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Abstract

We describe recent work on striped patterns in a system of block copolymers. A by-
product of the characterization of such patterns is a new formulation of the eikonal equation.
In this formulation the unknown is a field of projection matrices of the form P = e⊗ e, where
e is a unit vector field. We describe how this formulation is better adapted to the description
of striped patterns than the classical eikonal equation, and illustrate this with examples.
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1 Introduction

1.1 Stripe patterns

Stripe patterns appear in a wide variety of natural systems. The simplest examples are those in
which the stripes are predetermined—typically as the result of how the material has been created.
Examples of this are layered composites and geological strata (see [5, 24, 15] in this same volume,
as well as [22, 21, 39, 16, 20, 14]). Deformation of such predetermined stripes while preserving
their width leads to various types of striped patterns.

In other systems the stripes are not predetermined, but arise as the result of the dynamics
of the system. This class includes the example of this paper—block copolymer melts—but also
other amphiphilic systems [34, 2], activator-inhibitor dynamics [27], liquid crystals [25], electric
discharges [4], and thin magnetic films [33]. Various mathematical systems are used to study
such stripe-forming properties, such as the Swift-Hohenberg equation [12, 17, 18] and the Ohta-
Kawasaki, or nonlocal Cahn-Hilliard equation [28, 10, 9, 36, 37]. Such systems are characterized
by an order parameter that typically takes values within a finite range. Taking this range to be
[0, 1], and identifying values in [0, 1/2) with ‘black’ and (1/2, 1] with ‘white’, gives rise to black-
and-white patterns that—for some values of the parameters—may look like stripes. (This property
tends to be strongly parameter-dependent; for other values of the parameters either no patterns
appear, or for instance a spotted pattern [19, 8, 6, 7]).

Often one is interested in a more high-level, or large-scale, description of the striped patterns,
in which stripes are not described individually. In this setup stripes are assumed to be locally
parallel to each other and uniform in width, but their orientation and width can vary at a larger
spatial scale. The properties of such patterns are then described in terms of local stripe orientation
and relative spacing. One example of such a description is the Cross-Newell or ‘phase-diffusion’
equation [12, 13, 17, 18], which characterizes the relative phase of a striped pattern. In this context
the ‘phase’ at x counts the number of oscillations between x and some reference position, and the
relative phase is the difference between the phase and what the phase would be for a ‘perfect’
stripe pattern.

Going even further up the scale one might make an assumption that the stripe width is fixed
across the whole domain, leading to a representation in terms of solutions of the eikonal equation.
This equation has its origin in models of wave propagation, and since this origin is relevant for
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the discussion below, we briefly describe it here. The eikonal equation describes the position of
a wave front at different times t. For a homogeneous and isotropic medium, in which the wave
velocity is constant, the equation can be written in the form

|∇u| = 1. (1)

The wave front at time t is given by the level set {x : u(x) = t}, and the function u has the
interpretation of the time needed for a wave to arrive at the point x. Figure 3 shows the solution
of the eikonal equation on a well-known test case, that of the stadium domain. The wave front
is assumed to start at t = 0 at the outer boundary of the domain, and propagates inwards. The
level curves indicate the solution at subsequent times.

u(x)

Figure 1: The eikonal equation in the formulation (1) on a domain in the form of a stadium. The
initial position of the wave front is on the boundary; as time progresses, the wave front propagates
inward. The solution u of (1) is given by u(x) = dist(x, ∂Ω). A level curve at level t is a snapshot
of the wave front at time t. Collecting snapshots at different times creates a striped pattern.

1.2 The eikonal equation as kinematical description

We now turn back to the case of striped patterns and the aim of this paper. The first step in
any modelling process is the choice of the degrees of freedom, the kinematics, of the system. In a
system with stripes of a fixed width, the stripes are parallel, implying that (at least intuitively)
knowing one stripe is enough to fix the neighbouring stripes, and therefore by repetition all stripes.
Because of the similarities in this description with wave propagation, the eikonal equation has been
used extensively to describe the kinematics of striped patterns (see e.g. [17, 18, 3]). In such a setup,
the stripes are assumed to be level curves of a function that solves equation (1) in an appropriate
sense. In many cases it turns out that the kinematics are even sufficient to fully determine the
solution; for instance, once the boundary of the stadium in Figure 1 is chosen to be a stripe (wave
front), then all the other stripes (wave fronts) are fixed.

