, the norms of the discrete initial data are bounded by the norms of the original
initial data.

Lemma 2.3. The space-discrete problem (Ph,τ,δ) of (2.6a)-(2.6d) can be written as a system
of ordinary differential equations with Lipschitz continuous right hand side in the unknowns
uh,τ,δ ∈ Uh and wh,τ,δ ∈Wh,τ . It admits a unique solution satisfying

(uh,τ,δ, ∂tuh,τ,δ, vh,τ,δ, wh,τ,δ, zh,τ,δ)

∈ C1
(
[0, T ];Uh × Uh × PCh(Ω, V Y

τ )×Wh,τ ×Wh,τ

)
to the initial data (2.7)-(2.9).

Proof. The evolution system is given by (2.6a) for uh,τ,δ and (2.6b) for wh,τ,δ when we insert
the solutions zh,τ,δ and vh,τ,δ of the other two equations.

The first step of this procedure is to invert Cτ in order to find an explicit expression for
zh,τ,δ in terms of (uh,τ,δ, vh,τ,δ, wh,τ,δ). Note that Cτ is invertible by positivity of C. After
this first modification the system reads∫

Ω
∂2
t uh,τ,δ · ψ dx = −

∫
Ω

(∫
Y
C−1
τ (∇suh,τ,δ +∇syvh,τ,δ) dy

)
: ∇ψ dx

+

∫
Ω

[
f · ψ +

∫
Y
C−1
τ wh,τ,δ dy : ∇ψ

]
dx ∀ψ ∈ Uh,

(2.10)
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∂twh,τ,δ = (∇χδ,τ )(C−1
τ (∇suh,τ,δ +∇syvh,τ,δ)− (C−1

τ + b)wh,τ,δ; y)

for a.e. (x, y) ∈ Ω× Y,
(2.11)∫

Y
C−1
τ ∇syvh,τ,δ : ∇yξ dy = −

∫
Y
C−1
τ ∇suh,τ,δ : ∇yξ dy

+

∫
Y
C−1
τ wh,τ,δ : ∇yξ dy ∀ ξ ∈ Vh,τ , a.e. x ∈ Ω.

(2.12)

By positivity of C−1
τ , relation (2.12) is, for every x = xq, q ∈ ΛΩ

h , (the discretized version
of) an elliptic equation on Y for the piecewise linear function vh,τ,δ(x, .). Normalizing the
solution, e.g. with the condition of a vanishing average, by Lax-Milgram’s Lemma the
system admits a unique solution vh,τ,δ(t) = Fv(uh,τ,δ(t), wh,τ,δ(t)) ∈ Vh,τ , with a linear
solution operator Fv : Uh ×Wh,τ → Vh,τ . In the existence argument it is crucial that the
construction provides functions Cτ , ∇suh,τ,δ, and wh,τ,δ that are piecewise constant on the
triangulation of Ω. For later use we note that the norm of Fv only depends on the lower
bound for C−1

τ ,

‖∇yvh,τ,δ(t)‖L2(Ω×Y ) ≤ c
(
‖∇suh,τ,δ(t)‖L2(Ω) + ‖wh,τ,δ(t)‖L2(Ω×Y )

)
,

with c independent of the parameters h, τ, δ.
We can now insert vh,τ,δ(t) = Fv(uh,τ,δ(t), wh,τ,δ(t)) in equations (2.10) and (2.11). The

result is the desired ordinary differential equation with a Lipschitz continuous right-hand
side, since by (1.10a) the function ∇χδ,τ = ((∇σχδ)( · ; y))h,τ is Lipschitz-continuous T 2

s →
T 2
s . Equation (2.10) can be solved for the finitely many unknowns of ∂2

t uh,τ,δ, since the mass
matrix to piecewise linear elements on Ω is invertible.

In order to conclude the proof of the Lemma, it remains to show that the local solution can
be extended to the whole interval [0, T ]. This fact is a consequence of the time-independent
L∞ estimates on solutions, which are provided in Lemma 2.5 below.

After having described the spatial discretization of the homogenized system, we also
briefly describe the discretization of the (regularized) η-problem. Since no dependence on
the y-variable appears, the discretization is much simpler. For every t ∈ (0, T ], the unknowns
of the problem are

uηh,δ(t) ∈ Uh, εηp,h,δ(t), σ
η
h,δ(t) ∈ PCh(Ω; T 2

s ).

In perfect analogy with the homogenized problem, we define the space-discretized approxi-
mation of problem (Pηδ ) which we label (Pηh,δ),∫

Ω
∂2
t uh,δ · ψ dx = −

∫
Ω
σηh,δ : ∇ψ dx+

∫
Ω
f · ψ dx ∀ψ ∈ Uh, (2.13a)

∂tε
η
p,h,δ = ∇χη,h,δ

(
σηh,δ − bη,hε

η
p,h,δ(t); x

)
for a.e. x ∈ Ω, (2.13b)

Cη,hσ
η
h,δ = ∇suηh,δ − ε

η
p,h,δ(t) for a.e. x ∈ Ω, (2.13c)

supplied with suitable initial data. Equation (2.13c) contains only piecewise constant func-
tions on Ω, by positivity of C it can be solved for σηh,δ. At this point we note that the
coefficient functions are obtained as the piecewise constant discretizations of the functions,
e.g. x 7→ C(x/η), hence

Cη,h(x) := Cη(P
Ω
h (x)) = C

(
PΩ
h (x)

η

)
,
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and similarly for bη,h, χη,h,δ.
Inserting the solution σηh,δ of (2.13c) into equations (2.13a) and (2.13b), the latter trans-

form into an ordinary differential equation with Lipschitz continuous right hand side. Up to
the uniform bounds for solutions which are provided below, we find the following result for
the η-problem.

Lemma 2.4. There exists a unique solution of problem (P η
h,δ),

(uηh,δ, ∂tu
η
h,δ, ε

η
p,h,δ, σ

η
h,δ) ∈ C

1([0, T ];Uh × Uh × PCh(Ω; T 2
s )× PCh(Ω; T 2

s )).

