·
N. BELLOMO, A. PALCZEWSKI, G. TOSCANI
Mathematical Topics in Nonlinear Kinetic Theories, World Scientific, Singapore
(1988), pg. IX + 226
·
N. BELLOMO, M. LACHOWICZ, J. POLEWCZAK,
G. TOSCANI Mathematical Topics in Nonlinear Kinetic Theory II: The Enskog Equation, World Scientific, Singapore (1991), pg. X
+ 207
· L. PARESCHI, G. TOSCANI, Interacting Multiagent
Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press,
Oxford (2014), pg. XII + 376
·
G.
TOSCANI , V. BOFFI, S. RIONERO Eds.
Mathematical Aspects of Fluid and Plasma
Dynamics, Lecture Notes in Mathematics n.1460, Springer Verlag, Berlin
(1991), pg. 221
·
V.
BOFFI, F. BAMPI, G. TOSCANI Eds. Nonlinear Kinetic Theory and Mathematical Aspects of
Hyperbolic Systems, World Scientific, Singapore (1992) pg. XI + 267
·
G. TOSCANI, Guest Editor Transport Theory
and Statistical Physics Special
Issue devoted to the Proceedings of the Second International Workshop on
Nonlinear Kinetic Theories and Mathematical Aspects of Hyperbolic Systems 25 , n. 3-5 (1996) 263-592
·
L.
PARESCHI, G.RUSSO, G.TOSCANI Eds. Modelling and Numerics of
Kinetic Dissipative Systems, Nova Science Publishers, New York, (2005) pg. II +
230
·
G.TOSCANI Ed. Kinetic Methods for
Nonconservative and Reacting Systems, QM n.16, Aracne
Editrice, Roma, (2005) pg. 331
· G.NALDI, L.PARESCHI, G.TOSCANI Eds. Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Birkhauser, Boston (2010) pg. X + 435
· A.E.
Bernardelli, G.Auricchio, P.Giudici, G.Toscani. Measuring multivariate
divergences to improve neural network performances. (Preprint) (2025) Download
· A.
Bondesan, M. Menale, G. Toscani, M. Zanella. Lotka-Volterra-type
kinetic equations for competing species (Preprint) (2025) Download
· G.
Auricchio, P. Giudici, G. Toscani. How
to measure multidimensional variation? (Preprint) (2024) Download
· G. Toscani, M. Zanella.
Condensation effects in kinetic models for consensus dynamics: finite-time
blow-up and regularity aspects. (Preprint) (2024) Download
· P.
Giudici, E. Raffinetti, G. Toscani. Measuring multidimensional inequality: a new proposal
based on the Fourier transform. Statistics (In press) (2025) Download
· G.
Auricchio, G. Brigati, P. Giudici, G. Toscani. Multivariate Gini-type discrepancies. Math. Models Methods Appl. Sci.
(In press) (2025) Download
· G.
Auricchio, P. Giudici, G. Toscani. Extending
the Gini index to higher dimensions using whitening processes. Rend. Lincei Mat. Appl. (in press) (2025) Download
· G. Toscani. Measuring
multidimensional heterogeneity in emergent social phenomena. European Journal
of Applied Mathematics (In press) (2024) Download
·
E. Calzola, G. Dimarco, G. Toscani, M.
Zanella. Emergence of condensation patterns in
kinetic equations for opinion dynamics. Physica D: Nonlinear Phenomena, 470, 134356 (2024) Download
· G.
Bertaglia, A. Bondesan, D. Burini, R. Eftimie, L.
Pareschi, G. Toscani. New trends
on the systems approach to modeling SARS-CoV-2 pandemics in a globally
connected planet. Math. Models Methods Appl. Sci. 34 (11) 1995-2054 (2024) Download
· G.
Bertaglia, L. Pareschi, G. Toscani. Modelling
contagious viral dynamics: a kinetic approach based on mutual utility. Mathematical
Biosciences and Engineering, 21 (3) 4241-4268 (2024) Download
· A.
Bondesan, G. Toscani, M. Zanella. Kinetic
compartmental models driven by opinion dynamics: vaccine hesitancy and social
influence. Math. Models Methods Appl.
