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Abstract

We introduce and discuss Grad’s moment equations for dilute granular systems of
hard spheres with dissipative collisions and variable coefficient of restitution, under
the assumption of weak inelasticity. An important byproduct is that in this way
we obtain the hydrodynamic description of a system of nearly elastic particles by a
direct procedure from the Boltzmann equation, without resorting to any homoge-
neous cooling state assumption. Several crucial results of the pertinent literature are
recovered in the present physical context in which deviation from elastic scattering
is of the same order as the Knudsen number. In particular, the statistical corre-
lation function plays a fundamental role in the decay of the temperature, and the
latter is described asymptotically, in space homogeneous conditions, by a corrected
Haff’s law.
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1 Introduction

The aim of this paper is to discuss some questions connected with the modeling of hy-
drodynamic equations for granular flows. In the physical literature, rapid granular flows
are frequently described at the macroscopic level by the equations for fluid dynamics,
modified to account for dissipation due to collisions among particles. These equations
are in general derived by studying the behavior of a granular material from a continuum
point of view, treating individual grains as the molecules of a granular fluid,1 and are not
derived from a mesoscopic picture (the Boltzmann or Enskog kinetic equations). Thus
the equations are in general phenomenological, with unknown transport coefficients and
with unknown limit of validity. A deeper understanding of macroscopic equations has its
origin in kinetic theory, which is suitable to describe the evolution of materials composed
of many small discrete grains, in which the mean free path of the grains is much larger
than the typical particle size. Similar as molecular gases, granular gases can be described
at a mesoscopic level within the concepts of classical statistical mechanics, by means of
methods borrowed from the kinetic theory of rarefied gases.2 Many recent papers (see
Refs. 3–6 and the references therein), consider in fact Boltzmann-like equations for par-
tially inelastic rigid spheres. This choice relies in the physical hypothesis that the grains
must be cohesionless, which implies the hard-sphere interaction only, and no long-range
forces of any kind. Derivation of the hydrodynamic equations based on the Boltzmann
or Enskog equations, modified to account for inelastic two–particle collisions have been
considered in recent times.7−11 All studies enlighten the dependence of the cooling prob-
lem on the coefficient of restitution in the microscopic collision, and emphasize the effects
of a non–constant restitution coefficient.4,12 Special attention has been devoted in this
respect to a system of viscoelastic spheres, a quite realistic model whose coefficient of
restitution has been recently derived.13 A common assumption which has been at the
basis of several recent papers on the matter is that there are only small spatial variations,
so that the zero order approximation of the solution (and of any asymptotic expansion)
is constituted by the so–called homogeneous cooling state (see for instance Ref. 9 and the
references therein). A detailed theory of the homogeneous cooling state for viscoelastic
particles in terms of expansion in Sonine polynomials has been recently developped.14−15

Such spatially homogeneous solution turns out to depend not only on the similarity vari-
able, as it would occur for constant restitution coefficient, but also on time explicitly. In
addition, temperature has been shown to decay asymptotically according to a corrected
Haff’s law (see also Ref. 16). Asymptotic expansions around the homogeneous cooling
state have been used then as hydrodynamic closure for the macroscopic equations in order
to achieve a Navier–Stokes level via a Chapman–Enskog procedure also for non–constant
restitution coefficient.17 In particular, the complete set of hydrodynamic equations and
transport coefficients have been derived in this frame for a granular gas of viscoelastic
particles.18−19 In this paper, we shall follow a slightly different point of view, namely we
shall assume a collision dominated regime in the sense of kinetic theory (small dimension-
less mean free path, the so called Knudsen number2) in the small inelasticity limit, which
means that deviations of the coefficient of restitution from unity are taken to be of the
same order of magnitude as the Knudsen number. This corresponds to closing the macro-
scopic equations by means of the usual Maxwellian equilibrium of the elastic Boltzmann
equation, leading order solution at the kinetic level. This regime prevents the derivation
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to be sensible to the strength of spatial gradients; of course there is a price to be paid,
which is moved to the limitation of having a small amount of inelasticity, an assumption
however that is correct in many applications. This physical situation has been object of
some attention in a recent past.20−21 We shall consider a general power law for the de-
pendence of the restitution coefficient on the impact velocity, which includes viscoelastic
spheres as a special case. In this frame hydrodynamic closure has been discussed already
in Refs. 8, 10, but only at the level of Euler equations.

In this paper we deal with a weakly inelastic granular gas subject to dissipative colli-
sions with a coefficient of restitution which depends on the relative velocity, enlightening
the importance of such dependence at the level of hydrodynamics. The kinetic descrip-
tion will be provided by the Boltzmann equation for dissipative spheres, suitably corrected
to take into account statistical correlation among particles. To overcome the enormous
amount of computations for the full three-dimensional problem, we treat only situations
which are one dimensional in space. We aim at proceeding further beyond the Euler
level, in which closure is achieved by simply using the zero order solution (the equilibrium
Maxwellian) for the distribution function. In particular, we shall try to widen the region
of validity to a suitable neighborhood of equilibrium by resorting to a Grad 13–moment
expansion and we shall derive the relevant Grad equations. It is well known that Grad’s
method works fairly well and provides equations of hyperbolic type in a well defined re-
gion surrounding equilibrium.22 They correspond to a moment truncation strategy which
does not obey a maximum entropy principle with respect to the classical Boltzmann
H–functional.23 However, they recover the behavior of the simplest non–trivial moment
system of such a kind when velocity distributions lie near local Maxwellians.24 Indeed,
the Boltzmann equation for inelastic gas could have many Lyapunov functionals indepen-
dent from Boltzann’s H–functional. Whether Grad’s equations could fulfil a maximum
principle with respect to one of them is an interesting open question, that however will
not be addressed in this work. Here we only show that a suitable Lyapunov functional,
which generalizes the usual Boltzmann relative entropy to the case of varying tempera-
ture, can be fruitfully used to prove, at least formally, that for small Knudsen numbers
the solution to the inelastic Boltzmann equation, in the case of small inelasticity, is close
to a local Maxwellian. The idea of applying Grad’s method to inelastic gases goes back
to Jenkins and Richman.11 In this pioneering paper they outline the main ideas of Grad’s
derivation of hydrodynamics from a kinetic equation, using the Maxwellian distribution
to close the hierarchy of transport equations. An important feature of Grad’s equations
is that they still contain collision terms, and are affected by the same small parameters
as the kinetic equations. They lend themselves then to a classical asymptotic procedure
of the Chapman–Enskog type, and provide as important byproduct hydrodynamic equa-
tions at the Navier–Stokes level. We refer to the recent paper 25 for a detailed treatment
of the classical Chapman–Enskog derivation of hydrodynamics given in the framework
of Grad’s moment equations. Recent application of this method to a gas undergoing
chemical reactions has been given in Ref. 26.

We remark that a similar analysis could be performed starting from the (more realistic)
kinetic model given by the Enskog equation, which allows to take into account effects due
to the radius of grains into Grad’s equations. The additional computations, however, are
enormously heavy. This matter is being considered for a future publication.

