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Abstract. We study the limit of high activation energy of a special Fokker–Planck equation
known as the Kramers–Smoluchowski equation (KS). This equation governs the time evolution of
the probability density of a particle performing a Brownian motion under the influence of a chemical
potential H/ε. We choose H having two wells corresponding to two chemical states A and B. We
prove that after a suitable rescaling the solution to KS converges, in the limit of high activation
energy (ε → 0), to the solution of a simpler system modeling the spatial diffusion of A and B
combined with the reaction A
 B.

With this result we give a rigorous proof of Kramers’s formal derivation, and we show how
chemical reactions and diffusion processes can be embedded in a common framework. This allows
one to derive a chemical reaction as a singular limit of a diffusion process, thus establishing a
connection between two worlds often regarded as separate.

The proof rests on two main ingredients. One is the formulation of the two disparate equations
as evolution equations for measures. The second is a variational formulation of both equations that
allows us to use the tools of variational calculus and specifically Γ-convergence.
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In this paper we prove that in the limit ε → 0 solutions of the parabolic partial
differential equation in spatial variables x and ξ,

(0.1) ∂tρ−∆xρ− τε∂ξ
(
∂ξρ+

1

ε
ρ ∂ξH

)
= 0

for (x, ξ) ∈ Ω× [−1, 1] and t > 0,

with no-flux boundary conditions,

converge to solutions of the system of reaction-diffusion equations in spatial variable x,

(0.2)
∂tα−∆xα = k(β − α),

∂tβ −∆xβ = k(α− β),
for x ∈ Ω and t > 0.

Below we first describe the history of this problem and the modelling context. The
definition of the constants τε and k and the function H are given in Section 2.

1. Introduction.

1.1. Chemical reaction as a diffusion process. By the 1930’s it was gener-
ally accepted that quantum theory describes a wide variety of atomic and subatomic
phenomena, including chemical reactions, the topic of this paper. A major step for-
ward was the Born-Oppenheimer approximation [6], which allows one to separate the
behaviour of the nuclei from that of the electrons: the nuclei can be treated as classical

∗Department of Mathematics and Institute for Complex Molecular Systems, Technische Univer-
siteit Eindhoven, Eindhoven, The Netherlands (m.a.peletier@tue.nl). The author has been partially
supported by the ITN ”FIRST” of the Seventh Framework Programme of the European Community’s
(grant agreement number 238702), and by the NWO VICI project 639.033.008.
†Dipartimento di Matematica Felice Casorati, Università degli studi di Pavia, Pavia, Italy
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particles that move in a high-dimensional potential landscape, in which the potential
is defined through the solution of a quantum-mechanical problem for the electrons
under assumption of fixed nuclei.

This brought the calculation of chemical reaction rates within reach, at least
theoretically. A chemical reaction event corresponds to the movement of this high-
dimensional system of all nuclei from one local minimum of the potential to another,
typically driven by fluctuations that arise from collisions with other particles. If
the potential landscape can be calculated with sufficient accuracy, then the reaction
rate should follow from a classical-mechanical problem for the nuclei with stochastic
forcing—what we would now call a stochastic differential equation (SDE).

In a seminal paper in 1940, Hendrik Anthony Kramers derives the Fokker-Planck
equation for this SDE [17], under the assumption of Gaussian noise, and proceeds to
study various limit cases. One of these cases is the ‘large-friction’ or ‘Smoluchovski’
limit, and the corresponding equation is (0.1). Mathematically this corresponds to
the motion of a Brownian particle in a potential landscape, as illustrated in Figure 1.

H

A B

ξ

Fig. 1. Motion of a Brownian particle in a one-dimensional potential landscape.

Given the dynamics, described by an SDE or the corresponding Fokker-Planck
equation (0.1), there are many ways of defining transition (reaction) rates (see e.g. [13]
for a nice overview). These are all impossible to calculate explicitly, even for simple
choices of the potential function. As a result the effort has been aimed at determining
the rate in the limit of large activation energy, when the energy barrier separating
the wells is large compared to the noise. There are many successful results in this
direction (see [13, 5] for an overview).

1.2. Aim of this paper. The aim of this paper is related but different. It starts
from the observation that we have two competing descriptions for particles that are
what we macroscopically call both ‘diffusing’ and ‘reacting’. First, a typical modelling
argument leads to equations of the form (0.2), for a finite number of chemical species,
and with second-order diffusion terms and zero-order reaction terms. Here we limit
ourselves to a simple A � B system, which arises for instance when A and B are
two forms of the same molecule, such that the molecule can change from one form
into the other. A typical example is a molecule with spatial asymmetry, which might
exist in two distinct, mirror-image spatial configurations (but see Section 3.3 for more
general reactions). The variables α and β are the volume fractions of the two species,
the constant k is the reaction rate, and for simplicity we assume that it is the same
for both reactions A→ B and B → A.
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On the other hand, the discussion above suggests that the same system should
be described by an equation of the form (0.1), in the following way. The variable x
models the spatial degrees of freedom of the molecule, i.e. the different positions in
space where the molecule can be; the variable ξ models the ‘chemical’ degrees of
freedom, corresponding to different arrangements of the atoms inside the molecule.
For simplicity (and following Kramers) we assume ξ to be one-dimensional. The
energy of a state (x, ξ) is given by a potential function H that we assume independent
of x, and has a double-well structure as in Figure 1, corresponding to the two stable
states A and B. Since the particle undergoes an SDE in (x, ξ), driven by Gaussian
noise and the potential H, the probability distribution ρ on (x, ξ)-space satisfies (0.1).

Therefore the question arises: how are (0.1) and (0.2) related? Can they be seen
as two signs of the same coin? Is it possible to take a limit (which will be the limit of
large activation energy) such that solutions of (0.1) converge to (0.2)?

In this paper we give an answer to these questions, by proving two convergence
theorems that link the two descriptions. The limit of large activation energy is im-
plemented by replacing H by H/ε, leading to an activation energy of order O(ε); this
explains the factor 1/ε in (0.1). The convergence results are then in the limit ε→ 0.

In addition, the unusual aspects of this question prompted us to develop a method
that not only allows us to address this question, but may be more generally useful.
We describe this in the next section.

1.3. Structure of the proof. Any attempt to prove a rigorous convergence
result faces an important difficulty: the mathematical objects used in the two de-
scriptions are of very different type.

Let us assume for simplicity that ξ parametrizes an imaginary “optimal path”
connecting the states A and B such that ξ = −1 corresponds to A and ξ = 1 to B. At
ε > 0, the system is described by a partial differential equation in the space Ω×[−1, 1],
while in the limit ε = 0 the chemical (ξ-) degrees of freedom are reduced to the two
possibilities A and B which correspond to only ξ = ±1. Therefore the question arises
in which sense solutions of one could even converge to the other.

As it turns out, both systems can be described by variational evolution equa-
tions in a common space of measures. Measures generalize functions and allow for
a rigorous description of concentration phenomena: while functions in Lebesgue or
Sobolev spaces cannot represent concentration of finite mass onto a point, in the
space of measures this behaviour can be described in terms of Dirac distributions
ξ 7→ δ(ξ ± 1). Equation (0.1) is already a measure-valued equation; by reformulating
equation (0.2) also as a measure-valued equation we unite the two equations in a
common structure. The space of measures carries a natural concept of convergence,
the convergence against test functions, and this will be the basis for the first of our
convergence results.

A second ingredient in the proof is the use of variational methods to pass to the
limit. The ideas for this method go back to [25, 26, 12], see also [7, 4], and our use
is a generalization of their results. Both systems can be written as gradient flows
in weighted L2-spaces, which are characterized by two quadratic forms. One of the
advantages of this variational, gradient-flow formulation is the possibility to shift the
study of the convergence of the solutions to the convergence of (linear combinations
of) the quadratic forms. This is illustrated in Figure 2. The fundamental tool in this
step is the notion of Γ-convergence, introduced by E. De Giorgi (see [11] and [10] for a
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thorough exposition) in order to study the convergence of minimum problems, and it
is nowadays one of the most powerful and flexible instruments for the rigorous study
of singular variational problems.

F.-Planck eq. (0.1)
governed by H/ε

-� Variational evolution eq.
bε(∂tu, v) + aε(u, v) = 0

-� Quadratic form
bε + κaε

?

Γ-convergence
as ε→ 0

?

Reaction-Diff. system
(0.2) for A
 B

-� Variational evolution eq.
b(∂tu, v) + a(u, v) = 0

-� Quadratic form
b + κa

Fig. 2. Structure of the passage to the limit. The top line is microscopic, ε > 0, the bottom line
macroscopic (ε = 0). Each of the horizontal arrows indicates a mathematical equivalence between
different formulations. The crucial limiting step ε → 0 is done by Γ-convergence on the quadratic
forms bε + κaε, for arbitrary κ > 0.