However, there are some peculiarities with the application of the eikonal equation, originally
derived for wave propagation, to the context of striped patterns. These are mostly clearly illus-
trated by the behaviour at singularities, which we discuss in the next section. The main message
of this paper is that while the idea of using the eikonal equation for the kinematics of striped
patterns is sound, there is good reason to use not the usual formulation (1) but an alternative
formulation that we introduce in Section 3.

2 Singularities

Singularities can be mathematical, physical, or both. A mathematical singularity is for instance
a discontinuity of one of the objects in the mathematical formulation. A physical singularity
corresponds to an extreme event, often an event that causes the modelling to break down.
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The eikonal-equation solution of Figure 1 is a good example. The ridge of the ‘roof’ func-
tion u is both a mathematical and a physical singularity. It is a mathematical singularity since
the function u has a discontinuous derivative along the ridge. The physical singularity is the
annihilation event: the wave fronts arriving from the two sides meet and cancel each other. These
two singularities are related: the mathematics and physics match.

Singularities in the eikonal equation are related to the arrow of time. Wave fronts move forward,
not backward, and they behave differently in ‘forward’ time than in ‘backward’ time. Figure 2
illustrates this: the wave fronts in the right-hand diagram start at the final front of the left-hand
diagram, and propagate in the opposite direction. The result is a different form of the wave fronts.

Both diagrams in Figure 2 correspond to solutions of equation (1). This shows that there
is a lack of uniqueness, since both solutions have the same boundary at the top; therefore an
additional condition is necessary to decide upon a unique evolution starting from the top wave
front. A common condition is that of a viscosity solution [11], which can be interpreted as using
the arrow of time as a selection criterion.

Figure 2: Two wave propagation histories in similar setups. Both start from the fat line and
propagate in the direction of the arrow. The left-hand diagram shows a singularity (corner)
developing when the curvature becomes too high. The right-hand diagram starts from the final
front of the left-hand diagram, and propagates in the other direction, and instantly smoothes out
the corner. If time were reversible, then the two diagrams would be identical. Their differences
illustrate the irreversible effects in wave front dynamics, in other words, the arrow of time.

We now turn back again to the use of the eikonal equation in various descriptions of striped
patterns. For instance, the Cross-Newell equation leads in the limit of scale separation (small
deviation from straight, parallel stripes) to the eikonal equation (1) [12, 17]. In a completely
different context and derivation, a modified eikonal equation also arises as a scale-separation limit
in a system of block copolymers (see below). Since fronts at different times are parallel, the
equation is indeed a natural candidate for the description of systems with stripe-like behaviour.

However, some of the mathematical singularities in the eikonal equation do not correspond to
physical singularities. The same example of the stadium domain illustrates this. When viewing
the level curves of u as a striped pattern (as in the left diagram in Figure 3), the ridge line is a
stripe like any other. Therefore the mathematical singularity has no physical counterpart.

Figure 3: When representing striped patterns by level curves of solutions u of the eikonal equa-
tion (1) (the left diagram), mathematical singularities arise that have no physical counterpart,
such as the ridge line in the left figure. When replacing the vector-valued description of (1)
by a projection-valued description (see below) the ridge discontinuity disappears. Both descrip-
tions also have a curvature discontinuity at the two end points, which is mirrored by a physical
discontinuity.

This issue was already signalled in [18], and a suggestion was made to switch to director fields;
however, the implementation chosen in [18] was based on Riemannian surfaces, which appears
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slightly artificial to us and indeed leads to mathematical complications. In contrast, in recent
work we encountered a formulation of the eikonal equation in director form (projection form, to
be precise), which arose completely naturally from the analysis of the microscopic system. We
now describe this system and the formulation in some detail.

3 Diblock Copolymers

In [32] we studied the formation of stripe-like patterns in a specific two-dimensional system that
arises in the modelling of diblock copolymers. This system is defined by an energy Gε that admits
locally minimizing stripe patterns of width O(ε), and the aim is to study the properties of the
system as ε → 0. Although we do not impose any restrictions on the geometry of the structures
(see e.g. the left-hand diagram in Figure 4), it turns out that any sequence uε of patterns for which
Gε(uε) is bounded becomes stripe-like; in addition, the stripes become increasingly straight and
uniform in width.