The paper is organized as follows. Section 2 contains the details on the collision

3



dynamics in two–particle interactions, while we will describe the inelastic Boltzmann
equation in Section 3. Section 4 is devoted to a semi–formal discussion on the validity
of the H–theorem. Section 5 deals with the uneasy task of deriving Grad’s equations
for our kinetic model. They are given explicitly in Section 6, where also an asymptotic
discussion on the relevant small parameters is performed and asymptotically consistent
first–order equations are obtained. Finally, Section 7 is devoted to the hydrodynamic
description at the Navier–Stokes level as asymptotic limit of the above equations, and
to the relevant constitutive relations and temperature decay law. In order to reach an
ideal line of reading, the details of the computations are postponed to several Appendices.
Some of them report results and manipulations which may be found also elsewhere in the
literature,12,15 but we prefer to keep them listed here in order to make this work more
self–consistent.

2 Two–particle dissipative interaction

In a granular gas, the microscopic dynamics of grains is governed by the restitution
coefficient e which relates the normal components of the particle velocities before and
after a collision. If the grains are identical perfect spheres of diameter σ > 0, (x,v) and
(x− σn̂,w) are their states before a collision, where n̂ ∈ S2 is the unit vector along the
center of both spheres, the post collision velocities (v∗,w∗) are such that

(v∗ −w∗) · n̂ = −e (v −w) · n̂ . (1)

The conservation of momentum, together with (1), implies a change of velocity for the
colliding particles as

v∗ = v − 1

2
(1 + e)

(
(v −w) · n̂

)
n̂ , w∗ = w +

1

2
(1 + e)

(
(v −w) · n̂

)
n̂. (2)

For elastic collisions one has e = 1, while for inelastic collisions e decreases with increasing
degree of inelasticity. In the literature, it is frequently assumed that the restitution
coefficient is a physical constant. In real situations, however, the restitution coefficient
may depend on the relative velocity in such a way that collisions with small relative
velocity are close to be elastic.21 A good description of dissipative collisions is based
on the assumption that the spheres are composed by viscoelastic material, which is in
good agreement with experimental data. The velocity–dependent restitution coefficient
for viscoelastic spheres of diameter σ > 0 and mass m reads

e = 1− C1Ax2/5|(v −w) · n̂|1/5 + C2A
2x4/5|(v −w) · n̂|2/5 . . . (3)

with

x =
3
√

3

2

√
σY

m(1− ν2)
, (4)

where Y is the Young modulus, ν is the Poisson ratio, and A depends on dissipative
parameters of the material. The constant C1 and C2 can be explicitly computed. It has
to be remarked that formula (3) refers to the case of pure viscoelastic interactions, i.e.
it holds when the relative velocity (v − w) · n̂ belongs to a certain interval (a, b) ∈ R+
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with a bounded away from zero (to neglect surface effects) and b not too large (to avoid
plastic deformations). The impact velocity dependence (3) of the restitution coefficient
e = e((v − w) · n̂) has been recently obtained by generalizing Hertz’s contact problem
to viscoelastic spheres. We skip here details that can be found in the literature (see
Refs. 4, 27 and the references therein). In what follows, we will assume that the coefficient
of restitution satisfies

1− e = 2β γ (|(v −w) · n̂|) , (5)

where γ(·) is a given function and β is a parameter which is small in presence of small
inelasticity. Viscoelastic spheres can be expressed at the leading order as in (5), choosing
γ(r) = r1/5. In the manipulations developed below, we shall assume γ(r) = rδ, where δ is
a positive parameter.

3 Boltzmann equation for dissipative spheres

Following the standard procedures of kinetic theory,2 the evolution of the distribution
function can be described by the Boltzmann–Enskog equation for inelastic hard–spheres,
which for the force–free case reads8,28

∂f

∂t
+ v · ∇xf = G(ρ) Q̄(f, f)(x,v, t), (6)

where Q̄ is the so–called granular collision operator, which describes the change in the
density function due to creation and annihilation of particles in binary collisions:

Q̄(f, f)(v) = σ2

∫

R3

∫

S+

g · n̂
{

χ f(v∗∗)f(w∗∗)− f(v)f(w)
}

dw dn̂. (7)

In (6)

ρ(x, t) =

∫

R3

f(x,v, t) dv

is the density, and the function G(ρ) is the statistical correlation function between par-
ticles, which accounts for the increasing collision frequency due to the excluded volume
effects. We refer to Ref. 29 for a detailed discussion of the meaning of the function G.
In (7), g = v −w, and S+ is the hemisphere corresponding to g · n̂ > 0. The velocities
(v∗∗,w∗∗) are the pre collisional velocities of the so–called inverse collision, which results
with (v,w) as post collisional velocities. They are given by

v∗∗ = v − 1− β γ(|g · n̂|)
1− 2 β γ(|g · n̂|) (g · n̂) n̂ ,

w∗∗ = w +
1− β γ(|g · n̂|)

1− 2 β γ(|g · n̂|) (g · n̂) n̂ .

(8)

The factor χ in the gain term appears respectively from the Jacobian of the transformation
dv∗∗dw∗∗ into dv dw and from the lengths of the collisional cylinders e|g∗∗ · n̂| = |g · n̂|.
For a constant restitution coefficient, χ = e−2. To avoid the presence of the function χ,
and to study approximations to the granular operator (7), it is extremely convenient to
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write the operator (7) in weak form. More precisely, let us define with < · , · > the inner
product in L1(R3). For all smooth functions ϕ(v), it holds

< ϕ , Q̄(f, f) > = σ2

∫

R3

ϕ(v)Q̄(f, f)(v) dv =

= σ2

∫

R3

∫

R3

∫

S+

g · n̂
(
ϕ(v∗)− ϕ(v)

)
f(v)f(w)dv dw dn̂ = (9)

=
σ2

2

∫

R3

∫

R3

∫

S2

|g · n̂|
(
ϕ(v∗)− ϕ(v)

)
f(v)f(w)dv dw dn̂.

The last equality follows since the integral over the hemisphere S+ can be extended to
the entire sphere S2, provided the factor 1/2 is inserted in front of the integral itself. In
fact changing n̂ into −n̂ does not change the integrand.

For the sake of simplicity we shall consider here only one space dimension (say, z),
with axial symmetry about the z-axis. The kinetic equation may be adimensionalized in
the usual way, by measuring distances and times in units of typical macroscopic values
L and τ , velocities in units of L/τ , and densities in terms of a reference value ρ0. Easy
manipulations single out spontaneously the mean free path λ = (πσ2ρ0)

−1 and the Knud-
sen number Kn = λ/L. A typical value G0 of the correlation function could enter the
definition of λ, in which case the correlation function should be measured in units of G0.
In any case, the weak dimensionless form of the inelastic kinetic equation reads as

<ϕ,
∂f

∂t
>+<vz ϕ,

∂f

∂z
>=

G(ρ)

Kn

1

2π

∫

R3

∫

R3

∫

S2

|g · n̂|f(v)f(w)
[
ϕ(v∗)− ϕ(v)