Uniform estimates for the discretized problems

In order to abbreviate the statement of the uniform estimates, we set E := W 1,∞(0, T ;
L2(Ω × Y ); T 2), and extend ∇u as constant functions to Ω × Y by setting ∇uh,τ,δ(x, y) :=
∇uh,τ,δ(x).

Lemma 2.5. There exists a constant c > 0, independent of T and independent of h, τ, δ,
such that every solution of system (Ph,τ,δ) as in Lemma 2.3 satisfies

‖∂2
t uh,τ,δ‖L∞(0,T ;L2(Ω)) + ‖∇uh,τ,δ‖E + ‖∇yvh,τ,δ‖E + ‖wh,τ,δ‖E + ‖zh,τ,δ‖E

≤ c
(
‖u∗0‖H1(Ω) + ‖u∗1‖H1(Ω) + ‖v0‖L2(Ω;H1(Y ))

+ ‖div z̄0‖L2(Ω) + ‖z0‖L2(Ω×Y ) + ‖f‖H1(0,T ;L2(Ω)) + δ
)
. (2.14)

We recall that initial data are given by u∗0, u
∗
1, v0, z0 through (2.7)–(2.9), the right hand side

be given by f .

Proof. We note that t 7→ ∂tuh,τ,δ(t) ∈ Uh and t 7→ ∂2
t uh,τ,δ(t) ∈ Uh have sufficient regu-

larity in order to be used as test functions in equation (2.6a). We can therefore follow the
calculations of Lemma 2.1 and of Lemma 2.2. Using ψ = ∂tuh,τ,δ in (2.6a) we find∫

Ω
∂2
t uh,τ,δ · ∂tuh,τ,δ +

∫
Ω

∫
Y
zh,τ,δ dy : ∂t∇suh,τ,δ =

∫
Ω
f · ∂tuh,τ,δ.

The functions zh,τ,δ, wh,τ,δ and ∇uh,τ,δ are piecewise constant functions on every Kq ×Kp ∈
T Ω
h ×T Y

τ . Therefore, the integrals below are in fact simply weighted sums.

1

2

d

dt

∫
Ω
|∂tuh,τ,δ|2 −

∫
Ω
f · ∂tuh,τ,δ = −

∫
Ω

∫
Y
zh,τ,δ : ∂t∇suh,τ,δ

= −
∫

Ω

∫
Y
zh,τ,δ : ∂t

[
wh,τ,δ + Cτzh,τ,δ −∇syvh,τ,δ

]
= −I1 − I2 + I3.

With the help of (2.6b) we replace zh,τ,δ in I1 and compute with Lemma 1.1–(v)

I1 =

∫
Ω

∫
Y
bτwh,τ,δ : ∂twh,τ,δ +

(
zh,τ,δ − bτwh,τ,δ

)
: ∂twh,τ,δ

=
1

2

d

dt

∫
Ω

∫
Y
bτ |wh,τ,δ|2 +

∫
Ω

∫
Y
χδ,τ (zh,τ,δ − bτwh,τ,δ) + χ∗δ,τ (∂twh,τ,δ),

I2 =
1

2

d

dt

∫
Ω

∫
Y
zh,τ,δ : Cτzh,τ,δ .
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The function ξ = ∂tvh,τ,δ is admissible in equation (2.6d) and therefore

I3 =

∫
Ω

∫
Y
zh,τ,δ : ∇y∂tvh,τ,δ = 0.

For arbitrary s ∈ (0, T ) in the interval of existence of the discrete solution we integrate over
t ∈ (0, s) to find

1

2

(∫
Ω

∫
Y
|∂tuh,τ,δ|2 + bτ |wh,τ,δ|2 + zh,τ,δ : Cτzh,τ,δ

)∣∣∣t=s
t=0

+

∫ s

0

∫
Ω

∫
Y
χδ,τ (zh,τ,δ − bτwh,τ,δ) + χ∗δ,τ (∂twh,τ,δ) =

∫
Ωs

f · ∂tuh,τ,δ. (2.15)

With Gronwall’s inequality we conclude the uniform bound

sup
s∈(0,ε)

{∫
Ω

∫
Y
|∂tuh,τ,δ(s)|2 + |wh,τ,δ(s)|2 + zh,τ,δ(s) : Cτzh,τ,δ(s)

}
+

∫ ε

0

∫
Ω

∫
Y
χδ,τ (zh,τ,δ − bτwh,τ,δ) + χ∗δ,τ (∂twh,τ,δ)

≤ c
(
‖u∗0‖

2
H1(Ω) + ‖u∗1‖

2
L2(Ω) + ‖v0‖2L2(Ω;H1(Y )) + ‖z0‖2L2(U) + ‖f‖2L2(ΩT )

)
.

This uniform bound is the discrete analogue of the energy estimate of Lemma 2.1. It
provides, in particular, the existence of the solution to the ordinary differential equation of
Lemma 2.3 on the whole interval [0, T ]. Moreover, following the calculations of the higher
order estimates of Lemma 2.2 and proceeding as above, we obtain (2.14).

2.3 Proof of the existence theorem

We are now in the position to give the rigorous proof of the main existence theorem stated
in the introduction. We will obtain the solution as a weak limit of the approximate discrete
solutions. We note already here that the estimates of Lemma 2.5 carry over to the limit
solution, thus providing the proof of the estimates in Lemma 2.2.

Proof of Theorem 1.1. We will show existence and uniqueness of strong solutions (u, v, w, z)
of the homogenized problem (P). Once more, the proof for problem (Pη) is completely
analogous, actually slightly simpler.

Existence. The approach to the existence result is very direct. We use the solution
(uh,τ,δ, vh,τ,δ, wh,τ,δ, zh,τ,δ) of problem (Ph,τ,δ), which exists on [0, T ] by Lemma 2.3. Owing
to the a priori estimates in Lemma 2.5 we find a subsequence {hk, τk, δk}k∈N, which we
relabel h, τ, δ, and a limit vector (∇ū,∇yv̄, w̄, z̄) ∈ E4 such that, for all p ∈ [1,∞), as
(h, τ, δ)→ (0, 0, 0),

(∇uh,τ,δ,∇yvh,τ,δ, wh,τ,δ, zh,τ,δ) ⇀ (∇ū,∇yv̄, w̄, z̄),

weakly in W 1,p(0, T ;L2(Ω× Y )). Our aim is to show that the vector (ū, v̄, w̄, z̄) is a strong
variational solution of problem (P), (see Definition 1.5). Lemma 1.7 then guarantees that
(ū, v̄, w̄, z̄) is a strong solution.