Sci. Vol. 34, (6), 1043-1076 (2024) Download
·
G. Dimarco, G. Toscani, M. Zanella,
A multi-agent description of the influence of higher education on social
stratification. Journal of
Economic Interaction & Coordination 19 (3) 493-521 (2024) Download
· F. Auricchio, M. Carraturo, G. Toscani, M. Zanella,
Impact of interaction forces in first-order many-agent
systems for swarm manifacturing. Discrete and
Continuous Dynamical Systems - Series S, 17 (1) 78-97 (2024) Download
· G.
Toscani, M. Zanella, On a kinetic description
of Lotka-Volterra dynamics. Rivista Matematica
Università di Parma, 15 (1) 61-77 (2024) Download
· F. Auricchio, G. Toscani, M.
Zanella, Trends to equilibrium for a nonlocal Fokker-Planck equation. Applied
Mathematics Letters, 145, 108746 (2023) Download
· G. Toscani, One-dimensional Barenblatt-type solutions and related inequalities. Ricerche di Matematica 73
(Suppl.1) 309-321 (2023) Download
·
L. Pareschi, G. Toscani, The kinetic
theory of mutation rates. Axioms, 12; 265 (2023) Download
·
G. Toscani, A multi-agent description of social phenomena with
lognormal equilibria. In P. Barbante et al. (eds.), From Kinetic Theory to Turbulence Modeling,
Springer INdAM Series 51, Springer Nature, Singapore.
pp. 261-270 (2023) Download
·
F. Auricchio, G. Toscani, M. Zanella, Fokker-Planck modeling of many-agent
systems in swarm manifacturing: asymptotic analysis
and numerical methods. Commun. Math. Sci. 21 (6) 1655-1677 (2023) Download
·
S. Gualandi, G. Toscani, E. Vercesi, A kinetic description of the body size
distributions of species. Math. Models Methods Appl. Sci. 32 (14) 2853–2885 (2022) Download
·
G.Toscani, A multi-agent approach to the impact of epidemic spreading on
commercial activities. Math. Models Methods Appl. Sci. 32 (10) 1931-1948 (2022)
Download
·
G. Toscani, On Fourier-based inequality measures. Entropy 24;
1393 (2022) Download
·
G. Toscani, P. Sen, S. Biswas, Kinetic exchange models of
societies and economies. Phil. Trans. R. Soc. A 380, 20210170 (2022) Download
·
E.
Bernardi, L. Pareschi, G. Toscani,
M. Zanella, Effects of vaccination efficacy
on wealth distribution in kinetic epidemic models. Entropy, 24; 216
(2022) Download
·
G. Albi, G. Bertaglia, W. Boscheri, G. Dimarco, L. Pareschi, G.
Toscani, M. Zanella. Kinetic
modelling of epidemic dynamics: social contacts, control with uncertain data,
and multiscale spatial dynamics. pp. 43-108 In:
Bellomo, N., Chaplain, M.A.J. (eds) Predicting
Pandemics in a Globally Connected World, Volume 1. Modeling and Simulation
in Science, Engineering and Technology. Birkhäuser,
Cham 2022 Download
·
G. Dimarco, G. Toscani, M. Zanella, Optimal
control of epidemic spreading in presence of social heterogeneity. Phil. Trans.
R. Soc. A 380, 20210160 (2022) Download
·
G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani,
Fokker-Planck equations and one-dimensional functional inequalities for heavy
tailed densities, Milan J. Math., 90, 177–208 (2022) Download
· L.
Pareschi, G. Toscani, Dinamiche sociali ed equazioni alle derivate parziali in
ambito epidemiologico. Matematica Cultura e Società, Serie I, Vol. 6 n.3 (2021) Download
· G. Toscani, M. Zanella, On a
class of Fokker-Planck equations with subcritical confinement. Rend. Lincei Mat. Appl. 32 (3) 471-497 (2021) Download
·
M.Azzi, C. Bardelli, S. Deandrea, G. Dimarco, S. Figini, P. Perotti, G. Toscani,
M. Zanella, A data-driven epidemic model with social structure for
understanding the COVID-19 infection on a heavily affected Italian Province.
Math. Models Methods Appl. Sci. 31 (12) 2533-2570 (2021) Download
·
M.