1.4. Plan of the paper. In the next section we describe equations (0.1), (0.2)
and their derivation in more detail. The main results (Theorems 3.1 and 3.2) are
given in Sections 3.1 and 3.2, and we discuss various aspects in Section 3.3.

Section 4 describes the main arguments and tools of the proof: the variational
formulation of the equations in weighted L2-spaces and in measure spaces (§ 4.1
and § 4.3), simple regularization estimates (§ 4.2), a few results on Γ-convergence
of quadratic forms (§ 4.4) related to a weak-strong convergence principle which turns
out to be extremely useful to deal with evolution problems according to the scheme
of Figure 2. The applications of this approach to variational evolution problems are
briefly discussed in § 4.5 and then further developed in Section 6.

Section 5 contains the basic Γ-convergence results (Theorem 5.1). The proof of
Theorems 3.1 and 3.2 will be then concluded by a general argument showing the
link between Γ-convergence of the quadratic forms aε, bε and the convergence of the
solutions to the evolution problems (see the comments in section 4.5): its precise
statement is presented and proved in Section 6 in an abstract form which is in fact
independent of the specific problems under consideration and can be easily applied to
other situations.

2. The model.

2.1. The set-up: Enthalpy. We now describe the systems of this paper in
more detail. We consider the unimolecular reaction A 
 B. We assume that the
observed forms A and B correspond to the wells of a double-well enthalpy function
H (since it is common in the chemical literature to denote by “enthalpy difference”
the release or uptake of heat as a particle A is converted into a particle B, we shall
adopt the same language).

While the domain of definition of H should be high-dimensional, corresponding
to the many degrees of freedom of the atoms of the molecule, we will here make the
standard reduction to a one-dimensional dependence. As we mentioned before, the
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states A and B correspond to ξ = −1 and ξ = +1 respectively, and the variable ξ
takes its values in [−1, 1]. A transition between −1 and +1 should pass through the
“mountain pass,” the point which separates the basins of attraction of A and B, and
we arbitrarily choose that mountain pass to be at ξ = 0, with H(0) = 1. We also
assume for simplicity that the wells are at equal depth, which we choose to be zero.
A typical example of the function H is shown in Figure 3.

−1 1

ξ

H

Fig. 3. A typical function H.

Specifically we make the following assumptions about H: H ∈ C∞([−1, 1]), and
H is even in ξ, maximal at ξ = 0 with value 1, and minimal at ξ = ±1 with value 0;
H(ξ) > 0 for any −1 < ξ < 1; H ′(±1∓) = 0. The assumption of equal depth for the
two wells corresponds to an assumption about the rate constants of the two reactions;
we comment on this in Section 3.3.

2.2. Diffusion in the chemical landscape. We now describe the diffusion
process, starting with the state space. The “chemical variable” ξ should be interpreted
as an internal degree of freedom of the particle, associated with internal changes in
configuration. In the case of two alternative states of a molecule, ξ parametrizes all
the intermediate states along a connecting path.

In this view the total state of a particle consists of this chemical state ξ together
with the spatial position of the particle, represented by a d-dimensional spatial vari-
able x in a Lipschitz, bounded, and open domain Ω ⊂ Rd, so that the full state space
for the particle is the closure D of

D := Ω× (−1, 1) with variables (x, ξ).

Taking a probabilistic point of view, and following Kramers, the motion of the particle
will be described in terms of its probability density ρ ∈ P(D) in the sense that for
Borel sets X ⊂ Ω and Ξ ⊂ [−1, 1] the number ρ(X × Ξ) is the probability of finding
the particle at a position x ∈ X and with a “chemical state” ξ ∈ Ξ.

The particle is assumed to perform a Brownian motion in D, under the influ-
ence of the potential landscape described by H. This assumption corresponds to the
“large-friction limit” discussed by Kramers. The time evolution of the probability
distribution ρ then is given by the Kramers–Smoluchowski equation (KS)

(2.1) ∂tρ−∆xρ− τ∂ξ
(
∂ξρ+ ρ ∂ξH

)
= 0 in D ′(D × (0,∞)),

with initial condition ρ0 and Neumann boundary conditions on the lateral boundary
∂D, which imply reflection of the Brownian particle at the boundaries. The coefficient
τ > 0 is introduced to parametrize the difference in scales for x and ξ: since x is a
rescaled physical distance, and ξ is a rescaled “chemical” distance, the units of length
in the two variables are different, and the parameter τ can be interpreted as the factor
that converts between the two scales. Below we shall make an explicit choice for τ .
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2.3. The limit of high activation energy. In the set-up as described above,
there is a continuum of states (i.e., [−1, 1]) connecting the A state to the B state,
and a statement of the type “the particle is in the A state” is therefore not well
defined. In order to make a connection with the macroscopic description “A 
 B,”
which requires a clear distinction between the two states, we take the limit of high
activation energy, as follows.

We rescale the enthalpy H with a small parameter ε to make it H(ξ)/ε, so that
the energy barrier between the wells is exactly 1/ε high. This rescaling has various
effects on the behavior of solutions ρ of (2.1). To illustrate one effect, let us consider
the invariant measure γε, the unique stationary solution in P(D) of (2.1):

(2.2) γε = λΩ ⊗ γ̃ε, λΩ :=
1

Ld(Ω)
Ld|Ω, γ̃ε = Z−1

ε e−H/εL1
|[−1,1]

(where L1,Ld are the one- and d-dimensional Lebesgue measures). The constant Zε
is fixed by the requirement that γε(D) = γ̃ε([−1, 1]) = 1.

−1 1
ξ

γ̃ε

O(1/
√
ε)

Fig. 4. The density γ̃ε.

Since H is strictly positive at any −1 < ξ < 1, the exponential exp(−H(ξ)/ε)
vanishes, as ε → 0, at all ξ except for ξ = ±1 (see Figure 4); therefore, the measure
γε concentrates on the lines ξ = −1 and ξ = 1 and converges weakly-∗ as ε → 0 to
the limit measure γ given by

(2.3) γ = λΩ ⊗ γ̃, γ̃ :=
1

2

(
δ−1 + δ1

)
.

Here weak-∗ convergence is to be interpreted in the duality with continuous functions
in D (thus considering P(D) as a weakly-∗ closed convex subset of the space M (D) =(
C0(D)

)′
of signed Borel measures with finite total variation), i.e.,

lim
ε↓0

∫
D

φ(x, ξ) dγε =

∫
D

φ(x, ξ) dγ(x, ξ) =
1

2

∫
Ω

(
φ(x,−1) + φ(x, 1)

)
dλΩ(x)

for any φ ∈ C0(D).
We should interpret the behavior of γε as follows. In the limit ε → 0, the deep

wells at ξ = ±1 force particles to stay increasingly close to the bottom of the wells.
However, at any given ε > 0, there is a positive probability that a particle switches
from one well to the other in any given period of time. The rate at which this happens
is governed by the local structure of H near ξ = ±1 and near ξ = 0 and becomes very
small, of order ε−1 exp(−1/ε), as we shall see below.

In the limit ε = 0, the behavior of particles in the ξ-direction is no longer recog-
nizable as diffusional in nature. In the ξ-direction a particle can be in only one of two
states ξ = ±1, which we interpreted as the A and B states. Of the diffusional move-
ment in the ξ-direction only a jump process remains, in which a particle at ξ = −1
jumps with a certain rate to position ξ = 1, or vice versa.
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At each time t ≥ 0 the limit system can thus be described by the nonnegative
functions α(·; t), β(·; t) : Ω → R representing the densities of particles in the state
A and B respectively: this means that

∫
X
α(x; t) dx is the (normalized) amount of

particles in the state A contained in the region X ⊂ Ω and a similar formula holds
for β = 1− α.

The time-dependent measures

(2.4) ρ(x, ξ; t) = α(x; t)Ld(x)⊗ δ−1(ξ) + β(x; t)Ld(x)⊗ δ1(ξ)

are thus the limit distributions of particles and we can expect that ρε(·; t) converges
weakly-∗ to ρ(·; t) as ε ↓ 0 in the space M (D), i.e.

lim
ε↓0

∫
D

φ(x, ξ) dρε(x, ξ; t) =

∫
Ω

(
φ(x,−1)α(x; t) + φ(x, 1)β(x; t)

)
dx

for any φ ∈ C0(D) and t > 0. The remarkable fact is that, under a suitable choice of
τ = τε which we will explain in the next section, the limit functions α, β satisfy the
reaction-diffusion system (0.2).