Step 1. Properties (i) and (ii) of Definition 1.5. The estimates of Lemma 2.5 coincide
exactly with the regularity requirement (i) of Definition 1.5.
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Regarding the solution properties we note that we can pass directly to the limit in
equation (2.6a) and find (1.13a). Similarly, taking limits in equation (2.6c) yields that
(ū, v̄, w̄, z̄) satisfies equation (1.13b) for a.e. (x, y) ∈ Ω× Y and in the distributional sense.
Analogously, (1.13d) follows from (2.6d).

Step 2. Properties (iii) and (iv) of Definition 1.5. We pass to the limit in inequality
(2.15). For every y ∈ Y, ∀ τ > 0 the maps

ξ 7→ |ξ|2, ξ 7→ bτ |ξ|2, ξ 7→ ξ : Cτξ,

are convex, and therefore lower-semicontinuous w.r.t. weak convergence in L2(Ω×Y ). Since
(1.7) implies that bτ → b, and Cτ → C, uniformly in Y as τ → 0, we deduce that for a.e.
s ∈ (0, T )

lim inf
h,τ,δ→0

(∫
Ω

∫
Y
|∂tuh,τ,δ|2 + bτ |wh,τ,δ|2 + zh,τ,δ : Cτzh,τ,δ

)∣∣∣t=s
t=0

≥
(∫

Ω

∫
Y
|∂tū|2 + b|w̄|2 + z̄ : Cz̄ dx dy

)∣∣∣t=s
t=0

.

(2.16)

Regarding the convergence of χ∗δ,τ , we start by state the following lemma.

Lemma 2.6 (Lower-semicontinuity of χ∗δ). Let Us := Ω × Y × (0, s). Let uδ, u ∈ L2(Us)
n,

such that uδ ⇀ u weakly in L2(Us)
n, as δ → 0. Assume that χδ, χ satisfy assumptions

(1.10a) and (1.10b). Then

lim inf
δ→0

∫
Us

χ∗δ(uδ) ≥
∫
Us

χ∗(u).

Proof. First let us define (χ∗)m as the maximum of finitely many affine functions:

(χ∗)m(p) = max
{
p : σi − χ(σi), σi ∈ dom(χ), i = 1, . . . ,m

}
for all p ∈ T 2

s .

Define

Ei :=
{

(x, y, t) ∈ Us : (χ∗)m(u(x, y, t)) = u : σi − χ(σi)
}
.

Then, since uδ ⇀ u by hypothesis, χδ(σ
i) → χ(σi) by (1.10b), and by the definition of

Legendre transform

lim inf
δ→0

∫
Us

χ∗δ(uδ) ≥ lim inf
δ→0

m∑
i=1

∫
Ei

uδ : σi − χδ(σi) =
m∑
i=1

∫
Ei

u : σi − χ(σi) =

∫
Us

(χ∗)m(u).

Finally we can write χ∗(p) = limm→∞(χ∗)m(p), and pass to the limit by the Monotone
Convergence theorem.

Recalling hypothesis (1.8) we compute∫
Us

χ∗δ,τ (∂twh,τ,δ)

=

∫
Us

[
χ∗δ,τ (∂twh,τ,δ)− χ∗τ (∂twh,τ,δ) + χ∗τ (∂twh,τ,δ)− χ∗(∂twh,τ,δ) + χ∗(∂twh,τ,δ)

]
≥
∫
Us

[
χ∗δ,τ (∂twh,τ,δ)− χ∗τ (∂twh,τ,δ)

]
− cm(τ)

∫
Us

|∂twh,τ,δ|+
∫
Us

χ∗(∂twh,τ,δ),
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where Us = Ω× Y × (0, s). Applying Lemma 2.6 to χ∗δ,τ (∂twh,τ,δ), and using estimate (2.14)
and convexity of χ∗ we conclude

lim inf
h,τ,δ→0

∫
Us

χ∗δ,τ (∂twh,τ,δ) ≥
∫
Us

χ∗(∂tw̄). (2.17)

Collecting inequalities (2.16), (2.17), and taking the liminf in (2.15), we get

1

2

(∫
Ω

∫
Y
|∂tū|2 + b|w̄|2 + z̄ : Cz̄

)∣∣∣t=s
t=0

+

∫
Us

χ∗(∂tw̄) ≤
∫

Ωs

f · ∂tū

which is the energy inequality (1.27). Thus property (iv) is satisfied. Let χk := χδk,τk ,
gk := zhk,τk,δk − bτkwhk,τk,δk , and let g := z̄ − bw̄ be the weak limit of gk in L2(Us). Let
Bρ(y) := {σ ∈ D2 : d(σ, ω(y)) ≤ ρ} and let ψρy : T 2

s → R be given by ψρy(σ) := d(Bρ(y), σD).
By (1.10b) we can find a monotone function λ : R→ R+:

lim
k→∞

λ(k) = +∞ and λ(k)ψρy(σ) ≤ χk(σ ; y) ∀σ ∈ T 2
s , y ∈ Y. (2.18)

In order to prove property (iii) in Definition 1.5 we show that∫
Us

χk(gk) ≤ c ∀ k ∈ N ⇒ g(x, y, t) ∈ dom(χ(y)) for a.e. (x, y, t) ∈ Us,

by proving that ψρy(g(x, y, t)) = 0 for a.e. (x, y, t) ∈ Us, ∀ ρ > 0. By convexity of ψρy(·), and
continuity of y 7→ ψρy we obtain∫

Us

ψρy(g) ≤ lim inf
k→∞

∫
Us

ψρy(gk)
(2.18)

≤ lim inf
k→∞

1

λ(k)

∫
Us

χk(gk ; y)
(2.15)

≤ lim inf
k→∞

c

λ(k)
= 0.

By arbitrariety of ρ > 0, we conclude that g ∈ dom(χ(y)) a.e. in Us.