The energy functional is

Gε(u) =


1

ε

∫
Ω

|∇u|+ 1

ε3
d(u, 1− u)− 1

ε2
|Ω|, if u ∈ K,

∞ otherwise.

(2)

Here Ω is an open, connected, and bounded subset of R2 with C2 boundary with area |Ω|, d is the
Monge-Kantorovich distance (see [38]), and

K :=

{
u ∈ BV (Ω; {0, 1}) :

1

|Ω|

∫
Ω

u(x) dx =
1

2
and u = 0 on ∂Ω

}
.

The interpretation of the function u and the functional Gε are as follows.
The function u is a characteristic function, whose support corresponds to the region of space

occupied by the A part of the diblock copolymer; the complement (the support of 1−u) corresponds
to the B part. The boundary condition u = 0 in K reflects a repelling force between the boundary
of the experimental vessel and the A phase. Figure 4 shows two examples of admissible patterns.

u = 0
u = 1

∂Ω

ε

Figure 4: A section of a domain Ω with a general admissible pattern (left) and a stripe-like
pattern (right). We prove that in the limit ε → 0 all patterns with bounded energy Gε resemble
the right-hand picture.

The functional Gε contains two non-constant terms. The first term penalizes the interface
between the A and the B parts, and arises from the repelling force between the two parts; this
term favours large-scale separation. In the second term the the Monge-Kantorovich distance d
appears; this term is a measure of the spatial separation of the two sets {u = 0} and {u = 1}, and
favours rapid oscillation. The combination of the two leads to a preferred length scale, which is
of order ε in the scaling of (2).
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4 A non-oriented version of the eikonal equation

In the analysis of this system in the limit ε→ 0 we encountered a new formulation of the eikonal
equation that eliminates the unphysical mathematical singularity described above (see e.g. Fig-
ure 3). The central object in this formulation is a projection: a matrix P that can be written
in terms of a unit vector m as P = m ⊗ m, or in coordinates Pij = mimj . Such a projection
matrix has a range and a kernel that are both one-dimensional; the range is parallel to m, and
the kernel orthogonal. Note that the independence of the sign of m—the unsigned nature of a
projection—can be directly recognized in the formula P = m⊗m.

m x

m⊥

P (x) projects onto this one-dimensional subspace

Figure 5: The projection P = m⊗m captures the direction of m without taking into account the
sign of m.

If m is a unit vector, then P = m ⊗m projects onto the one-dimensional subspace spanned
by m. If m(x) is parallel to the layering at x, then the one-dimensional range of P (x) is also
parallel to the layering. It is in this sense that we interpret P as characterizing the direction of
the layering. In this description one can already detect that P is a better descriptor of layering
than m, since a given layer direction can be characterized by two different vectors m, but only by
one projection.

In terms of this projection, the eikonal equation takes the form of a number of conditions. The
first is that at every point x, P (x) is a projection in the sense above, which can be written as

P 2 = P, P is symmetric, and rank(P ) = 1 a.e. in Ω.

We write it in this way to avoid the implicit use of a vector field m. The second condition is that
the projection-valued function P has a divergence at every point:

divP ∈ L1(Ω).

Here the divergence of the matrix P with elements Pij is the vector
∑

j ∂jPij . With a little linear

algebra it can be shown that this implies that all partial derivatives ∂kPij exist in L1(Ω) [30].
This divergence has two contributions, as can be seen by assuming that P is given by P = m⊗m

in terms of a smooth unit-length vector field m, and expanding divP :

(divP )i =
∑
j

∂j(mimj) =
∑
j

[
mj∂jmi +mi∂jmj

]
,

or in vector notation
divP = ∇m ·m+mdivm.

Since m has unit length, the matrix ∇m can be written as a scalar curvature κ times the rank-one
matrix m⊥ ⊗m, where m⊥ is the rotation of m over π/2. Therefore

divP = κm⊥ +m divm.

The vector divP therefore consists of two parts: a part orthogonal to m, which measures the
curvature of the layers, and a part parallel to m that captures the divergence of the layers, that
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is the degree to which the layers are parallel or not. Thererfore parallel layers can be imposed by
requiring that the second component of divP vanishes, or equivalently that

P divP = 0.

Indeed this equation arises naturally in the limit analysis of the functional Gε. Note that if this
equation holds, then |divP | = |κ|, the (absolute value of) the scalar curvature of the layers.