2.4. Spatiochemical rescaling. Since the jumping (chemical reaction) rate at
finite ε > 0 is of order ε−1 exp(−1/ε), the limiting reaction rate will be zero unless
we rescale the system appropriately. This requires us to speed up time by a factor of
ε exp(1/ε). At the same time, the diffusion rate in the x-direction remains of order 1
as ε → 0, and the rescaling should preserve this. In order to obtain a limit in which
both diffusion in x and chemical reaction in ξ enter at rates that are of order 1, we
use the freedom of choosing the parameter τ that we introduced above.

We therefore choose τ equal to

(2.5) τε := ε exp(1/ε),

and we then find the differential equation

(2.6) ∂tρε −∆xρε − τε∂ξ(∂ξρε + 1
ερε ∂ξH) = 0 in D ′(D × (0,∞)),

which clearly highlights the different treatment of x and ξ: the diffusion in x is
independent of τε, while the diffusion and convection in the ξ-variable are accelerated
by a factor τε.

2.5. Switching to the density variable. As is already suggested by the be-
havior of the invariant measure γε, the solution ρε will become strongly concentrated
at the extremities {±1} of the ξ-domain (−1, 1). This is the reason why it is useful
to interpret ρε as a family ρε(t, ·) of time-dependent measures instead of functions. It
turns out that the densities uε(t, ·),

uε(t, ·) :=
dρε(t, ·)

dγε
,

of ρε(t, ·) with respect to γε also play a crucial role, and it is often convenient to have
both representations at our disposal, freely switching between them. In terms of the
variable uε, (2.6) becomes

(2.7a) ∂tuε −∆xuε − τε(∂2
ξξ uε − 1

ε∂ξH∂ξuε) = 0 in D × (0,+∞),
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supplemented with the boundary conditions

(2.7b) ∂ξuε(t, x,±1) = 0 in Ω, ∇xuε(t, x, ξ) · n = 0 on ∂Ω× [−1, 1], t > 0.

We choose an initial condition

(2.7c) uε(0, x, ξ) = u0
ε(x, ξ) for all (x, ξ) ∈ D, with ρ0

ε = u0
εγε ∈P(D).

The work of this paper depends on a special structure of the equation. It is well
known (see, e.g., [9]) that the operator Aε := −∆x−τε∂2

ξξ+(τε/ε)H
′ ∂ξ with Neumann

boundary conditions (2.7b) has a self-adjoint realization in the space Hε := L2(D; γε).
Therefore, the weak form of (2.7a) can be written as

(2.8) bε(∂tu(t), v) + aε(u(t), v) = 0 for all v ∈ Vε,

where the bilinear forms aε and bε are defined by

bε : Hε ×Hε → R, bε(u, v) :=

∫
D

u v dγε,

and

Vε := W 1,2(D; γε) :=
{
u ∈ L2(D; γε) ∩W 1,1

loc (D) :

∫
D

|∇x,ξu|2 dγε < +∞
}
,

aε : Vε × Vε → R, aε(u, v) :=

∫
D

Aεu v dγε =

∫
D

(
∇xu∇xv + τε∂ξu ∂ξv

)
dγε.

Since Vε is densely and continuously imbedded in Hε, standard results on variational
evolution equations in a Hilbert triplet (see, e.g., [18, 8]) and their regularizing effects
show that a unique solution exists in C([0,∞);Hε) ∩ C∞((0,∞);Vε) for every initial
datum u0

ε ∈ Hε.

2.6. The variational structure of the limit problem. The “ε = 0” limit
problem (0.2) admits the same variational formulation as the “ε > 0” problem we
introduced in Section 2.5. To be consistent with the previous setting, we switch to
the density functions of the limit distribution ρ in (2.4) with respect to the measure γ
defined in (2.3) as the weak limit of γε. We easily get

(2.9) ρ(·; t) = u(·; t)γ, where

{
u(x, 1; t) = u+(x, t) = 2Ld(Ω)α(x, t),

u(x,−1; t) = u−(x, t) = 2Ld(Ω)β(x, t),

so that the couple (u−, u+) coincides with (α, β) up to the normalization factor 2Ld(Ω)
and thus satisfy the same system (0.2). We set H := L2(D, γ), and for every ρ =
uγ with u ∈ H we set u±(x) := u(x,±1) ∈ L2(Ω, λΩ). Note that for a function
u ∈ L2(D, γ) these traces are well defined (in fact, the map u 7→ (u−, u+) is an
isomorphism between L2(D, γ) and L2(Ω, 1

2λΩ;R2)).
We define

(2.10) b(u, v) :=

∫
D

u(x, ξ)v(x, ξ) dγ(x, ξ) =
1

2

∫
Ω

(
u+v+ + u−v−

)
dλΩ.

Similarly, we set V :=
{
u ∈ H : u± ∈ W 1,2(Ω)

}
, which is continuously and densely

imbedded in H, and

(2.11) a(u, v) :=
1

2

∫
Ω

(
∇xu+∇xv+ +∇xu−∇xv− + k

(
u+ − u−

)
(v+ − v−)

)
dλΩ.
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Then the system (0.2) can be formulated as

(2.12) b(∂tu(t), v) + a(u(t), v) = 0 for every t > 0 and v ∈ V ,

which has the same structure as (2.8).

3. Main results and discussion.

3.1. Main result I: Weak convergence of ρε and uε. The following theorem
is the first main result of this paper. It states that for every time t ≥ 0 the measures
ρε(t) that solve (2.6) weakly-∗ converge as ε ↓ 0 to a limiting measure ρ(t) in P(D),

whose density u(t) = dρ(t)
dγ is the solution of the limit system (0.2).

We state our result in a general form, which holds even for signed measures in
M (D).

Theorem 3.1. Let ρε = uε γε ∈ C0([0,+∞); M (D)) be the solution of (2.6)–
(2.7c) with initial datum ρ0

ε. If

(3.1) sup
ε>0

∫
D

|u0
ε|2 dγε < +∞

and ρ0
ε weakly-∗ converges to

(3.2) ρ0 = u0γ =
1

2
u0− λΩ ⊗ δ−1 +

1

2
u0+ λΩ ⊗ δ+1 as ε ↓ 0,

then u0 ∈ L2(D; γ), u0,± ∈ L2(Ω), and, for every t ≥ 0, the solution ρε(t) weakly-∗
converges to

(3.3) ρ(t) = u(t) γ =
1

2
u−(t)λΩ ⊗ δ−1 +

1

2
u+(t)λΩ ⊗ δ+1,

whose densities u± belong to C0([0,+∞);L2(Ω)) ∩ C1((0,+∞);W 1,2(Ω)) and solve
the system

∂tu
+ −∆xu

+ = k(u− − u+) in Ω× (0,+∞),(3.4a)

∂tu
− −∆xu

− = k(u+ − u−) in Ω× (0,+∞),(3.4b)

u±(0) = u0,± in Ω.(3.4c)

The positive constant k in (3.4a)–(3.4b) can be characterized as the asymptotic mini-
mal transition cost

k =
1

π

√
|H ′′(0)|H ′′(1)(3.5)

= lim
ε↓0

min

{
τε

∫ 1

−1

(
ϕ′(ξ)

)2
dγ̃ε : ϕ ∈W 1,2(−1, 1), ϕ(±1) = ± 1

2

}
.

3.2. Main result II: A stronger convergence of uε. Weak-∗ convergence
in the sense of measures is a natural choice in order to describe the limit of ρε, since
the densities uε and the limit density u = (u+, u−) are defined on different domains
with respect to different reference measures. Nonetheless it is possible to consider
a stronger convergence which better characterizes the limit, and to prove that it is
satisfied by the solutions of our problem.
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This stronger notion is modeled on Hilbert spaces (or, more generally, on Banach
spaces with a locally uniformly convex norm), where strong convergence is equivalent
to weak convergence together with the convergence of the norms:

(3.6) xn → x ⇐⇒ xn ⇀ x and ‖xn‖ → ‖x‖.

In this spirit, the next result states that under the additional request of “strong”
convergence of the initial data u0

ε, we have “strong” convergence of the densities uε;
we refer the reader to [24, 15] (see also [2, section 5.4]) for further references in a
measure-theoretic setting.

Theorem 3.2. Let ρε, ρ
0
ε be as in Theorem 3.1. If, moreover,

(3.7) lim
ε↓0

bε(u
0
ε, u

0
ε) = b(u0, u0),

then for every t > 0 we have

(3.8) lim
ε↓0

bε(uε(t), uε(t)) = b(u(t), u(t))

and

(3.9) lim
ε↓0

aε(uε(t), uε(t)) = a(u(t), u(t)).

Applying, e.g., [2, Theorem 5.4.4] we can immediately deduce the following result,
which clarifies the strengthened form of convergence that we are considering here. This
convergence is strong enough to allow us to pass to the limit in nonlinear functions
of uε.