Zanella, C. Bardelli, M.Azzi, S. Deandrea, P. Perotti, S. Silva, E. Cadum, S. Figini, G. Toscani, Social contacts, epidemic spreading and health
system. Mathematical modeling and applications to COVID-19 infection,
Mathematical Biosciences and Engineeering, 18 (4)
3384-3403 (2021) Download
· G. Toscani, Entropy-type
inequalities for generalized Gamma densities. Ricerche
di Matematica, 70, 35-50 (2021) Download
· L. Preziosi, G. Toscani, M. Zanella, Control of tumour
growth distributions through kinetic methods. Journal of Theoretical Biology
514, 110579 (2021) Download
·
G. Dimarco, B. Perthame, G. Toscani, M. Zanella, Kinetic models for epidemic dynamics
with social heterogeneity. Journal of Mathematical Biology, 83 n. 4 (2021) Download
·
G. Toscani, Statistical description of human addiction
phenomena. In Trails in Kinetic Theory: foundational aspects and numerical
methods, A. Nota, G. Albi, S. Merino-Aceituno, M.
Zanella Eds, SEMA SIMAI Springer Series Vol. 25, 209-226 (2021) Download
·
E. Ballante, C. Bardelli, M.
Zanella, S. Figini, G. Toscani. Economic
Segregation Under the Action of Trading Uncertainties, Symmetry, 12, 1390
(2020) Download
· G.
Auricchio, A. Codegoni, S. Gualandi, G. Toscani, M.
Veneroni. On the equivalence between Fourier-based
and Wasserstein metrics. Rend. Lincei Mat. Appl. 31,
627-649 (2020) Download
· G. Dimarco, L.Pareschi, G. Toscani,
M. Zanella, Wealth distribution under the spread of infectious diseases. Phys.
Rev. E, 102, 022303 (2020) Download
· G.
Dimarco, G. Toscani, Social climbing and Amoroso distribution.
Math. Models Methods Appl. Sci. 30 (11)
2229-2262 (2020) Download
· G. Toscani, A. Tosin, M.
Zanella, Kinetic modelling of multiple interactions in socio-economic systems. Netw. Heterog. Media, 15, (3)
519-542 (2020) Download
· G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani, Non-Maxwellian kinetic equations modeling the
evolution of wealth distribution. Math. Models Methods Appl. Sci. 30 (4)
685-725 (2020) Download
· G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani, Wright-Fisher-type equations for opinion
formation, large time behavior and weighted logarithmic-Sobolev inequalities.
Ann. IHP, Analyse Non Linéaire
36, 2065-2082 (2019) Download
· G. Toscani, A. Tosin, M.
Zanella, Multiple-interaction kinetic modelling of a virtual-item gambling
economy. Phys. Rev. E, 100, 012308 (2019) Download
· G. Dimarco, G. Toscani, Kinetic modeling of alcohol consumption. J. Stat.
Phys. 177,1022–1042 (2019) Download
·
L. Pareschi, G. Toscani, A. Tosin,
M. Zanella, Hydrodynamics models of preference formation in multi-agent
societies. J. Nonlinear Science, 29 (6), 2761-2796 (2019) Download
· G.Toscani, The information-theoretic meaning of
Gagliardo-Nirenberg type inequalities. Rend. Lincei
Mat. Appl. 30, 237–253 (2019) Download
· S. Gualandi, G. Toscani, Human behavior and lognormal distribution. A
kinetic description. Math. Models Methods Appl. Sci. 29, (4)
717-753 (2019) Download
· S. Gualandi, G. Toscani, The size distribution of cities: A kinetic
explanation. Physica A, 524, 221-234 (2019) Download
· G. Toscani, Poincaré-type inequalities for stable densities. Ricerche Mat. 68 (1) 225–236 (2019) Download
· G. Toscani, A. Tosin, M.
Zanella, Opinion modeling on social media and marketing aspects, Phys. Rev. E, 98, 022315 (2018) Download
· B. Duering, L. Pareschi, G. Toscani, Kinetic
models for optimal control of wealth inequalities. Eur. Phys. J. B 91: 265
(2018) Download
· S. Gualandi, G. Toscani, Call center service times are lognormal. A
Fokker--Planck description. Math. Models Methods Appl. Sci. 28, (08) 1513-1527
(2018) Download
· S.