Collecting the various requirements, we define the projection-valued eikonal equation to be the
problem

Find P ∈ L∞(Ω;R2×2) such that

P 2 = P a.e. in Ω, (3a)

rank(P ) = 1 a.e. in Ω, (3b)

P is symmetric a.e. in Ω, (3c)

divP ∈ L1(Ω;R2), (3d)

P divP = 0 a.e. in Ω. (3e)

The precise relation between the solutions of the non-oriented eikonal equation and the block
copolymer energy functionals is the following:

Theorem 1 The rescaled functional Gε Gamma-converges to the functional

G0(P ) :=


1

8

∫
Ω

|divP (x)|2dx if P ∈ K0(Ω)

+∞ otherwise

Here the admissible set K0(Ω) is the set of solutions of (3). The topology of the Gamma-
convergence in this case is the strong topology of measure-function pairs in the sense of Hutchinson
[23]. The main tool in the proof of Theorem 1 is an explicit lower bound on the energy Gε orig-
inally derived in [29]. This inequality gives a tight connection between low energy on one hand
and specific properties of the geometry of the stripes on the other.

While there is much to be said about the interpretation of this theorem in the context of
block copolymers (see [32, Section 1.7]), in this paper we concentrate instead on the role of the
projection-valued eikonal equation. In the next section we discuss the influence of the regularity
of P .

5 Regularity and singularities

There is a subtle relation between the regularity of the projection field P and the type of sin-
gularities that it may represent. Natural possibilities for singularities in a line field are jump
discontinuities (‘grain boundaries’) and target and U-turn patterns (see Figure 6).

(a) grain
boundary

(b) target and U-turn patterns (c) smooth
directional
variation

Figure 6: Canonical types of stripe variation in two dimensions.
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At a grain boundary the jump in P causes divP to have a line singularity, comparable to the
one-dimensional Hausdorff measure; condition (3d) excludes that possibility. For a target pattern
the curvature κ of the stripes scales as 1/r, where r is the distance to the center; then

∫
κp is

locally finite for p < 2, and diverges logarithmically for p = 2. Therefore target patterns are
admissible if and only if divP may be in L1 \ L2. For instance, if G0(P ) < ∞, then divP ∈ L2,
and only smooth variation of type (c) in Figure 6 is allowed.

The requirement that divP ∈ L1 arises from the need to evaluate the product P divP in
a pointwise manner, but a consequence is that no grain boundaries are allowed. Since grain
boundaries are certainly observed (for instance in experimental block copolymer systems [26, 1]
and in Swift-Hohenberg [35, 18]), this calls for an appropriate generalization. This is a topic of
current research.

6 Other applications of the projection-valued eikonal equa-
tion

We mentioned in the introduction that striped patterns arise in a wide variety of systems. We
expect that this projection-valued eikonal equation (3) will find applications in such systems, and
Theorem 1 illustrates its possible role. In line with the discussion in Section 1.2, in the functional
G0 equation (3) plays the role of characterization of kinematics: it describes the set of admissible
deformations of the structure. The functional G0 incorporates this description by being equal
to +∞ for any projection field that does not satisfy equation (3). Within the constraints of
admissibility, i.e. within the class of solutions of (3), the energy of the limiting system is given
by the expression (1/8)

∫
|divP |2. This integral can be interpreted as a constitutive law, since

it attributes energy to a given deformation (and since stress is the derivative of energy, it also
characterizes the stress-strain relationship). Incidentally, since |divP | is the magnitude of the
local curvature of stripes, this constitutive law amounts to the same bending energy as is present
in the classical model of the Euler elastica.

In the same way as for block copolymers we expect the projection-valued eikonal equation
to function as a kinematical description of the system, by characterizing all patterns of constant
stripe width, in a way that avoids the problems of the vector-valued eikonal equation. Within
the freedom allowed by this kinematical description other properties, such as energies, forces, and
boundary conditions, will then determine the exact behaviour of the system.

7 Conclusion

In this paper we have described a recently developed formulation of the eikonal equation, in
terms of projections rather than vectors. This formulation is better suited to the description
of striped patterns, since it avoids singularities in the vector-valued eikonal equation that are
meaningless in the context of spatial patterns. We expect that it will find many applications in
the characterization of the kinematics of striped-pattern systems.
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