Corollary 3.3. Under the same assumptions as in Theorem 3.2 we have for
every t > 0

lim
ε↓0

∫
D

f(x, ξ, uε(x, ξ, t)) dγε(x, ξ) =

∫
D

f(x, ξ, u(x, ξ, t)) dγ(x, ξ)(3.10)

=
1

2

∫
Ω

(
f(x,−1, u−(x, t)) + f(x, 1, u+(x, t))

)
dλΩ(x),

where f : D × R → R is an arbitrary continuous function satisfying the quadratic
growth condition

|f(x, ξ, r)| ≤ A+Br2 for every (x, ξ) ∈ D, r ∈ R,

for suitable nonnegative constants A,B ∈ R.

3.3. Discussion. The results of Theorems 3.1 and 3.2 are among other things
rigorous versions of the result of Kramers [17] that was mentioned in the introduction.
They show that the simple reaction-diffusion system (3.4) can indeed be viewed as an
upscaled version of a diffusion problem in an augmented phase space, or, equivalently,
as an upscaled version of the movement of a Brownian particle in the same augmented
phase space.

At the same time they generalize the work of Kramers by adding the spatial
dimension, resulting in a limit system which, for this choice of τε (see below for more
on this choice), captures both reaction and diffusion effects.

Measures versus densities. It is interesting to note the roles of the measures ρε, ρ
and their densities uε, u with respect to γε, γ. The variational formulations of the
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equations are done in terms of the densities uε, u, but the limit procedure is better
understood in terms of the measures ρε, ρ, since a weak-∗ convergence is involved.
This also allows for a unification of two problems with a different structure (a Fokker–
Planck equation for uε and a reaction-diffusion system for the couple u−, u+).

Gradient flows. The weak formulation (2.8) shows also that a solution uε can
be interpreted as a gradient flow of the quadratic energy 1

2aε(u, u) with respect to
the L2(D; γε) distance. Another gradient flow structure for the solutions of the same
problem could be obtained by a different choice of energy functional and distance: for
example, as proved in [16], Fokker–Planck equations like (2.6) can be interpreted also
as the gradient flow of the relative entropy functional

H(ρ|γε) :=

∫
D

dρ

dγε
log
( dρ

dγε

)
dγε(3.11)

in the space P(D) of probability measures endowed with the so-called L2-Wasserstein
distance (see, e.g., [2]). Initiated by the work of Otto [16, 21] and extended into many
directions since, this framework provides an appealing variational structure for very
general diffusion processes.

Two recent results point towards a connection between the results of this paper
and Wasserstein gradient flows. In [1] it was showed how the Wasserstein setting may
be the most natural for understanding diffusion as a limit of the motion of Brownian
particles. In addition, Mielke uncovered a Wasserstein-type gradient-flow structure
for chemical reactions [19].

Fueled by these observations, in the first publication [23] of our results we asked
the question whether a similar convergence result could also be proved within the
Wasserstein gradient-flow framework. This question was answered affirmatively in
two different ways [14, 3], and we refer the reader to [3] for further discussion of these
issues.

The choice of τε. In this paper the time scale τε is chosen to be equal to ε exp(1/ε),
and a natural question to ask is about the limit behavior for different choices of τε.
If the scaling is chosen differently, i.e., if τεε

−1 exp(−1/ε) converges to 0 or ∞, then
completely different limit systems are obtained:

• If τε � ε exp(1/ε), then the reaction is not accelerated sufficiently as ε→ 0,
and the limit system will contain only diffusion (i.e., k = 0 in (3.4)).

• If τε � ε exp(1/ε), on the other hand, then the reaction is made faster and
faster as ε → 0, resulting in a limit system in which the chemical reaction
A� B is in continuous equilibrium. Because of this, both A and B have the
same concentration u, and u solves the diffusion problem

∂tu = ∆u for x ∈ Ω, t > 0,

u(0, x) =
1

2

(
u0,+(x) + u0,−(x)

)
for x ∈ Ω.

Note the instantaneous equilibration of the initial data in this system.
While the scaling in terms of ε of τε cannot be chosen differently without obtaining

structurally different limit systems, there is still a choice in the prefactor. For τε :=
τ̃ εe1/ε with τ̃ > 0 fixed, the prefactor τ̃ will appear in the definition (3.5) of k.

There is also a modeling aspect to the choice of τ . In this paper we use no
knowledge about the value of τ in the diffusion system at finite ε; the choice τ = τε is
motivated by the wish to have a limit system that contains both diffusive and reactive
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terms. If one has additional information about the mobility of the system in the x-
and ξ-directions, then the value of τ will follow from this.

Equal rate constants. The assumption of equal depth of the two minima of H
corresponds to the assumption (or, depending on one’s point of view, the result) that
the rate constant k in (3.4) is the same for the two reactions A → B and B → A.
The general case requires a slightly different choice for H, as follows.

Let the original macroscopic equations for the evolution of the densities α, β in A
and B be

∂tα−∆α = k−β − k+α,(3.12a)

∂tβ −∆β = k+α− k−β.(3.12b)

Choose a fixed function H0 ∈ C∞([−1, 1]) such that H ′0(±1) = 0 and H0(1) −
H0(−1) = log k− − log k+. We then construct the enthalpy Hε by setting

Hε := H0 +
1

ε
H,

where H is the same enthalpy function as above. The same proof as for the equal-well
case then gives convergence of the finite-ε problems to (3.12).

Equal diffusion constants. It is possible to change the set-up such that the limiting
system has different diffusion rates in A and B. We first write (2.6) as

∂tρ− divDεFε = 0,

where the mobility matrix Dε ∈ R(d+1)×(d+1) and the flux Fε are given by

Dε =

(
I 0
0 τε

)
and Fε = Fε(ρ) =

(
∇u

∇ρ+ ρ∇H

)
.

By replacing the identity matrix block I in Dε by a block of the form a(ξ) I, the
x-directional diffusion can be modified as a function of ξ. This translates into two
different diffusion coefficients for A and B.

The function H. The limit result of Theorem 3.1 shows that only a small amount
of information about the function H propagates into the limit problem: specifically,
the local second-order structure of H around the wells and around the mountain-pass
point.

One other aspect of the structure of H is hidden: the fact that we rescaled the ξ
variable by a factor of

√
τε can also be interpreted as a property of H, since the

effective distance between the two wells, as measured against the intrinsic distance
associated with the Brownian motion, is equal to 2

√
τε after rescaling.

We also assumed in this paper that H has only “half” wells, in the sense that H
is defined on [−1, 1] instead of R. This was for practical convenience, and one can do
essentially the same analysis for a function H that is defined on R. In this case one
will regain a slightly different value of k, namely, k =

√
|H ′′(0)|H ′′(1)/2π. (For this

reason this is also the value found by Kramers [17, equation (17)].)
Single particles versus multiple particles, and concentrations versus probabilities.

The description in this paper of the system in terms of a probability measure ρ on D
is the description of the probability of a single particle. This implies that the limit
object (u−, u+) should be interpreted as the density (with respect to γ) of a limiting
probability measure, again describing a single particle.



FROM DIFFUSION TO REACTION VIA Γ-CONVERGENCE 13

This is at odds with common continuum modeling philosophy, where the main
objects are concentrations (mass or volume) that represent a large number of par-
ticles; in this philosophy the solution (u−, u+) of (3.4) should be viewed as such a
concentration, which is to say as the projection onto x-space of a joint probability
distribution of a large number of particles.

For the simple reaction A� B these two interpretations are actually equivalent.
This arises from the fact that A → B reaction events in each of the particles are
independent of each other; therefore, the joint distribution of a large number N of
particles factorizes into a product of N copies of the distribution of a single particle.
For the case of this paper, therefore, the distinction between these two views is not
important.

More general reactions. The remark above implies that the situation will be dif-
ferent for systems where reaction events cause differences in distributions between
the particles, such as the reaction A + B � C. This can be recognized as follows: a
particle A that has just separated from a B particle (in a reaction event of the form
C → A+B) has a position that is highly correlated with the corresponding B particle,
while this is not the case for all the other A particles. Therefore, the A particles will
not have the same distribution. The best one can hope for is that in the limit of a
large number of particles the distribution becomes the same in some weak way. This
is one of the major obstacles in developing a similar connection as in this paper for
more complex reaction equations.

Regarding possible extensions toward equations involving an arbitrary number of
chemical species, as well as different reaction and diffusion rates, we point out that a
formal gradient flow structure has recently been established in [19], independently of
this work.

4. Structure of the proof: formulation in terms of measures, regular-
ization estimates, and Γ-convergence of quadratic forms. We now explain the
structure of the proof of Theorems 3.1 and 3.2 in more detail. This will also clarify the
use of Γ-convergence and highlight the potential of the method for wider application.