]
dvdwdn̂ (10)

where the Knudsen number Kn has to be considered as a small parameter in the hydro-
dynamic limit we are interested in. Macroscopic parameters like drift velocity u, pressure
tensor P, granular temperature T , heat flux q are defined in the standard way as

u =
1

ρ

∫

R3

v f(v) dv

P =

∫

R3

c⊗ c f(v) dv

3 ρ T =

∫

R3

c2 f(v) dv

q =
1

2

∫

R3

c2 c f(v) dv

(11)

where c = v−u denotes the peculiar velocity. In our assumptions, fluid velocity and heat
flux vectors take the simple forms

u = (0, 0, u), q = (0, 0, q) (12)

and the deviatoric part of the pressure tensor (or viscous stress) p is diagonal, so that it
is also equivalent to a single scalar

p =



−1

2
p 0 0

0 −1
2
p 0

0 0 p


 (13)
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with p ≡ pzz. The whole pressure tensor is then given by P = ρ T I + p, where I is the
identity and ρT the scalar pressure. Notice that all diagonal entries of P must be positive,
so that p is subject to the constraint

− ρ T < p < 2 ρ T. (14)

It proves convenient splitting the dimensionless Boltzmann collision operator Q in the
right hand side of (10) as Q = Qel + I, where Qel is the elastic collision integral, corre-
sponding to the case β = 0, and I the correction due to inelasticity. The weak inelastic
Boltzmann equation may be rewritten as

< ϕ,
∂f

∂t
> + < vz ϕ,

∂f

∂z
> =

G(ρ)

Kn

[
< ϕ,Qel > + < ϕ, I >

]
(15)

where

< ϕ,Qel > =
1

2π

∫

R3

∫

R3

∫

S2

|g · n̂|f(v)f(w)
[
ϕ(v′)− ϕ(v)

]
dv dw dn̂, (16)

with
v′ = v − (g · n̂) n̂ (17)

standing for the post collisional velocity in the elastic encounter. Consequently we have

< ϕ, I > =
1

2π

∫

R3

∫

R3

∫

S2

|g · n̂|f(v)f(w)
[
ϕ(v∗)− ϕ(v′)

]
dv dw dn̂ (18)

with
v∗ = v′ + β γ(|g · n̂|) (g · n̂) n̂ . (19)

The advantage of such a splitting is that v∗ differs from v′ by a term of order β, and
therefore, for any smooth function ϕ, the integral in (18) is small for small inelasticity,
and the dominant role in the evolution is played by elastic scattering. The interplay of the
two small parameters Kn and β is then crucial for the analysis of the following sections.

4 Low inelasticity and the H-theorem. A semi–formal

discussion

As in classical elastic kinetic theory, Grad’s expansion method needs to be justified. If
the Boltzmann equation for elastic collisions is considered, the well–known Boltzmann H-
theorem guarantees that, at any fixed positive time, the solution is close to the Maxwellian
equilibrium provided the Knudsen number is small enough. In recent years, many efforts
have been done to obtain explicit computable formulas which allow to quantify the space
homogeneous time decay of the solution towards the Maxwellian in terms of the time
decay of the relative entropy

H(f |M) =

∫

R3

f(v) log
f(v)

M(v)
dv, (20)
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where

M(v) =
ρ

(2πT )
3
2

exp

{
−|v − u|2

2T

}
(21)

is the Maxwellian function with the same constant mass ρ, drift velocity u and tempera-
ture T of f . In particular, lower bounds on the entropy production

−D(f) =

∫

R3

log f(v)Qel(v)dv

in terms of the relative entropy have been obtained in Ref. 31.
The main problem here is the lack of a H-theorem for the dissipative Boltzmann equa-

tion. Given the solution f(v, t) to the homogeneous dissipative Boltzmann equation (6),

∂f

∂t
=

1

Kn
Q̄(f, f)(v, t) (22)

(since ρ = constant, the factor G may be included into Kn), let us consider the functional

H(f)(t) =

∫

R3

( |v − u|2
2T (t)

f(v, t) + f(v, t) log f(v, t)

)
dv, (23)

where T (t) is the granular temperature. By standard arguments32 one shows that, on the
set of functions with the same constant mass ρ and drift velocity u of f(v, t),

H(f) ≥ H(M),

where M(v) is the Maxwellian function given in (21), with T = T (t), and where equal
sign holds only for f = M . Hence, when the temperature is varying with time, the relative
entropy to be considered is

H(f |M)(t) = H(f)(t)−H(M)(t) =

∫

R3

f(v, t) log f(v, t) dv − ρ log ρ +
3

2
ρ log

[
2πe T (t)

]

(24)
with H(f |M) ≥ 0. Since f(t) solves the homogeneous Boltzmann equation (22),

d

dt
H(f |M) =

d

dt

∫

R3

f(v, t) log f(v, t) dv +
3

2
ρ

T ′(t)
T (t)

=

=
1

Kn

∫

R3

log f(v, t) Q̄(f, f)(v, t) dv +
3

2
ρ

T ′(t)
T (t)

=
1

Kn

∫

R3

log f(v, t) Qel(v, t) dv

+
3

2
ρ

T ′(t)
T (t)

+
1

2πKn

∫

R3

∫

R3

∫

S2

|g · n̂|f(v, t)f(w, t)
[
log f(v∗, t)− log f(v′, t)

]
dv dw dn̂.

(25)
We remark that the final formula (25) has been derived from (18), setting ϕ(v) = log f(v).

The physical picture is then rather clear. H(f |M) attains its minimum at the Maxwellian
M with time dependent temperature T and its derivative along a solution is made up by
three contributions, where the dominant role for Kn → 0 is played by the first, which
is negative definite and O(Kn). In fact, the second is O(1), and even drives the process
in the same direction since T ′(t) < 0, and also the third one is O(1) in our hypothesis
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β = O(Kn). Therefore, collisions are pushing any initial distribution towards a local
Maxwellian, at the same initial density and momentum, evolving in time according to the
granular temperature. Notice that small inelasticity is crucial for the whole reasoning. A
rough quantitative estimate under suitable smoothness assumptions may be obtained in
several ways. For instance, if the solution f(v, t) is smooth and we assume that

∣∣∣∣
∇f(v)

f(v)

∣∣∣∣ < Cf < +∞ (26)

for all v ∈ R3, we get

∣∣∣ log f(v∗)− log f(v′)
∣∣∣ ≤ |v∗ − v′|

∥∥∥∥
∇f(v)

f(v)

∥∥∥∥
L∞

= β γ(|g · n̂|) |g · n̂|
∥∥∥∥
∇f(v)

f(v)

∥∥∥∥
L∞

. (27)

Hence
1

2π

∣∣∣∣
∫

R3

∫

R3

∫

S2

|g · n̂|f(v)f(w)
[
log f(v∗)− log f(v′)

]
dv dw dn̂

∣∣∣∣ ≤

≤ β

2π

∥∥∥∥
∇f(v)

f(v)

∥∥∥∥
L∞

∫

R3

∫

R3

∫

S2

|g · n̂|2+δf(v)f(w) dv dw dn̂ (28)

where also the last integral is finite if f has sufficiently many moments. Assumption (26)
could appear strong at first sight, since it is not satisfied when f(v) is a Maxwellian or a
perturbation of a Maxwellian. But in such a case the whole proof is useless since H(f) '
H(M) and we are already in the regime we want (see next section). The interesting case
is when the tails are of power type, and in that case ∇f/f is actually bounded for large
values of |v|, so that assumption (26) is valid.