Uniqueness. Let (ui, vi, wi, zi), i = 1, 2, be two strong solutions of Problem (P), with
the same initial data, and let (ũ, ṽ, w̃, z̃) := (u1, v1, w1, z1)−(u2, v2, w2, z2) be their difference.
By equation (1.13a), orthogonality of z̃ and ∇yṽ, and (1.13c), we calculate∫

Ω
∂2
t ũ · ∂tũ = −

∫
Ω

(∫
Y
z̃

)
: ∇s∂tũ = −

∫
Ω×Y

z̃ : ∇s∂tũ

= −
∫

Ω×Y
z̃ : ∂t

(
w̃ + Cz̃ −∇yṽ

)
∈ −

∫
Ω×Y

z̃ : C∂tz̃

−
∫

Ω×Y
(∂χ∗(∂tw1)− ∂χ∗(∂tw2)) : ∂t(w1 − w2)−

∫
Ω×Y

bw̃ : ∂tw̃.

Monotonicity of ∂χ∗ implies ∂tũ = w̃ = z̃ = 0, which also provides ṽ = 0.

Partial limit of the discretized solutions as τ, δ → 0

In order to prove existence for solutions of problem (P), we performed the limit as all the
parameters h, τ, δ → 0 simultaneously. For the purpose of homogenization we need a test
function which

• is regular enough to be evaluated in (x, y) = (x, x/η);

• is exactly divy-free (in the component approximating the stress);
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• solves a suitable approximation of problem (P).

We choose to take the limit as τ → 0 and δ → 0, leaving h as a positive parameter related
to the spatial discretization on Ω. Let (uh,τ,δ, vh,τ,δ, wh,τ,δ, zh,τ,δ) be the solution of problem
(Pηh,τ,δ) found in Lemma 2.3. By compactness we can find a subsequence (τk, δk)→ 0 and a
limit (uh, vh, wh, zh) ≡ (uh,0,0, vh,0,0, wh,0,0, zh,0,0) such that

(∇uh,τk,δk , vh,τk,δk , wh,τk,δk , zh,τk,δk) ⇀ (∇uh, vh, wh, zh)

weakly in the topology of W 1,∞(0, T ;L2(Ω× Y ))4. with the function spaces

Vh :=
{
v ∈ L2(Ω;H1(Y ;Rn)) : v|K ∈P0(K;H1(Y ;Rn)) ∀K ∈ T Ω

h

}
,

Wh :=
{
w : L2(Ω;L2(Y ;Rn×n) : w|K ∈P0(K;L2(Y ;Rn×n)) ∀K ∈ T Ω

h

}
.

we find the following existence result.

Lemma 2.7. Every weak limit (uh, vh, wh, zh) solves the following system (Ph)∫
Ω

(∫
Y
zh dy

)
: ∇ψ =

∫
Ω

(f − ∂2
t uh) · ψ ∀ψ ∈ Uh (2.19a)

∂twh ∈ ∂χ(zh − bwh; y) for a.e. (x, y) ∈ Ω× Y (2.19b)

Czh = ∇suh +∇syvh − wh for a.e. (x, y) ∈ Ω× Y (2.19c)∫
Y
zh : ∇ξ = 0, ∀ ξ ∈ H1(Y ), for a.e.x ∈ Ω, (2.19d)

with initial conditions

uh(0) = P(u∗0;Uh), ∂tuh(0) = P(u∗1;Uh), vh(0) = P(v0;Vh), zh(0) = P(z0;Wh). (2.20)

It satisfies an a priori estimate as in (2.14).

As above, equation (2.19c) allows to extract the initial condition

wh,0(x, y) := ∇sP(u∗0;Uh)(x) +∇syP(v0;Vh)(x, y)− C(y)P(z0;Wh)(x, y). (2.21)

Proof. We only sketch the proof which is similar to that of Theorem 1.1. The a pri-
ori estimate (2.14) allows to select a weakly convergent subsequence, with the weak limit
(uh, vh, wh, zh) satisfying the same estimates. It is straightforward to conclude from equa-
tions (2.6a), (2.6c), and (2.6d) for the h, τ, δ-solutions equations (2.19a), (2.19c), and (2.19d)
for (uh, vh, wh, zh).

Passing to the liminf as τ, δ → 0 in inequality (2.15) we obtain

1

2

(∫
Ω×Y
|∂tuh|2 + b|wh|2 + zh : Czh

)∣∣∣t=s
t=0

+

∫ s

0

∫
Ω×Y

χ(zh − bwh) + χ∗(∂twh) ≤
∫

Ωs

f · ∂tuh.

We can once more argue by the equivalence of strong solutions and strong variational solu-
tions to conclude that ∂twh ∈ ∂χ(zh− bwh; y), a.e. in Ω× Y × (0, T ). We recall that in this
formula all functions are piecewise constant in Ω.
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3 Homogenization

This Section is devoted to the proof of Theorem 1.2, which provides, in particular, the
convergence uη → u. We state below with Proposition 3.1 an intermediate result which
compares uη with the solution uh of the discretized problem. The theorem is an immediate
consequence of the proposition.

In the formulation and in the proof of the proposition, the fundamental tool is to con-
struct from multi-scale solutions such as w(x, y, t) oscillating functions on ΩT . We denote
the resulting oscillatory function with a lower index η. To be precise, for any function g
defined on Ω× Y × (0, T ), we set

gη = gη(x, t) := g(x, xη , t).

Proposition 3.1. Let (uη, εηp, ση) be a sequence of strong solutions to problem (P η) in
(1.12). Let (uh, vh, wh, zh) be a sequence of semi-discrete solutions to problem (Ph) with
parameter h > 0 in (2.19). Then

lim
h→0

lim
η→0
‖∂tuη − ∂tuh‖L∞(0,T ;L2(Ω)) = 0,

lim
h→0

lim
η→0
‖εηp − wh,η‖L∞(0,T ;L2(Ω))

= 0,

lim
h→0

lim
η→0
‖ση − zh,η‖L∞(0,T ;L2(Ω)) = 0.