We have already seen that the ε-problem (2.7) and the limit problem (0.2) can
be formulated in the highly similar variational forms (2.8) and (2.12). The analogy
between (2.8) and (2.12) suggests passing to the limit in these weak formulations, or
even better, in their equivalent integrated forms

(4.1)

bε(uε(t), vε) +

∫ t

0

aε(uε(t), vε) dt = b(u0
ε, vε) for every vε ∈ Vε,

b(u(t), v) +

∫ t

0

a(u(t), v) dt = b(u0, v) for every v ∈ V.

Applying standard regularization estimates for the solutions to (2.8) (see the next
section) and a weak coercivity property of bε, it is not difficult to prove that uε(t)
“weakly” converges to u(t) for every t > 0, i.e.,

ρε(t) = uε(t)γε
∗
⇀ ρ(t) = u(t)γ weakly-∗ in M (D).

The concept of weak convergence of densities that we are using here is thus the same
as in Theorem 3.1, i.e., weak-∗ convergence of the corresponding measures in M (D).

In order to pass to the limit in (4.1), the central property is the following weak-
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strong convergence principle:

(4.2)
For every v ∈ V there exists vε ∈ Vε with vε ⇀ v as ε→ 0 such that

bε(uε, vε)→ b(u, v) and aε(uε, vε)→ a(u, v) for every uε ⇀ u.

Note that the previous property implies in particular that the recovery family vε
converges “strongly” to v, according to the notion considered by Theorem 3.2, i.e.,
vε → v iff vε ⇀ v with both bε(vε, vε)→ b(v, v) and aε(vε, vε)→ a(v, v). Lemma 4.2
shows that this weak-strong convergence property can be derived from Γ-convergence
in the “weak” topology of the family of quadratic forms

(4.3) qκε (u) := bε(u, u) +κ aε(u, u) to qκ(u) := b(u, u) +κ a(u, u) for κ > 0.

In order to formulate this property in the standard framework of Γ-convergence, we
will extend aε and bε to lower-semicontinuous quadratic functionals (possibly assum-
ing the value +∞) in the space M (D), following the approach of [10, Chap. 11–13].

4.1. The Kramers–Smoluchowski equation. Let us first briefly
summarize the functional framework introduced above. We denote by (·, ·)ε the

scalar product in Rd × R defined by

(4.4) (x,y)ε := x · y + τε ξ η, for every x = (x, ξ), y = (y, η) ∈ Rd × R,

with the corresponding norm ‖ · ‖ε. We introduced two Hilbert spaces

Hε := L2(D, γε) and Vε = W 1,2(D, γε)

and the bilinear forms

bε(u, v) :=

∫
D

u v dγε for every u, v ∈ Hε,(4.5)

aε(u, v) :=

∫
D

(∇x,ξu,∇x,ξv)ε dγε for every u, v ∈ Vε,(4.6)

with which (2.7a) has the variational formulation

(4.7) bε(∂tuε, v) + aε(uε, v) = 0 for every v ∈ Vε, t > 0; uε(0, ·) = u0
ε.

The main technical difficulty in studying the limit behavior of (4.7) as ε ↓ 0
consists of the ε-dependence of the functional spaces Hε, Vε. Since for our approach
it is crucial to work in a fixed ambient space, we embed the solutions of (4.7) in the
space of finite Borel measures M (D) by associating to uε the measure ρε := uεγε.
We thus introduce the quadratic forms

bε(ρ) := bε(u, u) if ρ� γε and u =
dρ

dγε
∈ Hε,(4.8)

aε(ρ) := aε(u, u) if ρ� γε and u =
dρ

dγε
∈ Vε,(4.9)

trivially extended to +∞ when ρ is not absolutely continuous with respect to γε or its
density u does not belong toHε or Vε, respectively. Denoting by Dom(aε) and Dom(bε)
their proper domains, we still denote by aε(·, ·) and bε(·, ·) the corresponding bilinear
forms defined on Dom(aε) and Dom(bε), respectively. Setting ρε := uεγε, σ := vγε,
(4.7) is equivalent to the integrated form

(4.10) bε(ρε(t), σ) +

∫ t

0

aε(ρε(r), σ) dr = bε(ρ
0
ε, σ) for every σ ∈ Dom(aε).
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4.2. Regularization estimates. We recall here the standard regularization es-
timates satisfied by solutions to (4.10):

1

2
bε(ρε(t)) +

∫ t

0

aε(ρε(r)) dr =
1

2
bε(ρ

0
ε) for every t ≥ 0,(4.11)

t aε(ρε(t)) + 2

∫ t

0

rbε(∂tρε(r)) dr =

∫ t

0

aε(ρε(r)) dr for every t ≥ 0,(4.12)

1

2
bε(ρε(t)) + t aε(ρε(t)) + t2bε(∂tρε(t)) ≤

1

2
bε(ρ

0
ε) for every t > 0.(4.13)

Although versions of these expressions appear in various places, for the easy of the
reader we briefly describe their proof, and we use the more conventional formulation
in terms of the bilinear forms aε and bε, the density uε, and spaces Hε and Vε; note
that bε is an inner product for Hε, and bε + aε is an inner product for Vε.

When u0 is sufficiently smooth, standard results (e.g., [8, Chapter VII]) provide
the existence of a solution uε ∈ C([0,∞);Vε)∩C∞((0,∞);Vε), such that the functions
t 7→ aε(uε(t)) and t 7→ bε(∂tuε(t)) are nonincreasing; in addition, the solution operator
(semigroup) St is a contraction in Hε. For this case (4.11) just follows from (4.7) by
choosing v := uε and by integrating in time. Estimate (4.12) can be obtained by
choosing v := ∂tuε and by multiplying (4.7) by 2t: the identity

2t aε(uε, ∂tuε) = ∂t

(
t aε(uε, uε)

)
− a(uε, uε)

and a further integration in time yields (4.12).

Finally, (4.13) follows by writing the sum of (4.11) and (4.12) as

(4.14)
1

2
bε(uε(t)) + t aε(uε(t)) + 2

∫ t

0

r bε(∂tuε(r)) dr =
1

2
bε(u

0
ε),

and recalling that r 7→ bε(∂tuε(r)) is nonincreasing.

In order to extend them to all u0
ε ∈ Hε, we note that for fixed t > 0 the two

norms on Hε given by (the square roots of)

(4.15) u0
ε 7→

1

2
bε(u

0
ε) and u0

ε 7→
1

2
bε(Stu

0
ε) +

∫ t

0

aε(Sru
0
ε) dr

are identical by (4.11) on an Hε-dense subset. If we approximate a general u0
ε ∈ Hε

by smooth u0
ε,n, then the sequence u0

ε,n is a Cauchy sequence with respect to both
norms; by copying the proof of completeness of the space L2(0,∞;Vε) (see, e.g., [8,
Theorem IV.8]) it follows that the integral in (4.15) converges. This allows us to pass
to the limit in (4.11). The argument is similar for (4.14), which yields (4.13).

4.3. The reaction-diffusion limit. We now adopt the same point of view to
formulate the limit reaction-diffusion system in the setting of measures. Recall that
owing to the special form (2.3) of γ, ρ� γ implies ρ = 1/2(uλΩ⊗δ1+uλΩ⊗δ−1), that
for u ∈ H := L2(D, γ) we set u±(x) := u(x,±1), and that we defined the function
space

V :=
{
u ∈ H : u± ∈W 1,2(Ω)

}
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and the bilinear forms

b(u, v) =
1

2

∫
Ω

(
u+v+ + u−v−

)
dλΩ,(4.16)

a(u, v) :=
1

2

∫
Ω

(
∇xu+∇xv+ +∇xu−∇xv− + k

(
u+ − u−

)
(v+ − v−)

)
dλΩ.(4.17)

As before, we now extend these definitions to arbitrary measures by

b(ρ) := b(u, u) if ρ� γ and u =
dρ

dγ
∈ H,(4.18)

a(ρ) := a(u, u) if ρ� γ and u =
dρ

dγ
∈ V ,(4.19)

with corresponding bilinear forms b(·, ·) and a(·, ·); problem (3.4) can be reformulated
as

b(∂tρ(t), σ) + a(ρ(t), σ) = 0 for every t > 0 and σ ∈ Dom(a),

or in the integral form

(4.20) b(ρ(t), σ) +

∫ t

0

a(ρ(r), σ) dr = b(ρ0, σ) for every σ ∈ Dom(a).

Since both problems (4.10) and (4.20) are embedded in the same measure space
M (D), we can study the convergence of the solution ρε of (4.10) as ε ↓ 0.