It has been proven in Ref. 31 that, under suitable smoothness assumptions on f , it
holds

D(f) = −
∫

R3

log f(v, t) Qel(v, t) dv ≥ Cε(f)[H(f |M)]1+ε,

where the constant Cε(f) depends on f only through mass, drift velocity and temperature.
Let f(v) be a distribution with unit temperature. It is immediate to reckon that, if fσ(v),
σ > 0, denotes the rescaled distribution σ−3f(v/σ),

H(f |M) = H(fσ|Mσ),

while
D(fσ) = σD(f).

Thus, if Cε is the constant corresponding to distributions with unit temperature, given
the solution to the Boltzmann equation at time t > 0, that has temperature T (t), we have
the lower bound

D(f)(t) ≥
√

T (t) Cε [H(f |M)(t)]1+ε

On the other hand, if we denote by C the upper bound of

1

2π

∥∥∥∥
∇f(v)

f(v)

∥∥∥∥
L∞

∫

R3

∫

R3

∫

S2

|g · n̂|2+δf(v)f(w) dv dw dn̂
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corresponding to unit temperature, the same rescaling as before shows that C [T (t)]1+ δ
2

is the proper upper bound for an arbitrary time dependent temperature. Hence, at least
for smooth solutions, the relative entropy satisfies the differential inequality

d

dt
H(f |M) ≤ −

√
T (t)

Kn
Cε [H(f |M)]1+ε +

3

2
ρ

T ′(t)
T (t)

+
β

Kn
C T (t)1+ δ

2 , (29)

where the second term on the right–hand side is nonpositive, due to the decay of the
temperature. If β is of the same order of the Knudsen number Kn, the negative term of
order 1/Kn prevails as Kn → 0, and this implies H(f |M) → 0. This can be easily seen
considering that, in consequence of (29), the relative entropy z(t) = H(f |M)(t) satisfies
the differential inequality

dz

dt
≤

√
T (t)

[
−Cε

Kn
z1+ε + A

]
, (30)

where we set

A =
β

Kn
C [T (0)]

1+δ
2 .

Suppose first that the initial relative entropy is such that

Cε

Kn
z0

1+ε ≤ A.

Then, since z(t) satisfies (30), at any subsequent time t > 0 we have

z(t) ≤ z̄ =

(
A

Cε

Kn

)1/1+ε

, (31)

and z(t) → 0 as Kn → 0. On the other hand, if the initial relative entropy satisfies

Cε

Kn
z0

1+ε > A,

thanks to (30), z(t) is decreasing towards the value z̄ in (31), and, as long as z(t) ≥ z̄, it
satisfies the (worse) inequality

dz

dt
≤

√
T (t)

[
−Cε

Kn
z̄εz + A

]
=

√
T (t)(−Bz + A)

where

B = Aε/(1+ε)

(
Cε

Kn

)1/(1+ε)

.

Let

τ(t) =

∫ t

0

√
T (s) ds

and y(τ) = z(t). Then

dy

dτ
≤ −By(τ) + A, (32)
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which can be explicitly solved to give

z(t) = y(τ) ≤ y0 exp {−Bτ}+
A

B
[1− exp {−Bτ}] . (33)

Since t > 0 implies τ > 0, inequality (33) shows that z(t) → 0 as Kn → 0. This shows
that, at any time t strictly greater that zero, the solution to the homogeneous Boltzmann
equation, even for a granular gas, is close to a Maxwellian function, in the sense of relative
entropy, if the Knudsen number is small enough, provided inelasticity is also small. The
classical Csiszar–Kullback inequality

‖f −M‖2
L1 ≤ 2H(f |M),

then shows that the solution in close to the corresponding local Maxwellian in a L1–
setting, which properly justifies expanding around such distribution in a collision domi-
nated regime.

5 Grad’s closure procedure

Grad’s expansion method is a well known tool devised in kinetic theory in order to obtain
a closed set of balance equations at a macroscopic level.30 Even in the elastic case the
machinery is quite heavy, and, to our knowledge, explicit results in analytical form have
been achieved only in the simplified case of Maxwellian molecules. The algorithm has
been more recently applied also to granular flows11 and to chemical kinetics.33 It consists
in a truncated Hermite polynomial expansion which includes the major power moments of
the distribution function up to third order. In the present one–dimensional problem the
moments of physical interest reduce to five, namely density ρ, mass velocity u, granular
temperature T , viscous stress p, and heat flux q. They are moments of f corresponding
to the weight functions

ϕ = 1, vz,
1

2
c2, c2

z −
1

3
c2,

1

2
c2cz, (34)

respectively. The relevant balance equations are the weak forms of the Boltzmann equa-
tion (15) corresponding to the five options (34) for the test function ϕ. Fundamental
properties of the elastic and inelastic collision terms ensure that

< 1, Qel > = < 1, I > = 0 , < vz, Qel > = < vz, I > = 0 , <
1

2
c2, Qel > = 0 (35)

for any distribution function f . The other contributions can not be evaluated directly in
terms of the considered moments, as it would occur for the pseudo–Maxwellian model8

with constant restitution coefficient, due to the g–dependence of the kernel in the integrands.34

A first step in the procedure is the evaluation of the differences ϕ(v′) − ϕ(v) and
ϕ(v∗) − ϕ(v′) for the test functions (34). The differences in the inelastic correction are
polynomials in β of degree at most equal to three, vanishing for β → 0. All differences
exhibit simple dependence on the unit vector n̂, so that all angular integrations may
be performed separately and explicitly for both elastic and inelastic interactions. Five

11



types of integrals arise, and they are listed in Appendix A, together with their analytical
expressions, involving the quantities

Jnk(g) = (2k + 2)

∫ 1

0

µ2k+1 γn(gµ) dµ , n, k = 1, 2 . (36)

From now on we shall stick to the form γ(r) = rδ, which incorporates the terms relevant
to elastic scattering or constant inelastic restitution (for δ = 0), and of viscoelastic spheres
(δ = 1

5
). Thus we will have simply:

Jnk(g) =
2k + 2

2k + 2 + nδ
gnδ . (37)

Next, a lengthy and careful algebra shows that the remaining weak forms of the col-
lision terms Qel and I are amenable to only 4 integrals with respect to the variables v
and w, namely

A1(y) =

∫

R3

∫

R3

g3+y f̃(v)f̃(w) dv dw

A2(y) =

∫

R3

∫

R3

g1+y g2
z f̃(v)f̃(w) dv dw

A3(y) =

∫

R3

∫

R3

g3+y Gz f̃(v)f̃(w) dv dw

A4(y) =

∫

R3

∫

R3

g1+y
(
G · g

)
gz f̃(v)f̃(w) dv dw

(38)

where f̃(v) = f(v + u), and G = 1
2
(v + w) is the center of mass velocity. The relevant

expressions are given in Appendix B.
At this point, the sought approximate closure for the collision term is achieved by

replacing the actual distribution function f in (38) with the Grad distribution function,
which, in the spatially one–dimensional case, reads as

fG(v) =
ρ

(2πT )
3
2

e−
c2

2T

[
1 +

p

2ρT 2

(
− 1

2
c2 +

3

2
c2
z

)
+

4

5

q

2ρT 2
cz

(
c2

2T
− 5

2

)]
, (39)

and constitutes the weighted polynomial approximation to f sharing the same moments
up to q. Consistently with our hypothesis of small Kn and small β, (39) represents a
perturbation to a Maxwellian distribution, solution to the elastic problem in the hydro-
dynamic limit.