The proof of the proposition is given in Subsection 3.3.
We note here that Theorem 1.2 follows easily from Proposition 3.1. We use the triangle

inequality

‖∂tuη − ∂tu‖L2(ΩT ) ≤ ‖∂tu
η − ∂tuh‖L2(ΩT ) + ‖∂tuh − ∂tu‖L2(ΩT ),

and notice that the first term of the right-hand side vanishes for η → 0 and h → 0 by
Proposition 3.1, and that the last term vanishes for h → 0 due to estimates (2.14) and the
compact embedding H1(ΩT ) ⊂ L2(ΩT ).

Similarly, concerning the weak convergence of the strains, we write for an arbitrary
φ ∈ L2(ΩT )∣∣∣∣∫

ΩT

(
εηp −

∫
Y
w

)
φ

∣∣∣∣ ≤ ∣∣∣∣∫
ΩT

(
εηp − wh,η

)
φ

∣∣∣∣+

∣∣∣∣∫
ΩT

(
wh,η −

∫
Y
w

)
φ

∣∣∣∣ . (3.1)

The convergence to 0 of the first term of the right hand side is stated in the proposition.
Concerning the second term we recall that wh is piecewise constant in x, the values in
the grid points are functions in W 1,∞(0, T ;L2(Y )). The regularity in x allows to calculate
the weak limits of the corresponding oscillating functions in the classical way as averages.
Furthermore, averages of wh converge to averages of w.

wh,η ⇀

∫
Y
wh dy in L2(ΩT ) for η → 0,

∫
Y
wh dy ⇀

∫
Y
w dy in L2(ΩT ) for h→ 0.

Therefore, with respect to the weak topology of L2(ΩT ), we may write

lim
h→0

(
lim
η→0

wh,η

)
=

∫
Y
w dy.

This provides the convergence of the last term in (3.1). The weak convergence of ση to its
Y -average is calculated in exactly the same way.

Before giving the proof of Proposition 3.1, we provide a short computation, with the
intent of showing the core of the homogenization procedure.
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3.1 Homogenization with appropriate test-functions

In the following remark we present the estimate that is the key of the homogenization result.
It is only formal, since expressions such as

(∂tw)η(x) = ∂tw

(
x,
x

η
, t

)
are used. Since ∂tw is only of the quality L2(ΩT × Y ), this function need not even be
measurable (see e.g. [6]). In that sense, the result of the remark is only reflecting a formal
calculation.

Remark 3.2. Let (uη, εηp, ση) be a solution of Problem (P η) in (1.12) and let (u, v, w, z)
be a solution of Problem (P) in (1.13). Denote

%η = %

(
x

η

)
, wη = w

(
x,
x

η
, t

)
, zη = z

(
x,
x

η
, t

)
, (∇yv)η = (∇yv)

(
x,
x

η
, t

)
.

Then, assuming that all involved functions exist in appropriate L2 spaces, there holds

d

dt

∫
Ω

{
%η|∂tuη − ∂tu|2 + (ση − zη) : Cη(σ

η − zη) + b|εηp − wη|2
}

≤ −
∫

Ω

[
zη −

∫
Y
z

]
· ∂t∇s(uη − u)−

∫
Ω

(ση − zη) : ∂t(∇yv)η

+

∫
Ω

[
%η −

∫
Y
%

]
∂2
t u · (∂tuη − ∂tu).

(3.2)

Proof. Let %̄ =
∫
Y % dy. We examine the following expression.

Eη :=

∫
Ω

(%η∂
2
t u

η − %̄∂2
t u) · ∂t(uη − u) +

∫
Ω

(ση − zη) : ∂t(∇suη −∇su− (∇yv)η).

Using equation (1.12b) to replace ∇suη and (1.13b) to replace (∇su+ (∇yv)η), we com-
pute

Eη =
1

2

d

dt

∫
Ω
%η|∂tuη − ∂tu|2 +

∫
Ω

(%η − %̄)∂2
t u · (∂tuη − ∂tu)

+

∫
Ω

(ση − zη) : ∂t

[
εηp + Cησ

η − (wη + Cηzη)
]

=
1

2

d

dt

∫
Ω
%η|∂tuη − ∂tu|2 +

∫
Ω

(%η − %̄)∂2
t u · (∂tuη − ∂tu)

+

∫
Ω

(ση − zη) : ∂t
(
εηp − wη

)
+

∫
Ω

(ση − zη) : Cη∂t(σ
η − zη).

Denoting the integrals on the right-hand side by I1 to I4, we note that I1 and I4 are time
derivatives of positive quantities. In order to treat I3 we recall that the inverse relations to
(1.13c) and (1.12c) are

zη ∈ bηwη + ∂χ∗η(∂twη), ση ∈ bηεηp + ∂χ∗η(∂tε
η
p),

so that I3 becomes∫
Ω

(ση − zη) : ∂t(ε
η
p − wη) ∈

∫
Ω
bη(ε

η
p − wη) : ∂t(ε

η
p − wη)

+

∫
Ω

(∂χ∗η(∂tε
η
p)− ∂χ∗η(∂twη)) : ∂t(ε

η
p − wη).
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This expression is the time derivative of a positive quantity plus a non-negative term, owing
to monotonicity of ∂χ∗η. The integral I2 remains as an error term on the right hand side of
(3.2).

We note that Eη is constructed as a difference of similar equations, tested by the time
derivative of a solution difference, with the addition of a term containing ∇yv. In fact, we
have, by (1.12a) and (1.13a),

Eη =

∫
Ω

[ (
%η∂

2
t u

η − divση
)
−
(
%̄∂2

t u− div zη
) ]
· ∂t(uη − u)−

∫
Ω

(ση − zη) : ∂t(∇syv)η

=

∫
Ω

[
f − f − div

∫
Y
z + div zη

]
· ∂t(uη − u)−

∫
Ω

(ση − zη) : ∂t(∇syv)η

= −
∫

Ω

[
zη −

∫
Y
z

]
· ∂t∇s(uη − u)−

∫
Ω

(ση − zη) : ∂t(∇syv)η.

Collecting the various terms implies (3.2).