4.4. Γ-convergence and the weak-strong convergence principle (4.2) for
quadratic forms. We already mentioned that (4.2) is a crucial tool for proving the
convergence of the variational evolution problems (4.10). In this section we shall show
that this property is strongly related to the Γ-convergence of the quadratic forms aε
and bε.

First of all, let us briefly recall the definition of Γ-convergence for a family of equi-
coercive functionals (fε)ε>0 in M (D). We can refer here to the sequential definition
of Γ-convergence [10, Prop. 8.1(e,f)] since M (D) is the dual of a separable space (see
the argument of [10, Prop. 8.10]).

Definition 4.1. Let fε, f : M (D) → (−∞,+∞] be given functionals, satisfying
the equi-coercivity assumption

(4.21) sup
ε

fε(ρε) < +∞ ⇒ ρε is bounded in M (D).

We say that fε Γ
(
M (D)

)
-converges to f as ε ↓ 0 and we write Γ

(
M (D)

)
- limε↓0 fε = f

if the following two conditions are satisfied:
(Γ-1) If ρε

∗
⇀ ρ in M (D) then

(4.22) lim inf
ε↓0

fε(ρε) ≥ f(ρ).

(Γ-2) For every σ ∈ M (D) with f(σ) < ∞ there exists σε ∈ M (D) converging to σ
as ε ↓ 0 such that

(4.23) lim
ε↓0

fε(σε) = f(σ).
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Here we are mainly concerned with nonnegative quadratic forms: this means that
Dom(fε) is a linear space and fε satisfy the parallelogram identity so that fε(ρ) =
fε(ρ, ρ) for a (symmetric) bilinear form defined on Dom(fε) by

(4.24) 2 fε(ρ, σ) := fε(ρ+ σ)− fε(ρ)− fε(σ) for every ρ, σ ∈ Dom(fε).

It is worth noting that the Γ-limit of nonnegative quadratic forms is still a (weakly-∗
lower semicontinuous) nonnegative quadratic form [10, Theorem 11.10]. In this case
one of the most useful consequences of Γ

(
M (D)

)
-convergence is contained in the next

result (see, e.g., [22, Lemma 3.6]), which shows the link between Γ-convergence and
(4.2).

Lemma 4.2 (Weak-strong convergence). Assume that fε is a family of equi-
coercive nonnegative quadratic forms Γ

(
M (D)

)
-converging to f as ε ↓ 0. Let ρε, σε ∈

M (D) be two families weakly-∗ converging to ρ, σ as ε ↓ 0 and satisfying the uniform
bound

(4.25) lim sup
ε↓0

fε(ρε) < +∞, lim sup
ε↓0

fε(σε) < +∞,

so that ρ, σ belong to the domain of the limit quadratic form f. We have

lim
ε↓0

fε(σε) = f(σ) =⇒ lim
ε↓0

fε(ρε, σε) = f(ρ, σ).(4.26)

Proof. We reproduce here the proof of [22]. For every positive scalar r > 0 we
have by (4.24) and the fact that fε(·, ·) is bilinear

2fε(ρε, σε) = 2fε(r ρε, r
−1σε) = fε(rρε + r−1σε)− r2fε(ρε)− r−2fε(σε).

Taking the inferior limit as ε ↓ 0 and recalling (4.25), we get for A := lim supε↓0 fε(ρε)

lim inf
ε↓0

2fε(ρε, σε) ≥ f(rρ+ r−1σ)− r2A− r−2f(σ) = 2f(ρ, σ) + r2
(
f(ρ)−A

)
.

Since r > 0 is arbitrary and A is finite by (4.25), we obtain lim infε↓0 fε(ρε, σε) ≥
f(ρ, σ); inverting the sign of σ we get (4.26).

If one wants to apply the previous Lemma for passing to the limit in the integral
formulation (4.10) of the Kramers-Smoluchowski equations to get (4.20), it is not
hard to guess that for every testing measure σ ∈ Dom(a) one needs to find a “joint”
recovery family σε converging to σ in M (D) such that

(4.27) lim
ε↓0

aε(σε) = a(σ), lim
ε↓0

bε(σε) = b(ρ).

This property is not guaranteed by the separate Γ-convergence of aε and bε to a and
b respectively, since the property (Γ-2) would provide two a priori different families,
say σa

ε , σ
b
ε satisfying (4.27) for a and b.

The next result shows that one can overcome the above difficulty by studying
the Γ-convergence of the quadratic forms qκε (ρ) := bε(ρ) + κ aε(ρ) depending on the
parameter κ > 0.

Lemma 4.3. Let aε, bε be two families of nonnegative quadratic forms in M (D)
such that bε is equi-coercive. If for every κ > 0

(4.28) qκε (ρ) := bε(ρ) + κ aε(ρ) Γ
(
M (D)

)
-converges to qκ(ρ) := b(ρ) + κ a(ρ)
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as ε ↓ 0 then the following two properties holds:
(Γ-1′) If

(4.29) ρε
∗
⇀ ρ as ε ↓ 0 in M (D) and lim sup

ε↓0

(
aε(ρε) + bε(ρε)

)
= C < +∞,

then

(4.30) lim inf
ε↓0

aε(ρε) ≥ a(ρ), lim inf
ε↓0

bε(ρε) ≥ b(ρ).

(Γ-2′) For every σ ∈ M (D) such that a(σ) + b(σ) < +∞ there exists a family σε ∈
M (D) weakly-∗ converging to σ such that

(4.31) lim
ε↓0

aε(σε) = a(σ), lim
ε↓0

bε(σε) = b(σ).

Conversely, if aε, bε satisfy (Γ-1′) and (Γ-2′), then (4.28) holds.
Proof. Let us assume (4.29); the Γ-liminf inequality for qκε yields

lim inf
ε↓0

bε(ρε) ≥ lim inf
ε↓0

qκε (ρε)− Cκ ≥ qκ(ρ)− Cκ = b(ρ) + κ
(
a(ρ)− C

)
for every κ > 0, and therefore the second inequality of (4.30) follows by letting κ ↓ 0.
A similar argument yields the first inequality of (4.30).

Concerning (4.31), Γ-convergence of q1
ε to q1 yields a recovery family σε

∗
⇀ σ such

that

lim
ε↓0

aε(σε) + bε(σε) = a(σ) + b(σ) < +∞.

In particular, aε(σε) + bε(σε) is uniformly bounded, so that (4.30) yields the separate
convergence (4.31).

4.5. Γ-convergence and evolution problems. Since the pioneering papers
[25, 26], the link between Γ-convergence and stability of evolution problems of parabolic
type is well known when bε = b is a fixed and coercive bilinear form and can therefore
be considered as the scalar product of the Hilbert space Hε ≡ H: a general result,
for Γ-converging families of convex functionals, can be found, e.g., in [4, Chap. 3.9.2].
In this case the embedding of the problems in a bigger topological vector space (the
role played by M (D) in our situation) is no more needed, and one can deal with the
weak and strong topology of H, obtaining the following equivalent characterizations
(see, e.g., [7, Th. 3.16] and [10, Th. 13.6]):

1. Pointwise (strong) convergence in H of the solutions of the evolution prob-
lems.

2. Pointwise convergence in H of the resolvents of the linear operators associated
to the bilinear forms aε.

3. Mosco-convergence in H of the quadratic forms associated to aε (i.e., Γ-con-
vergence with respect to both the weak and the strong topology of H; see
[20] and [4, sect. 3.3] for the precise definition).

4. Γ-convergence in the weak topology of H of the quadratic forms b + κ aε to
b+ κ a for every κ > 0.

In the present case, where bε does depend on ε, Γ-convergence of the extended
quadratic forms qκε = bε + κ aε with respect to the weak-∗ topology of M (D) is thus
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a natural extension of the latter condition; we will present in Section 6 a simple and
general argument showing how to derive the convergence of the evolution problems
by the Γ-convergence of qκε , thus justifying the scheme of Figure 2 on page 4.

Theorem 5.1 in the next section provides the crucial information, i.e. the Γ-
convergence of qκε to qκ.

5. Γ-convergence result for the quadratic forms qκε , aε, bε. The aim of
this section is to prove the following Γ-convergence result involving the quadratic
forms aε, bε, a, b defined in (4.8, 4.9) and (4.18, 4.19).

Theorem 5.1. The family of quadratic forms bε is equi-coercive, according to
(4.21), and for every κ > 0 we have

(5.1) qκε (ρ) := bε(ρ) + κ aε(ρ) Γ
(
M (D)

)
-converges to qκ(ρ) := b(ρ) + κ a(ρ)

as ε ↓ 0, i.e. properties (Γ-1′) and (Γ-2′) of Lemma 4.3 hold.
We split the proof of Theorem 5.1 into various steps, focusing directly on the

properties (Γ-1′) and (Γ-2′) which are in fact equivalent to (5.1).
While the Γ-convergence of bε is a direct consequence of the weak convergence

of γε to γ, the convergence of aε is more subtle, since the convergence of aε and the
structure of the limit depend critically on the choice of τε (defined in (2.5)): as we
will show in section 5.3, the scaling of τε in terms of ε is chosen exactly such that the
strength of the “connection” between ξ = −1 and ξ = 1 is of order O(1) as ε→ 0.