Now manipulations become quite cumbersome, though, in principle, straightforward.
One has to perform the product f̃G(v) f̃G(w), recast v and w variables in terms of G and g,
use the latter as integration variables, taking advantage of the fact that dv dw = dG dg,
and solve the final Gaussian–type integrals in terms of Eulerian gamma functions. The
long and tedious calculations result in

A1(y) = α1 ρ2 T
y+3
2 + α2 ρ p T

y+1
2 + α3 p2 T

y−1
2 + α4 q2 T

y−3
2

A2(y) = β1 ρ2 T
y+3
2 + β2 ρ p T

y+1
2 + β3 p2 T

y−1
2 + β4 q2 T

y−3
2

A3(y) = γ1 ρ q T
y+1
2 + γ2 p q T

y−1
2

A4(y) = δ1 ρ q T
y+1
2 + δ2 p q T

y−1
2

(40)

12



where the y–dependent coefficients αi, βi, γi, δi are reported in Appendix C. Equa-
tions (40) show how collision contributions to the moment equations depend on the un-
known moments ρ, T , p, q via numerical factors. Since also streaming contributions may
be closed by standard methods of kinetic theory (see for instance Refs. 33, 35), Grad’s
equations may now be written down explicitly.

6 Grad’s moment equations and asymptotic limit

We first combine and rearrange collision contributions in the equations for T , p, and q.
This step is shown, for the reader’s convenience, in Appendix D. Then, Grad’s moment
equations read finally as

∂ρ

∂t
+

∂(ρ u)

∂z
= 0 , (41)

ρ

(
∂u

∂t
+ u

∂u

∂z

)
+

∂(ρ T )

∂z
+

∂p

∂z
= 0 , (42)

3

2
ρ

(
∂T

∂t
+ u

∂T

∂z

)
+ ρ T

∂u

∂z
+ p

∂u

∂z
+

∂q

∂z
=

= − β

Kn

2δ

√
π

G(ρ)

[
8 ρ2 T

δ+3
2 +

1

10
(δ + 3) (δ + 1) p2 T

δ−1
2

+
1

75
(δ + 3) (δ + 1) (1− δ) q2 T

δ−3
2

]
Γ

(
δ + 4

2

)

+
β2

Kn

4δ

√
π

G(ρ)

[
8 ρ2 T

2δ+3
2 +

1

10
(2 δ + 3) (2 δ + 1) p2 T

2δ−1
2

+
1

75
(2 δ + 3) (2 δ + 1) (1− 2 δ) q2 T

2δ−3
2

]
Γ
(
δ + 2

)
,

(43)

∂p

∂t
+

∂(u p)

∂z
+

4

3
p

∂u

∂z
+ ρ T

(
4

3

∂u

∂z

)
+

8

15

∂q

∂z
=

= − 1

Kn

1√
π

4

5
G(ρ)

[
4 ρ p T

1
2 +

1

7
p2 T− 1

2 +
2

75
q2 T− 3

2

]

− β

Kn

2δ

√
π

4

15
δ G(ρ)

[
4 ρ p T

δ+1
2 +

1

7
(δ + 1) p2 T

δ−1
2

+
2

75
(δ + 1) (1− δ) q2 T

δ−3
2

]
Γ

(
δ + 4

2

)

+
β2

Kn

4δ

√
π

4

15
(2 δ + 3) G(ρ)

[
4 ρ p T

2δ+1
2 +

1

7
(2δ + 1) p2 T

2 δ−1
2

+
2

75
(2 δ + 1) (1− 2 δ) q2 T

2δ−3
2

]
Γ
(
δ + 2

)
,

(44)
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∂q

∂t
+

∂(u q)

∂z
+

11

5
q

∂u

∂z
+

5

2
ρ T

∂T

∂z
+

5

2
p

∂T

∂z
+ ρ T

∂

∂z

(
p

ρ

)
− p

ρ

∂p

∂z
=

= − 1

Kn

1√
π

8

5
G(ρ)

[
4

3
ρ q T

1
2 +

1

5
p q T− 1

2

]

− β

Kn

2δ

√
π

2

15
G(ρ)

[
2 (25 + 11 δ) ρ q T

δ+1
2 − 1

5
(δ + 1) (δ + 15) p q T

δ−1
2

]
Γ

(
δ + 4

2

)

+
β2

Kn

4δ

√
π

2

15
(2 δ + 3) G(ρ)

[
22 ρ q T

2δ+1
2 − 1

5
(2 δ + 1) p q T

2δ−1
2

]
Γ
(
δ + 2

)
.

(45)
These equations have been consistently derived, under the stipulated simplifying assump-
tions (dilute gas of inelastic spheres in one space dimension for a collision dominated
regime with small inelasticity), in a kinetic frame. They represent a direct generaliza-
tion of the Euler equations established in Ref. 10 for the same physical situation. In
particular, the energy dissipation term (corresponding to the Haff law when δ = 0) is
recovered as the first addend proportional to β/Kn in the right hand side of (43). On the
other hand, the special case β = 0 corresponds to Grad’s equations for elastic spheres,
which, to our knowledge, have never been explicitly shown in the literature. The balance
equation for energy is affected by additional inelastic terms depending on p and q (the
non–hydrodynamic variables for the dominant operator Qel), and vanishing for p = 0,
q = 0. The equations for p and q contain of course elastic collision terms (proportional
to 1/Kn) along with inelastic ones. The former are dominant in the limit of β and Kn both
small, and it is worth considering the relevant collision equilibrium p∗, q∗. It is provided
by the coupled algebraic equations

4 ρ p∗ T
1
2 +

1

7
p2
∗ T− 1

2 +
2

75
q2
∗ T− 3

2 = 0

4

3
ρ q∗ T

1
2 +

1

5
p∗ q∗ T− 1

2 = 0

(46)

which, for fixed T > 0, yield, consistently with our assumptions, the unique solution
p∗ = 0, q∗ = 0, since the other roots are ruled out by condition (14).