Gualandi, G. Toscani, Pareto tails in socio-economic phenomena: A kinetic description. Economics: The Open-Access, Open-Assessment E-Journal, 12 (2018-31): 1–17. Download
·
C. Brugna, G.Toscani,
Kinetic models for goods exchange in a multi-agent market, Physica A 499
362–375 (2018) Download
· M. Torregrossa, G.Toscani, Wealth distribution in
presence of debts. A Fokker-Planck description, Commun. Math. Sci. 16 (2)
537-560 (2018) Download
· G. Toscani, A Rosenau-type
approach to the approximation of the linear Fokker-Planck equation, Kinet. Relat. Models 11
(4)697-714 (2018) Download
· M. Torregrossa, G.Toscani, On a Fokker-Planck
equation for wealth distribution, Kinet. Relat. Models 11(2)337-355 (2018) Download
· G.Toscani, Continuum models in wealth distribution, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.28 451–461 (2017) Download
·
G. Toscani, Score functions, generalized relative Fisher
information and applications, Ricerche mat. 66 15-26
(2017) Download
· G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani, Fokker--Planck equations in the modelling of
socio-economic phenomena, Math. Models Methods Appl. Scie. 27 (1) 115-158
(2017) Download
· G. Albi, L. Pareschi, G. Toscani, M. Zanella, Recent advances in opinion modeling:
Control and social influence. In “Active Particles, Volume 1: Theory, Models,
Applications” N. Bellomo, P. Degond, E. Tadmor, Eds.
Ch.2, pp. 49-98. Birkhäuser Boston (2017) Download
·
G. Toscani, Diffusion equations and entropy inequalities,
(Lectures at Ravello’s School) (2016) Download
· G. Toscani, Kinetic and mean
field description of Gibrat’s law. Physica A, 461
802-811 (2016) Download
· G.
Toscani, Sulle code di potenza di Pareto, La Matematica nella Società e nella
Cultura, Serie I, 1 21-30 (2016) Download
· G. Toscani, Entropy
inequalities for stable densities and strengthened central limit theorems, J.
Stat. Phys., 165 371–389 (2016) Download
·
G.Toscani, The
fractional Fisher information and the central limit theorem for stable laws, Ricerche Mat., 65 (1) 71-91 (2016) Download
· J. Dolbeault, G. Toscani, Nonlinear diffusions: extremal properties of Barenblatt profiles, best matching and delays, NonlinearAnal. Series A,138 31-43 (2016) Download
· J.A.
Carrillo, M. Di Francesco, G. Toscani, Condensation phenomena in nonlinear drift equations, Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5) Vol. XV 145-171 (2016) Download
· C. Brugna, G. Toscani, Kinetic models of opinion formation in the
presence of personal conviction, Phys. Rev. E92, 052818 (2015) Download
·
G. Toscani, A strengthened entropy power inequality for
log-concave densities, IEEE Transactions on Information Theory 61 (12)
6550-6559 (2015) Download
· J. Dolbeault, G. Toscani, Stability results for logarithmic Sobolev and
Gagliardo-Nirenberg inequalities, Int. Math. Res. Notices rnv
131 (2015) Download
· F. Bassetti, G. Toscani,
Mean field dynamics of collisional processes with duplication, loss and copy,
Math. Mod. Meth. Appl. Sci. 25 (10) 1887-1925 (2015) Download
· C. Brugna, G. Toscani, Boltzmann-type models for price formation in the
presence of behavioral aspects, Netw. Heterog. Media 10 (3) 543-557 (2015) Download
·
G. Toscani, A concavity property for the reciprocal of Fisher
information and its consequences on Costa's EPI, Physica A, 432 35-42 (2015) Download
· G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani, On Rosenau-Type approximations to fractional
diffusion equations, Commun. Math. Sci. 13 (5) 1163-1191 (2015) Download
· J. Dolbeault, G. Toscani, Best matching Barenblatt profiles are delayed, J. Phys. A: Math. Theor. 48 065206 (2015) Download
·
J.A.
Carrillo, G. Toscani, Renyi
entropy and improved equilibration rates to self-similarity for nonlinear
diffusion equations, Nonlinearity, 27, 3159-3177 (2014) Download
·
F.