5.1. Equi-coercivity. Let us first prove that the quadratic forms bε satisfy the
equi-coercivity condition (4.21).

Lemma 5.2 (Equi-coercivity of bε). Every family of measures ρε ∈M (D), ε > 0,
satisfying

(5.2) lim sup
ε>0

bε(ρε) < +∞

is bounded in M (D) and admits a weakly-∗ converging subsequence.
Proof. The proof follows immediately by the fact that γε is a probability measure,

and therefore

|ρε|(D) ≤
(
bε(ρε)

)1/2

.

Inequality (5.2) thus implies that the total mass of ρε is uniformly bounded and
we can apply the relative weak-∗ compactness of bounded sets in dual Banach
spaces.

5.2. Estimates near Ω× {−1, 1}.
Lemma 5.3. If ρε = uεγε satisfies the uniform bound aε(ρε) ≤ C < +∞ for

every ε > 0, then for every δ ∈ (0, 1)

(5.3) ∂ξuε → 0 in L2(Ω× ωδ) as ε→ 0,

where ωδ := (−1,−δ) ∪ (δ, 1).
Proof. We observe that

τε

∫
D

(∂ξuε)
2 dγε ≤ aε(ρε) ≤ C <∞.
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If hδ = supξ∈ωδ H(ξ) < 1, then infξ∈ωδ e
−H(ξ)/ε = e−hδ/ε, and we find∫

Ω×ωδ
(∂ξuε)

2 dxdξ ≤ CZε
τε
e
hδ
ε = C

Zε
ε
e
hδ−1

ε .

Taking the limit as ε→ 0, we obtain (5.3).

Lemma 5.4 (convergence of traces). Let us suppose that ρε = uεγε
∗
⇀ ρ = uγ

with aε(ρε) ≤ C < +∞, and let u±ε (x) be the traces of uε at ξ = ±1. Then, as ε ↓ 0,

(5.4) u±ε → u± strongly in L2(Ω),

where u± are the functions given by (3.3).
Proof. Let us consider, e.g., the case of u−ε . Let us fix δ ∈ (0, 1); by (5.3) and

standard trace results in W 1,2(−1,−1 + δ) we know that

(5.5) lim
ε↓0

∫
Ω

ω2
ε(x) dLd = 0,

where

ω2
ε(x) := sup

−1≤ξ≤−1+δ
|uε(x, ξ)− u−ε (x)|2 ≤ δ

∫ −1+δ

−1

|∂ξuε(x, ξ)|2dξ.

Let us fix a function φ ∈ C0(Ω) and a function ψ ∈ C0[−1, 1] with 0 ≤ ψ ≤ 1,
ψ(−1) = 1, suppψ ⊂ [−1,−1 + δ]; we set

Jε :=

∫ 1

−1

ψ(ξ) dγ̃ε(ξ), ũε(x) := J−1
ε

∫ 1

−1

uε(x, ξ)ψ(ξ) dγ̃ε(ξ),

where γ̃ε is the measure defined in (2.2). Note that

lim
ε→0

Jε = 〈ψ, γ〉 =
1

2
ψ(−1) +

1

2
ψ(1) =

1

2
.

Since ρε weakly-∗ converge to ρ, we know that

lim
ε↓0

∫
Ω

φ(x)ũε(x) dλΩ = lim
ε↓0

J−1
ε

∫
Ω

φ(x)ψ(ξ)uε(x, ξ) dγε(x, ξ) =

∫
Ω

φ(x)u−(x) dλΩ

so that ũε converges to u− in the duality with bounded continuous functions. On the
other hand,∫

Ω

|∇xũε(x)|2 dλΩ ≤ J−1
ε

∫
Ω

∫ 1

−1

|∇xuε(x, ξ)|2ψ(ξ) dγ̃(ξ) dλΩ(x) ≤ J−1
ε aε(ρε) ≤ 2C

so that ũε → u− in L2(Ω) by the Rellich compactness theorem.
On the other hand, thanks to (5.5), we have

lim
ε↓0

∫
Ω

∣∣∣u−ε (x)− ũε(x)
∣∣∣2 dλΩ(x)

= lim
ε↓0

J−2
ε

∫
Ω

∣∣∣∣∫ 1

−1

ψ(ξ)
(
uε(x, ξ)− u−(x)

)
dγ̃ε(ξ)

∣∣∣∣2 dλΩ(x)

≤ lim
ε↓0

∫
D

ψ(ξ)ω2
ε(x) dγε(x, ξ) = 0,
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which yields (5.4).
Remark. A completely analogous argument shows that if ρε satisfies aW 1,1(D; γε)-

uniform bound

(5.6)

∫
D

‖∇x,ξuε‖ε dγε(x, ξ) ≤ C < +∞

instead of aε(ρε) ≤ C, then u±ε → u± in L1(Ω).

5.3. Asymptotics for the minimal transition cost. Given (ϕ−, ϕ+) ∈ R2,
let us set

(5.7) Kε(ϕ
−, ϕ+) := min

{
τε

∫ 1

−1

(
ϕ′(ξ)

)2
dγ̃ε : ϕ ∈W 1,2(−1, 1), ϕ(±1) = ϕ±

}
.

It is immediate to check that Kε is a quadratic form depending only on ϕ+−ϕ−; i.e.,

(5.8) Kε(ϕ
−, ϕ+) = kε(ϕ

+ − ϕ−)2, kε = Kε(−1/2, 1/2).

We call Tε(ϕ
−, ϕ+) the solution of the minimum problem (5.7): it admits the simple

representation

(5.9) Tε(ϕ
−, ϕ+) =

1

2
(ϕ− + ϕ+) + (ϕ+ − ϕ−)φε,

where φε = Tε(−1/2, 1/2). We also set
(5.10)

Qε(ϕ
−, ϕ+) :=

∫ 1

−1

(
Tε(ϕ

−, ϕ+)
)2

dγ̃ε =
1

2

(
(ϕ−)2 + (ϕ+)2

)
+ (qε − 1

4 )(ϕ+ − ϕ−)2,

where

(5.11) qε :=

∫ 1

−1

|φε(ξ)|2 dγ̃ε(ξ) = Qε(−1/2, 1/2).

Lemma 5.5. We have

(5.12) lim
ε↓0

kε =
k

2
=

√
−H ′′(0)H ′′(1)

2π
,

and

(5.13) lim
ε↓0

qε =
1

4
so that lim

ε↓0
Qε(ϕ

−, ϕ+) =
1

2
(ϕ−)2 +

1

2
(ϕ+)2.

Proof. φε solves the Euler equation

(5.14)
(
e−H(ξ)/εφ′ε(ξ)

)′
= 0 on (−1, 1), φε(±1) = ± 1

2 .

We can compute an explicit solution of (5.14) by integration:

φ′ε(ξ) = CeH(ξ)/ε, φε(ξ) = C ′ + C

∫ ξ

0

eH(η)/ε dη.
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Define Iε :=
∫ 1

−1
eH(ξ)/ε dξ. The boundary conditions for ξ = ±1 give

C ′ = 0, C

∫ 1

−1

eH(ξ)/ε dξ = CIε = 1.

It follows that

φε(ξ) = I−1
ε

∫ ξ

0

eH(η)/ε dη,

and

kε = τεI
−2
ε

∫ 1

−1

e2H(ξ)/ε dγ̃ε(ξ) = τεZ
−1I−1

ε .

We compute, using Laplace’s method,

Iε =

√
2πε

|H ′′(0)|
e1/ε(1 + o(1)) and Zε =

√
2πε

H ′′(1)
(1 + o(1)), as ε→ 0,

thus obtaining (5.12). Since

φ′ε = I−1
ε eH/ε → δ0 in D ′(−1, 1)

and H is even, we have

φε(ξ) = I−1
ε

∫ ξ

0

eH(η)/ε dη → 1

2
sign(ξ)

uniformly on each compact subset of [−1, 1] not containing 0. Since the range of φε
belongs to [−1/2, 1/2] and γ̃ε

∗
⇀ 1

2δ−1 + 1
2δ+1, we obtain (5.13).

5.4. End of the proof of Theorem 5.1. Let us first check the “Γ- lim inf”
property (Γ-1′) of Lemma 4.3. The second limit of (4.30) follows by general lower
semicontinuity results on integral functionals of measures; see, e.g., [2, Lemma 9.4.3].
Concerning the first “lim inf” inequality, we split the quadratic form aε into the sum
of two parts,

(5.15) a1
ε(ρε) :=

∫
D

|∇xuε(x, ξ)|2 dγε(x, ξ), a2
ε(ρε) := τε

∫
D

(∂ξuε)
2 dγε(x, ξ).