In general, when considering the limiting case of small β and Kn, it is necessary to
perform the proper asymptotic analysis and to retain all terms up to the desired order in
the chosen small parameter ε. We shall put then

Kn = ε β = α ε (47)

with α = β/Kn = O(1), and write down asymptotically consistent Grad equations,
accurate to order ε, disregarding higher order corrections. Since both p and q vanish
when ε → 0, we put

p = ε p̄ q = ε q̄ (48)

with p̄ and q̄ both O(1), and notice that the correction of (39) with respect to the
Maxwellian is actually O(ε). In this way one is left with the simpler system of Grad’s
equations

∂ρ

∂t
+

∂(ρ u)

∂z
= 0 , (49)
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ρ

(
∂u

∂t
+ u

∂u

∂z

)
+

∂(ρ T )

∂z
+ ε

∂p̄

∂z
= 0 , (50)

3

2
ρ

(
∂T

∂t
+ u

∂T

∂z

)
+ ρ T

∂u

∂z
+ ε p̄

∂u

∂z
+ ε

∂q̄

∂z
=

= −α
2δ

√
π

8 Γ

(
δ + 4

2

)
G(ρ) ρ2 T

δ+3
2 + ε α2 4δ

√
π

8 Γ
(
δ + 2

)
G(ρ) ρ2 T

2δ+3
2 ,

(51)

ε
∂p̄

∂t
+ ε

∂(u p̄)

∂z
+ ε

4

3
p̄

∂u

∂z
+ ρ T

(
4

3

∂u

∂z

)
+ ε

8

15

∂q̄

∂z
=

= −G(ρ)

[
1√
π

16

5
ρ T

1
2 p̄ + ε

1√
π

4

35
T− 1

2 p̄2 + ε
1√
π

8

375
T− 3

2 q̄2

+ ε α
2δ

√
π

16 δ

15
Γ

(
δ + 4

2

)
ρ T

δ+1
2 p̄

]
,

(52)

ε
∂q̄

∂t
+ ε

∂(u q̄)

∂z
+ ε

11

5
q̄

∂u

∂z
+

5

2
ρ T

∂T

∂z
+ ε

5

2
p̄

∂T

∂z
+ ε ρ T

∂

∂z

(
p̄

ρ

)
=

= −G(ρ)

[
1√
π

32

15
ρ T

1
2 q̄ + ε

1√
π

8

25
T− 1

2 p̄ q̄ + ε α
2δ

√
π

4 (25+11 δ)

15
Γ

(
δ + 4

2

)
ρ T

δ+1
2 q̄

]

(53)
where inelastic contributions are labelled by the parameter α > 0. An analysis similar to
that described in Ref. 22, not reported here for brevity, shows that there exists a suitable
region surrounding the equilibrium p = 0, q = 0 in which Grad’s equations are hyperbolic.

7 Inelastic Navier–Stokes equations

As well known in the kinetic literature,36 hydrodynamic equations of Navier– Stokes type
are obtained also via Grad’s equations by a classical Chapman–Enskog algorithm, which
is much easier to perform on the Grad level rather than starting directly from the kinetic
level. Such an algorithm is in fact straightforward here: one has to close the equations
for ρ, u, T by solving the remaining equations for p̄ and q̄ to leading order in ε, after
expanding p̄ and q̄ in powers of ε, keeping ρ, u, T unexpanded. This yields very simple
algebraic equations, and in particular we get

p̄0 = − 5

16

√
π

T
1
2

G(ρ)

(
4

3

∂u

∂z

)
(54)

from (52), and

q̄0 = − 75

64

√
π

T
1
2

G(ρ)

∂T

∂z
(55)

from (53). The factor
4

3

∂u

∂z
would appear strange at first glance, but it its simply the i = 3,

j = 3 entry of the symmetrized traceless form of the rate of strain tensor
∂ui

∂xj

+
∂uj

∂xi

−
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2

3
δij

∂uk

∂xk

. Indeed, this is the only entry which is actually needed, because of (13). These are

Newtonian constitutive equations, and turn out not to be affected by inelastic corrections,
as a consequence of the hypothesis of small inelasticity. A quite important fact however
is that viscosity and conduction coefficients are instead affected by the presence of the
statistical correlation function in the denominator, so that viscous stress and heat flux are
significantly sensitive to the local values of the density ρ. In addition, such coefficients
are proportional to T

1
2 and reproduce the correct results available in the literature for

elastically scattering hard spheres37 in the dilute case G(ρ) = 1. The resulting inelastic
hydrodynamic equations of Navier–Stokes read as

∂ρ

∂t
+

∂(ρ u)

∂z
= 0 , (56)

ρ

(
∂u

∂t
+ u

∂u

∂z

)
+

∂(ρ T )

∂z
− ε

5

12

√
π

∂

∂z

(
T

1
2

G(ρ)

∂u

∂z

)
= 0 , (57)

3

2
ρ

(
∂T

∂t
+ u

∂T

∂z

)
+ ρ T

∂u

∂z
− ε

5

12

√
π

T
1
2

G(ρ)

(
∂u

∂z

)2

− ε
75

64

√
π

∂

∂z

(
T

1
2

G(ρ)

∂T

∂z

)
=

= −α
2δ

√
π

8 Γ

(
δ + 4

2

)
G(ρ) ρ2 T

δ+3
2 + ε α2 4δ

√
π

8 Γ
(
δ + 2

)
G(ρ) ρ2 T

2δ+3
2 .

(58)
Apart from the O(ε) classical corrections to the streaming part, we notice in the collisional
part of the energy equation the same O(1) dissipative term of Ref. 10 plus an O(ε) cor-
rection, which bears a different T dependence for all non–constant restitution coefficients.
In space homogeneous conditions ρ and u are constant in time, whereas the first order
differential equation for T can be solved in implicit analytical form in terms of a Gaussian
hypergeometric function, as

T
− 2δ+1

2
0 Φ

[
Γ

(
δ
2

+ 2
)

ε α 2δ Γ(δ + 2)
T
− δ

2
0 , 1,

2 δ+1

δ

]
−T− 2δ+1

2 Φ

[
Γ

(
δ
2

+ 2
)

ε α 2δ Γ(δ + 2)
T− δ

2 , 1,
2 δ+1

δ

]
=

= ε α2 δ
22δ+3

3
√

π
Γ(δ + 2) G(ρ) ρ t

(59)
where

Φ(z, 1, v) =
∞∑

n=0

zn

n + v
=

1

v
2F1(1, v; v + 1; z) (60)

is the so–called Lerch transcendent.38 Indeed, when the exponent δ is the inverse of a
natural number, as it occurs for viscoelastic spheres, the last argument of Φ in (59)
becomes a positive integer, and consequently Φ itself may be cast in terms of elementary
functions of its first argument, such as powers and logarithm. It is easy to check that the
present implicit solution predicts, for any value of δ, a t−2/(δ+1) relaxation to zero for T
when t →∞, in agreement with the generalized Haff’s law obtained in Ref. 10 from the
Euler equations. However, the discrepancy of that solution with respect to the Navier–
Stokes solution expressed by (59), which accounts for O(ε) corrections, is not negligible
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for intermediate values of t. In addition, the implicit solution (59) can be made more
explicit by expanding T as T (0) + ε T (1) and equating equal powers of ε. It is readily found

T (0)

T0

=

(
1 +

t

τ0

)− 2
δ+1

(61)

while T (1) behaves like t−
δ+2
δ+1 for t → ∞, recovering thus the results of Ref. 27, relevant

to the same physical situation, obtained in terms of a Sonine polynomial expansion for
viscoelastic spheres (δ = 1/5).