In order to conclude the homogenization result from a result as in Remark 3.2, we must
derive the smallness of the right hand side of (3.2). Concerning the first integral we note
that — if z has some regularity —

zη ⇀

∫
Y
z(y) dy weakly in L2(ΩT ). (3.3)

Also the second factor in the first integral has some weak limit. In order to deal with the
product of two weakly convergent sequences, the idea is to use the div-curl Lemma in order
to pass to the two weak limits under the integral. If an appropriate div-curl Lemma can be
applied, we find a vanishing limit of the integral in the limit η → 0.

Concerning the second integral we note that — if ∇yv is regular enough —

(∇yv)η ⇀

∫
Y
∇yv(y) dy = 0 weakly in L2(ΩT ). (3.4)

Since the first factor of the second integral has a weak limit, an application of a suitable
div-curl Lemma can show that also second integral vanishes for η → 0.

The vanishing limit of the third term is immediate, since % ∈ C0 ensures %η ⇀ %̄, weakly
in any Lp(ΩT ), while the second factor converges strongly.

This concludes the homogenization limit, since the left hand side of (3.2) controls differ-
ences between η-solutions and homogenized solutions.

Obstacles to the rigorous justification. We have to overcome the following diffi-
culties. We need

i) some regularity of z(·, t, y), in the calculation of Remark 3.2 and for (3.3)

ii) some regularity of ∇yv(·, t, y), in order for (3.4) to hold.

iii) to analyze the divergence of zη −
∫
Y z

iv) to analyze the curl of ∇yv

v) a div-curl lemma with boundary
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We solve problems i) and ii) by analyzing a discretized problem and using the test functions
zh and vh and, correspondingly, the oscillating functions zh,η and (∇yvh)η. In order to exploit
(2.19d) which provides a relation for test functions in Uh, we will introduce projections.

Problem v) corresponds to the fact that the weak convergence of the integrand to 0 does
not imply the convergence of the integral to 0, since concentration effects may occur along
the boundary. We solve problems iii) and v) simultaneously with the div-curl type Lemma
3.3. Problem iv) is solved by a variant of that lemma, formulated as Lemma 3.4. The core
of both lemmata is that concentration effects are ruled out by the periodicity of zη and that
of (∇yv)η. In the application of Lemma 3.3 we insert zh(x, t, .) for the function u, while in
the application of Lemma 3.4 we use (∂tvh)η for χη.

3.2 The div-curl lemma with boundary

Lemma 3.3 (div-curl Lemma with boundary). Let T ⊂ Rm be an open and bounded set,
with Lipschitz boundary ∂T , and let Y := [0, 1[m denote the flat torus. Assume

u ∈ L2(Y ;Rm) with divu = 0 in D′(Y ), (3.5)

ϕη, ϕ ∈ H1(T ;R) with ϕη ⇀ ϕ in H1(T ;R). (3.6)

Then

lim
η→0

∫
T
u
(
x
η

)
· ∇ϕη(x) dx =

∫
T
ū · ∇ϕ(x) dx,

where ū :=

∫
Y
u(y) dy.

Proof. The result is clearly true for constant functions u. By linearity of the expressions it is
therefore sufficient to show the result for functions with vanishing average. In the following
we hence analyze oscillatory functions uη(x) := u(xη ) with ū = 0.

Step 1. Boundary layer. Let δ > 0 be small. We consider a tubular δ-neighborhood Vδ
of the boundary ∂T ,

Vδ := Bδ(∂T ) ∩ T := {x ∈ T : d(x, ∂T ) < δ}.

We divide Rm into d-cubes of size η

Y η
k := η(Y + k), Lm(Y η

k ) = ηm, ∀ k ∈ Zm.

It is useful to define a suitable covering of Vδ by cubes. Precisely, let us define the set of
indices Iηδ := {k ∈ Zm : Y η

k ∩ Vδ 6= ∅}, then

Vδ ⊂
⋃
k∈Iηδ

Y η
k =: V η

δ .

Denoting by Lm the m-dimensional Lebesgue measure, by Lipschitz regularity of ∂T , we
have

Lm(Vδ) ≤ Lm(V η
δ ) ≤ C(δ + η). (3.7)

The small volume of V η
δ together with the periodicity of uη implies that there exists C > 0,

independent of δ and η, such that

‖uη‖2L2(Vδ)
≤ C

(
δ + η

)
, ∀ δ > 0, ∀ η > 0. (3.8)
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Indeed, ∫
Vδ

|uη(x)|2 dx ≤
∑
k∈Iηδ

∫
Y ηk

∣∣u(xη )∣∣2 dx = ηm
∑
k∈Iηδ

∫
Y
|u(y)|2 dy

= ‖u‖2L2(Y )

∑
k∈Iηδ

Lm(Y η
k ) = ‖u‖2L2(Y ) L

m(V η
δ ).

Step 2. Convergence. With the Euclidean distance d in Rm we define the Lipschitz-
continuous cut-off function ψ : T → R

ψ(x) := min

{
1

δ
d(x, ∂T ), 1

}
.

We start our convergence calculation with the Gauß theorem. Using ψ(x) ≡ 0 on ∂T and
(3.5) yields

0 =

∫
T

div (uηϕ
ηψ) dx =

∫
T
uη · ∇ϕηψ dx+

∫
T
uη · ∇ψϕη dx.

The last integral converges to 0 for η → 0, since ϕη converges strongly in L2 and uη converges
weakly to its average 0. We conclude that also the first integral on the right hand side
vanishes in the limit η → 0.

With this information we write the expression of interest as∣∣∣∣∫
T
uη · ∇ϕη

∣∣∣∣ ≤ ∣∣∣∣∫
T
uη · ∇ϕηψ

∣∣∣∣+

∣∣∣∣∫
T
uη · ∇ϕη(1− ψ)

∣∣∣∣ .
For the first integral on the right hand side we already know convergence to 0. In the second
integral we can replace the integral over T by an integral over Vδ and calculate using (3.6)
and (3.8),∣∣∣∣∫

Vδ

uη(x) · ∇ϕη(x)(1− ψ(x)) dx

∣∣∣∣ ≤ ‖uη‖L2(Vδ)
‖∇ϕη‖L2(Vδ)

≤ C(δ + η)1/2.

Since δ > 0 can be chosen arbitrarily small, this provides the convergence result.