We choose a smooth cutoff function η− : [−1, 1] → [0, 1] such that η−(−1) = 1 and
supp(η−) ⊂ [−1,−1/2] and the symmetric one η+(ξ) := η(−ξ). We also set

(5.16) ũ−ε (x) :=

∫ 1

−1

η−(ξ)uε(x, ξ) dγ̃ε(ξ), ũ+
ε (x) :=

∫ 1

−1

η+(ξ)uε(x, ξ) dγ̃ε(ξ),

and it is easy to check that

(5.17) ũ±ε ⇀
1

2
u± in D ′(Ω).

We also set θε :=
∫ 1

−1
η+(ξ) dγ̃ε(ξ)

(
=
∫ 1

−1
η−(ξ) dγ̃ε(ξ)

)
, observing that θε → 1/2.

We then have by the Jensen inequality and the assumption on the support of η±

a1
ε(ρε) ≥

∫
Ω

∫ 1

−1

(η−(ξ) + η+(ξ))|∇xuε|2 dγ̃ε(ξ) dλΩ ≥ θ−1
ε

∫
Ω

|∇ũ−ε |2 + |∇ũ+
ε |2 dλΩ,
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and, passing to the limit,

lim inf
ε↓0

a1
ε(ρε) ≥

1

2

∫
Ω

|∇u−|2 + |∇u+|2 dλΩ.

Let us now consider the behavior of a2
ε: applying (5.7) and (5.8) we get

a2
ε(ρε) =

∫
Ω

(
τε

∫ 1

−1

(∂ξuε(x, ξ))
2 dγ̃ε(ξ)

)
dλΩ ≥

∫
Ω

kε(ũ
−
ε (x)− ũ+

ε (x))2 dλΩ,

so that by (5.12) and (5.4) we obtain

(5.18) lim inf
ε↓0

a2
ε(ρε) ≥

k

2

∫
Ω

(
u−(x)− u+(x)

)2
dλΩ.

We want to prove now the “Γ- lim sup” property (4.31) of Lemma 4.3. We fix
σ = uγ with u in the domain of the quadratic forms a and b so that u± = u(·,±1)
belong to W 1,2(Ω), and we set σε = uεγε, where uε(x, ·) = Tε(u

−(x), u+(x)) as in
(5.9). We easily have by (5.13) and the Lebesgue dominated convergence theorem

lim
ε↓0

bε(σε) = lim
ε↓0

∫
Ω

Qε(u
−(x), u+(x)) dλΩ =

∫
Ω

(1

2
|u−(x)|2 +

1

2
|u+(x)|2

)
dλΩ = b(σ).

Similarly, since for every j = 1, . . . , d and almost every x ∈ Ω

∂xjuε(x, ξ) = T(∂xju
−(x), ∂xju

+),

we have

lim
ε↓0

aε(σε) = lim
ε↓0

∫
Ω

( d∑
j=1

Qε
(
∂xju

−(x), ∂xju
+(x)

)
+Kε

(
u−(x), u+(x)

))
dλΩ

=

∫
Ω

(
1

2
|∇u−(x)|2 +

1

2
|∇u+(x)|2 +

k

2

(
u−(x)− u+(x)

))
dλΩ = a(σ).

6. From Γ-convergence to convergence of the evolution problems: Proof
of Theorems 1.1 and 1.2. Having at our disposal the Γ-convergence result of The-
orem 5.1 and Lemma 4.2, it is not difficult to pass to the limit in the integrated
equation (4.10).

The proof of Theorems 3.1 and 3.2 is a consequence of the following general result.
Theorem 6.1 (Convergence of evolution problems). Let us consider weakly-∗

lower-semicontinuous, nonnegative, and extended-valued quadratic forms aε, bε, a, b
defined on M (D), and let us suppose the following.

(1) Nondegeneracy of the limit forms. b is nondegenerate (i.e., b(ρ) = 0 ⇒
ρ = 0) and Dom(a) is dense in Dom(b) with respect to the norm-convergence
induced by b.

(2) Equi-coercivity. bε are equi-coercive, i.e. they satisfy the coercivity property
stated in Lemma 5.2.

(3) Joint Γ-convergence. qκε := bε + κ aε satisfy the joint Γ-convergence property
(5.1):

(6.1) Γ
(
M (D)

)
- lim
ε↓0

qκε = qκ = b + κ a for every κ > 0.
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Let ρε(t), t ≥ 0, be the solution of the evolution problem (4.10) starting from
ρ0
ε ∈ Dom(bε).

If

(6.2) ρ0
ε
∗
⇀ ρ0 weakly-∗ in M (D) as ε ↓ 0 with lim sup

ε↓0
bε(ρ

0
ε) < +∞,

then ρε(t)
∗
⇀ ρ(t) weakly-∗ in M (D) as ε ↓ 0 for every t > 0, and ρ(t) is the solution

of the limit evolution problem (4.20).
If, moreover, limε↓0 bε(ρ

0
ε) = b(ρ0), then

(6.3) lim
ε↓0

bε(ρε(t)) = b(ρ(t)), lim
ε↓0

aε(ρε(t)) = a(ρ(t)) for every t > 0.

Proof. Let us first note that by (4.11) and the coercivity property of bε the
mass of ρε(t) is bounded uniformly in t. Moreover, (4.13) and the coercivity property
show that ∂tρε is a finite measure whose total mass is uniformly bounded in each
bounded interval [t0, t1] ⊂ (0,+∞). By the Arzelà–Ascoli theorem we can extract a

subsequence ρεn such that ρεn(t)
∗
⇀ ρ(t) for every t ≥ 0. The estimates (4.13) and

the “Γ- lim inf” property (4.30) show that for every t > 0, ρ(t) belongs to the domain
of the quadratic forms a and b and satisfies a similar estimate

(6.4)
1

2
b(ρ(t)) + t a(ρ(t)) + t2b(∂tρ(t)) ≤ 1

2
lim inf
ε↓0

b(ρ0
ε) < +∞.

Let σ ∈ M (D) be an arbitrary element of the domains of a and b; by (5.1) we
can find a family σε weakly-∗ converging to σ such that (4.31) holds. By (4.10) we
have

(6.5) bε(ρε(t), σε) +

∫ t

0

aε(ρε(r), σε) dr = bε(ρ
0
ε, σε),

and (4.13) with the Schwarz inequality yields the uniform bound∣∣aε(ρε(t), σε)∣∣ ≤ t−1/2bε(ρ
0
ε)

1/2aε(σε)
1/2 ≤ Ct−1/2,

where C is independent of ε; we can therefore pass to the limit in (6.5) (actually along
the subsequence εn) by Lemma 4.2 to find

b(ρ(t), σ) +

∫ t

0

aε(ρ(r), σ) dr = b(ρ0
0, σ),

so that ρ is a solution of the limit equation. Since the limit is uniquely identified by
the nondegeneracy and density condition (1), we conclude that the whole family ρε
converges to ρ as ε ↓ 0. In particular, ρ satisfies the identity

(6.6)
1

2
b(ρ(t)) +

∫ t

0

a(ρ(r)) dr =
1

2
b(ρ0) for every t ≥ 0.

This concludes the proof of (6.2) (and of Theorem 3.1).
In order to prove (6.3) (and Theorem 3.2), we note that by (4.11) and (6.6) we

easily get

lim sup
ε↓0

1

2
bε(ρε(t)) +

∫ t

0

aε(ρε(r)) dr ≤ 1

2
b(ρ(t)) +

∫ t

0

a(ρ(r)) dr.
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The lower-semicontinuity property (4.30) and Fatou’s lemma yield

(6.7) lim
ε↓0

bε(ρε(t)) = b(ρ(t)), lim
ε↓0

∫ t

0

aε(ρε(r)) dr =

∫ t

0

a(ρ(r)) dr

for every t ≥ 0. Applying the same argument to (4.12) and its “ε = 0” analogue, we
conclude that aε(ρε(t))→ a(ρ(t)) for every t > 0.

Remark (More general ambient spaces). The particular structure of M (D) did
not play any role in the previous argument so that the validity of the above result
can be easily extended to general topological vector spaces (e.g., dual of separable
Banach spaces with their weak-∗ topology) once the equi-coercivity condition of bε
(as in Lemma 5.2) is satisfied.
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[23] M. A. Peletier, G. Savaré, and M. Veneroni, From diffusion to reaction via Γ-convergence,
SIAM J. Math. Anal., 42 (2010), pp. 1805–1825.
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