It is worth commenting that, in our physical frame, α–dependent correction terms
containing the gradients of ρ, u, T would appear in the constitutive equations for p and q
only when pushing the analysis to O(ε2) accuracy (then, at the Burnett level). The
relevant manipulations yield

p̄1 =
25

192
π

1

G2(ρ)

[
− T

ρ2

∂2ρ

∂ z2
+

1

2 ρ

∂2T

∂ z2
+

T

ρ3

(
∂ρ

∂z

)2

+
87

128

1

ρ T

(
∂T

∂z

)2

+

(
20

21

1

ρ
+

1

G(ρ)

∂G(ρ)

∂ρ

) (
∂u

∂z

)2

−
(

1

ρ
+

1

G(ρ)

∂G(ρ)

∂ρ

)
1

ρ

∂ρ

∂z

∂T

∂z

]

+ α
2δ
√

π

G(ρ)

25

72

(
−1 +

2

5
δ

)
Γ

(
δ + 4

2

)
T

δ+1
2

∂u

∂z
(62)

q̄1 =
375

512
π

1

G2(ρ)

[
− 7

30

T

ρ

∂2u

∂ z2
− 4

15

(
1

ρ
+

1

G(ρ)

∂G(ρ)

∂ρ

)
T

ρ

∂ρ

∂z

∂u

∂z

+

(
8

5

1

ρ
+

3

4

1

G(ρ)

∂G(ρ)

∂ρ

)
∂u

∂z

∂T

∂z

]

− α
2δ
√

π

G(ρ)

375

128
Γ

(
δ + 4

2

)[(
1

G(ρ)

∂G(ρ)

∂ρ
+

1

ρ

)
T

δ+3
2

∂ρ

∂z
+

1

20
(15− δ) T

δ+1
2

∂T

∂z

]
.

(63)
Details on the underlying Chapman–Enskog procedure are given in Appendix E. With
reference to the existing literature, this fact clearly follows from our assumption β =
O(Kn).

8 Conclusions

In this paper we introduced and discussed Grad’s moment equations for a dilute granu-
lar system of hard–spheres with dissipative collisions. We focused our analysis on dilute
systems, driven at a mesoscopic scale by the Boltzmann equation, to emphasize the role
of a relative velocity dependent coefficient of restitution at the level of hydrodynamic
equations. The assumptions on the variable coefficient of restitution are general enough
to include in our analysis the treatment of a system of viscoelastic spheres. It is shown
in particular that the dominant term in the large–time behavior of the granular temper-
ature is given explicitly by a generalized version of the classical Haff’s law, which was
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originally obtained in correspondence to a constant coefficient of restitution. However,
the discrepancy of the actual trend with respect to such explicit law is not negligible for
intermediate values of time. In addition, it is shown that the decay of temperature, and
then of scalar pressure, strongly depends on the local value of density, due to the presence
of the statistical correlation function. In particular, higher density implies a larger value
of G(ρ), and then a faster relaxation to zero, as predicted by the inelastic collision terms
in (58).

Of course, other typical corrections of the pertinent literature, due to the size of grains,
do not appear here at the Navier-Stokes level, since we are starting from a Boltzmann
rather than from an Enskog kinetic description, which provides a correction to the Boltz-
mann equation including the space shifts x± σn̂. For instance, it is easy to see that our
algorithm, when applied to the Enskog equation, upon resorting to a suitable first–order
expansion, gives rise to a proper correction to the scalar pressure.7 This effect appears
already at the Euler level, if σ is of the same order of the mean free path. This and other
problems, however, will be matter of future investigation.
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Appendix A

We list here the angular integrations appearing in the Grad equations for the test func-
tions (34). The factor γ is defined in (5) and describes the dependence of the restitution
coefficient on the relative motion. Integrals appearing in the elastic part are recovered by
simply substituting 1 for γ.∫

S2

γ(|g · n̂|) |g · n̂|3 dn̂ = πg3J11(g) (A.1)

∫

S2

γ2(|g · n̂|) |g · n̂|3 dn̂ = πg3J21(g) (A.2)

∫

S2

γ(|g · n̂|) |g · n̂| (g · n̂) n̂ dn̂ = πgJ11(g)g (A.3)

∫

S2

γ(|g · n̂|) |g · n̂| (g · n̂)2 n̂⊗ n̂ dn̂ =

= πg3

[
1

2
J11(g)− 1

3
J12(g)

]
I− πg

[
1

2
J11(g)− J12(g)

]
g ⊗ g

(A.4)

∫

S2

γ2(|g · n̂|) |g · n̂| (g · n̂)2 n̂⊗ n̂ dn̂ =

= πg3

[
1

2
J21(g)− 1

3
J22(g)

]
I− πg

[
1

2
J21(g)− J22(g)

]
g ⊗ g

(A.5)

The functions Jnk(g) are defined by Eq. (36) in the text.
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Appendix B

Higher order moments of elastic and inelastic collision operators expressed in terms of the
integrals (38):

<
1

2
c2, I >= − β

Kn

1

(4 + δ)
A1(δ) +

β2

Kn

1

(4 + 2 δ)
A1(2 δ) , (B.1)

< c2
z, Qel >=

1

Kn

1

12

{
A1(0)− 3 A2(0)

}
(B.2)

< c2
z, I > = − β

Kn

1

(4 + δ)(6 + δ)

{
4 A1(δ) + (2 δ) A2(δ)

}

+
β2

Kn

1

(4 + 2 δ)(6 + 2 δ)

{
2 A1(2 δ) + (6 + 4 δ) A2(2 δ)

} (B.3)

<
1

2
c2cz, Qel >=

1

Kn

1

12

{
A3(0)− 3 A4(0)

}
(B.4)

<
1

2
c2cz, I > = − β

Kn

1

(4 + δ)(6 + δ)

{
(10 + δ) A3(δ) + (2 δ) A4(δ)

}

+
β2

Kn

1

(4 + 2 δ)(6 + 2 δ)

{
(8 + 2 δ) A3(2 δ) + (6 + 4 δ) A4(2 δ)

}

(B.5)
Notice that the addend of power β3 in (B.5) is missing because the relevant coefficient
vanishes in the integration.

Appendix C

Coefficients αi, βi, γi, δi can be computed using polar coordinates for G and g, recalling

∫

R3

x2
i F (x) dx =

1

3

∫

R3

x2 F (x) dx

∫

R3

x4
i F (x) dx =

1

5

∫

R3

x4 F (x) dx

∫

R3

x2
i x2

j F (x) dx =
1

15

∫

R3

x4 F (x) dx i 6= j

and bearing in mind that

∫

R3

gk e−
g2

4 dg = 2k+4 π Γ

(
k + 3

2

)

∫

R3

Gk e−G2

dG = 2 π Γ

(
k + 3

2

)
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where Γ denotes gamma function.39 The final result reads as

α1(y) =
2y

√
π

16 Γ

(
y + 6

2

)

α2(y) = 0

α3(y) =
2y

√
π

1

5
(y + 3) (y + 1) Γ

(
y + 6

2

)

α4(y) =
2y

√
π

2

75
(y + 3) (y + 1) (1− y) Γ

(
y + 6

2

)
(C.1)

β1(y) =
2y

√
π

16

3
Γ

(
y + 6

2

)

β2(y) =
2y

√
π

16

15
(y + 6) Γ

(
y + 6

2

)

β3(y) =
2y

√
π

1

105
(y + 1) (11y + 45) Γ

(
y + 6

2

)

β4(y) =
2y

√
π

2

375
(y + 1) (1− y) (3y + 13) Γ

(
y + 6

2

)

(C.2)

γ1(y) =
2y

√
π

8

3
(y + 3) Γ

(
y + 6

2

)