Lemma 3.4 (Variant of the div-curl Lemma with boundary). Let T ⊂ Rm be an open and
bounded set with Lipschitz boundary ∂T , and let Y := [0, 1[m denote the flat torus. Assume
uη ⇀ u in L2(T,Rm) with divuη ⇀ u in L2(T ). Let, for ϕ ∈ H1(Y ), ϕη be the η-periodic
function ϕη(x) = ϕ(x/η). Then

lim
η→0

∫
T
uη · ∇(ηϕη)(x) dx = 0.

Proof. We use the notation of the last proof. We start once more with the Gauß theorem.
Since the cut-off function satisfies ψ(x) ≡ 0 on ∂T , there holds

0 =

∫
T

div (uηηϕηψ) =

∫
T

(divuη)ηϕηψ +

∫
T
uη · ∇(ηϕη)ψ +

∫
T
uη · ∇ψηϕη.

The first and the last integral converge to 0 for η → 0 due to the explicit η-factor. The
second integral coincides with the integral of the claim except for the error

eδη =

∣∣∣∣∫
T
uη · ∇(ηϕη)(1− ψ)

∣∣∣∣ .
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Smallness of eδη for small δ > 0 (independent of η) follows as in the last line of the last proof
from the boundedness of uη ∈ L2(T ) and the boundedness and periodicity of ∇(ηϕη) ∈
L2(T ).

We note that a very short proof of the div-curl lemma with boundary can be given with
the theory of two-scale convergence. One only has to exploit that one of the two factors
under the integral converges weakly in two scales, the other factor converges strongly in two
scales. We are grateful to A. Visintin for pointing out this alternative proof. We include
here the more elementary proof since it is independent of two-scale convergence methods.

3.3 Rigorous homogenization estimate

We can now give the proof of the homogenization result of Proposition 3.1. As announced,
we construct test-functions from the semi-discrete approximate solutions of Lemma 2.7. We
have to be careful about the fact that, in equation (2.19a), the test-function must be piece-
wise linear. We therefore introduce Ph : L2(Ω) → Uh, the orthogonal projection onto the
space Uh of piece-wise linear functions on the mesh T Ω

h , and let I be the identity operator
in L2(Ω). We first state and prove the rigorous version of Remark 3.2 in the next lemma.
We will afterwards show that the error terms on the right-hand side vanish in the limit.

Lemma 3.5. Let (uη, εηp, ση) be a solution of Problem (P η) in (1.12) and let (uh, vh, wh, zh)
be a solution of Problem (Ph) in (2.19). The functions wh, zh, and vh are piece-wise constant
in x and we introduce the measurable functions

wh,η(x, t) = wh

(
x,
x

η
, t

)
, zh,η(x, t) = zh

(
x,
x

η
, t

)
, (∇yvh)η(x, t) = (∇yvh)

(
x,
x

η
, t

)
.

Then

1

2

d

dt

∫
Ω
%η|∂tuη − ∂tuh|2 + (ση − zh,η) : Cη(σ

η − zh,η) + bη|εηp − wh,η|2

≤
∫

Ω

[∫
Y
zh − zh,η

]
: ∇sPh(∂tu

η − ∂tuh)−
∫

Ω
(ση − zh,η) : (∇sy∂tvh)η

+

∫
Ω

(%η − %̄)∂2
t uh · (∂tuη − ∂tuh) +

∫
Ω

(%η∂
2
t u

η − %̄∂2
t uh) · (I − Ph)(∂tu

η − ∂tuh)

+

∫
Ω

(ση − zh,η) : ∇s(I − Ph)(∂tu
η − ∂tuh).

(3.9)

Proof. We examine the following expression.

Eh,η :=

∫
Ω

(%η∂
2
t u

η − %̄∂2
t uh) · ∂t(uη − uh)

+

∫
Ω

(ση − zh,η) : ∂t(∇suη −∇suh − (∇syvh)η).

As in the proof of Remark 3.2, using equation (1.12b) and (2.19c), we compute

Eη =
1

2

d

dt

∫
Ω
%η|∂tuη − ∂tuh|2 +

∫
Ω

(%η − %̄)∂2
t uh · (∂tuη − ∂tuh)

+

∫
Ω

(ση − zh,η) : ∂t
(
εηp − wh,η

)
+

∫
Ω

(ση − zh,η) : Cη∂t(σ
η − zh,η).
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Denoting the integrals on the right by I1 to I4, we note that I1 and I4 are time derivatives of
positive quantities. In order to treat I3, we use the inverse relations to (2.19b) and (1.12c)
so that ∫

Ω
(ση − zh,η) : ∂t(ε

η
p − wh,η) ∈

∫
Ω
bη(ε

η
p − wh,η) : ∂t(ε

η
p − wh,η)

+

∫
Ω

(∂χ∗η(∂tε
η
p)− ∂χ∗η(∂twh,η)) : ∂t(ε

η
p − wh,η).

This expression is the time derivative of a positive quantity plus a non-negative term, owing
to monotonicity of ∂χ∗η.

It remains to evaluate Eh,η. We expect the smallness of the expression due to the
conservation laws for uη and uh. To find this result, we re-write Eh,η in such a way that
(1.12a) and (2.19a) appear as the first two integrals. We use the abbreviation ψh,η :=
(∂tu

η − ∂tuh) and blow up the expression Eh,η by writing (terms 2,4 and 6 can be added
and terms 1 and 3 can be added)

Eh,η =

∫
Ω

[
%η∂

2
t u

η − %̄∂2
t uh
]
· Ph(ψh,η) +

∫
Ω

[
ση −

∫
Y
zh

]
: ∇sPh(ψh,η)

+

∫
Ω

(%η∂
2
t u

η − %̄∂2
t uh) · (I − Ph)(ψh,η)−

∫
Ω

[
zh,η −

∫
Y
zh

]
: ∇sPh(ψh,η)

−
∫

Ω
(ση − zh,η) : (∇sy∂tvh)η +

∫
Ω

[ση − zh,η] : ∇s(I − Ph)(ψh,η).

The integrals in the first line vanish by the conservation laws. Collecting the other terms
yields (3.9).