γ2(y) = − 2y

√
π

4

25
(y + 3) (y + 1) Γ

(
y + 6

2

)
(C.3)

δ1(y) =
2y

√
π

8

15
(3y + 13) Γ

(
y + 6

2

)

δ2(y) =
2y

√
π

4

75
(y + 1) (y + 9) Γ

(
y + 6

2

) (C.4)

Appendix D

We have

<
1

2
c2, Q > = − β

Kn

[
A11(δ) ρ2 T

δ+3
2 +A13(δ) p2 T

δ−1
2 +A14(δ) q2 T

δ−3
2

]

+
β2

Kn

[
A21(δ) ρ2 T

2δ+3
2 +A23(δ) p2 T

2δ−1
2 +A24(δ) q2 T

2δ−3
2

] (D.1)

where

A1k(δ) =
αk(δ)

4 + δ
A2k(δ) = A1k(2 δ) ; (D.2)
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< c2
z −

1

3
c2, Q >=

= − 1

Kn

[
B01(0) ρ2 T

3
2 + B02(0) ρ p T

1
2 + B03(0) p2 T− 1

2 + B04(0) q2 T− 3
2

]

− β

Kn

[
B11(δ) ρ2 T

δ+3
2 + B12(δ) ρ p T

δ+1
2 + B13(δ) p2 T

δ−1
2 + B14(δ) q2 T

δ−3
2

]

+
β2

Kn

[
B21(δ) ρ2 T

2δ+3
2 + B22(δ) ρ p T

2δ+1
2 + B23(δ) p2 T

2δ−1
2 + B24(δ) q2 T

2δ−3
2

]

(D.3)
with

B0k(0) =
1

4

[
βk(0)− 1

3
αk(0)

]

B1k(δ) =
2 δ

(4 + δ)(6 + δ)

[
βk(δ)− 1

3
αk(δ)

]

B2k(δ) =
6 + 4 δ

(4 + 2 δ)(6 + 2 δ)

[
βk(2 δ)− 1

3
αk(2 δ)

]
;

(D.4)

<
1

2
c2cz, Q > = − 1

Kn

[
C01(0) ρ q T

1
2 + C02(0) p q T− 1

2

]

− β

Kn

[
C11(δ) ρ q T

δ+1
2 + C12(δ) p q T

δ−1
2

]

+
β2

Kn

[
C21(δ) ρ q T

2δ+1
2 + C22(δ) p q T

2δ−1
2

]
(D.5)

where

C0k(0) =
1

4

[
δk(0)− 1

3
γk(0)

]

C1k(δ) =
1

(4 + δ)(6 + δ)

[
(10 + δ) γk(δ) + (2 δ) δk(δ)

]

C2k(δ) =
1

(4 + 2 δ)(6 + 2 δ)

[
(8 + 2 δ) γk(2 δ) + (6 + 4 δ) δk(2 δ)

]
.

(D.6)

Notice that collision contributions to the equation for q involve either q or pq. Analogously,
collision contributions to the equation for p involve either p, or p2, or q2, since it is easy
to check that B01(0) = B11(δ) = B21(δ) = 0.

Appendix E

In order to obtain the second order contributions p̄1 and q̄1 in the asymptotic series

p̄ =
∞∑

n=0

p̄n εn q̄ =
∞∑

n=0

q̄n εn (E.1)
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one has to expand the coefficient β as
∞∑

n=0

αnε
n, α1 = α, insert everything into (52)

and (53), and equate equal powers of ε, bearing in mind that, according to Chapman and
Enskog, also the time derivative operator must be formally expanded.29 To leading order,
we reproduce of course (54) and (55). To next order we get the algebraic equations

∂0 p̄0

∂t
+

∂(u p̄0)

∂z
+

4

3
p̄0

∂u

∂z
+

8

15

∂q̄0

∂z
=

= − G(ρ)√
π

4

5

[
4 ρ T

1
2 p̄1 +

1

7
p̄2

0 T− 1
2 +

2

75
q̄2
0 T− 3

2

]
−α

G(ρ)√
π

2δ+4

15
δ ρ p̄0 T

δ+1
2 Γ

(
δ + 4

2

)

(E.2)

∂0 q̄0

∂t
+

∂(u q̄0)

∂z
+

11

5
q̄0

∂u

∂z
+

5

2
p̄0

∂T

∂z
+ ρ T

∂

∂z

(
p̄0

ρ

)
=

= − G(ρ)√
π

8

5

[
4

3
ρ T

1
2 q̄1 +

1

5
p̄0 q̄0 T− 1

2

]
−α

G(ρ)√
π

2δ+2

15
(25 + 11 δ) ρ q̄0 T

δ+1
2 Γ

(
δ + 4

2

)

(E.3)
where the derivatives ∂0p̄0

∂t
, ∂0q̄0

∂t
may be obtained by applying the zero–th order time

derivative to (54) and (55). This implies the evaluation of the same type of derivatives
for ρ, u, T , which may be obtained from (49), (50), (51) as

∂0ρ

∂t
= −u

∂ρ

∂z
− ρ

∂u

∂z

∂0u

∂t
= −u

∂u

∂z
− ∂T

∂z
− T

ρ

∂ρ

∂z

∂0T

∂t
= −u

∂T

∂z
− 2

3
T

∂u

∂z
− α

2δ

√
π

16

3
G(ρ) ρ T

δ+3
2 Γ

(
δ + 4

2

)
(E.4)

At this point, achieving (62), (63) is only matter of heavy algebra.
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28 S. Esipov, and T. Pöschel, “The granular phase diagram,” J. Stat. Phys. 86, 1385

(1997).
29 C. Cercignani, Recent developments in the mechanism of granular materials. (Fisica

Matematica e ingegneria delle strutture, Pitagora Editrice, Bologna, 1995).
30 H. Grad, “On the kinetic theory of rarefied gases,” Comm. Pure Appl. Math. 2, 331

(1949).
31 G. Toscani and C. Villani, “Sharp entropy production bounds and explicit rate of trend

to equilibrium for the spatially homogeneous Boltzmann equation,” Commun. Math.
Phys. 203, 667 (1999).

32 G. Toscani, “Remarks on entropy and equilibrium states,” Appl. Math. Letters 12,
19 (1999).

33 M. Bisi, M. Groppi, and G. Spiga, “Grad’s distribution functions in the kinetic equa-
tions for a chemical reaction,” Continuum Mech. Thermodyn. 14, 207 (2002).

34 C. Cercignani, “Shear flow of a granular material,” J. Stat. Phys. 102, 1407 (2001).
35 T. I. Gombosi, Gaskinetic theory (Cambridge University Press, Cambridge, 1994).
36 M. N. Kogan, Rarefied Gas Dynamics (Plenum Press, New York, 1969).
37 S. Chapman, and T. G. Cowling, The mathematical theory of non–uniform gases (Cam-

bridge University Press, Cambridge, 1970).
38 I. S. Gradshteyn, and I. M. Ryzhik, Table of integrals, series and products (Corrected

and enlarged edition prepared by A. Jeffrey, Academic press, 1980).
39 M. Abramowitz, and I. A. Stegun Eds., Handbook of Mathematical Functions (Dover,

New York, 1965).

24