With this estimate we can now conclude the proof of Proposition 3.1 and thus the
homogenization result of Theorem 1.2.

Proof of Proposition 3.1. It remains to show that the right-hand side of estimate (3.9) van-
ishes, in the limit as η → 0 and then h→ 0. Note that by estimate (2.14), up to subsequences,
{∂tuh}h and {∂tuη}η converge weakly in H1(ΩT ) and strongly in L2(ΩT ). We denote the
limits of uη and uh by u∗ and u∗, respectively.

The first integral is

I1 :=

∫
Ω

[∫
Y
zh − zh,η

]
: ∇sPh(ψh,η) =

∑
T∈T Ω

h

∫
T

[∫
Y
zh − zh,η

]
: ∇sPh(ψh,η).

Using Lemma 3.3 with u = zh on each triangle T , we find limη→0 I1 = 0.
Similarly, we treat the second integral. We use Lemma 3.3 on each triangle T with

factors zh and ∇(η∂tvh,η). The latter converges weakly to 0 in L2(T ). For the contribution
of ση we use Lemma 3.4.

I2 :=

∫
Ω

(zh,η − ση) : (∇y∂tvh)η =
∑
T∈T Ω

h

∫
T

(zh,η − ση) : ∇y(η∂tvh)→ 0.

Concerning the third integral, we recall that %η ⇀ %̄, weakly in L2(ΩT ). By strong
convergence of ∂tu

η in L2(ΩT ) we obtain for η → 0, recalling that uh maps into a finite
dimensional space,

I3 :=

∫
Ω

(%η − %̄)∂2
t uh · (∂tuη − ∂tuh)→ 0.
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In the fourth integral we exploit that uh maps into the right function space such that it
coincides with its projection. The fourth integral therefore reads

I4 :=

∫
Ω

(%η∂
2
t u

η − %̄∂2
t uh) · (I − Ph)(ψh,η) =

∫
Ω

(%η∂
2
t u

η − %̄∂2
t uh) · (I − Ph)(∂tu

η).

Let ξ be the L2(ΩT )-weak limit of %η∂
2
t u

η (if necessary, along a further subsequence). We
note that for all φ ∈ H1(Ω), (I − Ph)φ→ 0 strongly in H1(Ω), so that

lim
h→0

(
lim
η→0

I4

)
= lim

h→0

(∫
Ω

(ξ − %̄∂2
t uh) · (I − Ph)(∂tu

∗)

)
= 0.

Concerning the fifth term, equation (1.12a) implies

I5,1 :=

∫
Ω
ση : ∇s(I − Ph)(ψh,η) =

∫
Ω

(
f − ∂2

t u
η
)
· (I − Ph)(ψh,η),

so that, as in I4,

lim
h→0

(
lim
η→0

I5,1

)
= lim

h→0

(∫
Ω

(
f − ∂2

t u
∗) · (I − Ph)(∂tu

∗)

)
= 0.

Finally, owing to Lemma 3.3,

I5,2 := −
∫

Ω
zh,η : ∇s(I − Ph)(ψh,η)→ −

∫
Ω

[∫
Y
zh

]
: ∇(I − Ph)(∂tu

∗).

This expression vanishes in the limit h→ 0, since ∂tu
∗ is an H1(ΩT )-function.

Convergence of the initial data In order to conclude convergence from (3.9), it
remains to show smallness, as h, η → 0, of

R1 :=

∫
Ω
%η|u1 − P(u∗1;Uh)|2

R2 :=

∫
Ω

(σ0 − (zh,0)η) : Cη(σ0 − (zh,0)η)

R3 :=

∫
Ω
bη|εηp0

− (wh,0)η|2.

We show the computation for R2, for R1 and R3 the calculation is analogous.
We consider ûh := P(u0;Uh), σ̂h := P(σ0;PCh(Ω)), v̂h := P(v0(·, y);PCh(Ω)), and

ẑh(., y) := P(z0(·, y);PCh(Ω)). The discretization of (1.22) and (1.20) yields

∇sûh(x)− C(y)σ̂h(x)
(1.22)

= wh,0(x, y) (3.10)

(1.20)
= ∇sûh(x) +∇syv̂h(x, y)− C(y)ẑh(x, y),

which implies

C(y)σ̂h(x) = −∇syv̂h(x, y) + C(y)ẑh(x, y), a.e. in Ω× Y. (3.11)

Using (3.11) we compute

Cη(σ0 − (ẑh)η) = Cη(σ0 − σ̂h) + Cη(σ̂h − (ẑh)η) = Cη(σ0 − σ̂h)−
(
∇syv̂h

)
η
.
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Since the first term on the right-hand side converges strongly to zero in L2(Ω), we obtain

lim
h→0

(
lim
η→0

R2

)
= lim

h→0

 lim
η→0

∑
K∈T Ω

h

∫
K

(σ0 − (ẑh)η)) :
(
∇syv̂h

)
η

 .

For all K ∈ T Ω
h , ∀ y ∈ Y , we have that x 7→ v̂h(x, y) is constant on K, and as η → 0

(∇yv̂h)η ⇀

∫
Y
∇v̂h(y) dy = 0, weakly in L2(K),

so that

lim
η→0

∑
K∈T Ω

h

∫
K
σ0 : (∇yv̂h)η = 0.

On the other hand, with an integration by parts, we find∫
K

(ẑh)η :
(
∇syv̂h

)
η

= −
∫
K

(divy ẑh)η · (v̂h)η + η

∫
∂K

(ẑh)ην · (v̂h)η.

Since divyz0 = 0, and the traces of z0ν and v0 are bounded in L2(∂K), we conclude

lim
h→0

(
lim
η→0

R2

)
= 0.

This concludes the proof of Proposition 3.1.
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[19] C. Miehe, J. Schröder, and M. Becker. Computational homogenization analysis in
finite elasticity: material and structural instabilities on the micro- and macro-scales
of periodic composites and their interaction. Comput. Methods Appl. Mech. Engrg.,
191(44):4971–5005, 2002.

[20] A. Mielke. Evolution of rate-independent systems. In Evolutionary equations. Vol. II,
Handb. Differ. Equ., pages 461–559. Elsevier/North-Holland, Amsterdam, 2005.
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