Bassetti, G. Toscani, Explicit equilibria in bilinear
kinetic models, Esaim: Proceedings and Surveys, 47
1-16 (2014) Download
·
L. Pareschi, G. Toscani, Wealth
distribution and collective knowledge. A Boltzmann approach, Phil. Trans. R.
Soc. A 372, 20130396, 6 October (2014) Download
· G. Toscani, Rényi entropies and nonlinear diffusion equations, Acta.
Appl. Math., 132 595–604 (2014) Download
·
G. Toscani, Heat equation and convolution inequalities, Milan
J. Math., 82 (2) 183-212 (2014)
·
G. Savaré, G. Toscani, The concavity
of Renyi entropy power, IEEE Transactions on
Information Theory, 60 (5) 2687-2693 (2014) Download
· G. Toscani, A kinetic
description of mutation processes in bacteria, Kinet.
Relat. Models, 6 (4) 1043-1055 (2013) Download
· T. Rey, G. Toscani,
Large-time behavior of the solutions to Rosenau type approximations to the heat
equation, SIAM J. Appl. Math. 73 (4), 1416-1438 (2013) Download
·
G. Toscani, C. Brugna, S. Demichelis, Kinetic models for the trading of goods, J Stat
Phys, 151, (2013) 549-566 Download
·
J. Dolbeault, G. Toscani, Improved
interpolation inequalities, relative entropy and fast diffusion equations, Ann.
I.H. Poincaré – AN, 30 (5) 917-934 (2013) Download
· G. Toscani, An information-theoretic proof of Nash's inequality, Rend. Lincei Mat. Appl., 24, (2013) 83-93 Download
· G. Toscani, Lyapunov
functionals for the heat equation and sharp inequalities, Atti Acc. Peloritana
Pericolanti, Classe Sc. Fis. Mat.
e Nat., 91, 1-10, (2013) Download
· D. Matthes, G. Toscani,
Variation on a theme by Bobylev and Villani, C.R.Acad.Sci.
Paris, Ser. I, 350 (1-2) (2012) 107-110 Download
· G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani, The
grazing collision limit of
the inelastic Kac model around a Lévy-type equilibrium. SIAM J. Math. Anal.
44, 827-850 (2012) Download
· G. Toscani, Finite time blow
up in Kaniadakis-Quarati model of Bose-Einstein
particles. Comm. Part. Diff. Eqns. 37 (1) (2012)
77-87 Download
·
S. Fornaro, S. Lisini, G. Savaré, G. Toscani, Measure
valued solutions of sub-linear diffusion equations with a drift term, Discrete
and Continuous Dynamical Systems A., 32 (5) 1675-1707 (2012) Download
· G. Toscani, N. Ben Abdallah,
I. M. Gamba, On the minimization problem of
sub-linear convex functionals. Kinetic and related Models, 4 (4), (2011) 857-871 Download
· J. Dolbeault, G. Toscani, Fast diffusion equations: Matching large time asymptotics by relative entropy methods. Kinetic and related Models
4 (2011) 701-716 Download
· F. Bassetti, L. Ladelli, G. Toscani: Kinetic models with randomly perturbed binary
collisions. J. Statist. Phys. 142 (4)
(2011) 686-709 Download
·
T.
Allemand, G. Toscani, The grazing collision limit of
Kac caricature of Bose-Einstein particles, Asymptotic Analysis, 72 (3-4) (2011)
201-229 Download
· D. Matthes, A. Juengel, G.Toscani, Convex Sobolev
inequalities derived from entropy dissipation, Arch. Rat. Mech. Anal. 199 (2) (2011) 563-596 Download
·
M. Fornasier, J. Haskovec, G. Toscani, Fluid dynamic description of flocking via Povzner–Boltzmann equation, Physica D 240 (2011) 21-31 Download
· F.
Bassetti, G. Toscani, Explicit equilibria in a kinetic model of gambling, Phys. Rev. E, 81, 066115 (2010) Download
· J. A. Carrillo, M. Fornasier,
G. Toscani, F. Vecil,
Particle, Kinetic, and Hydrodynamic Models of Swarming, in Mathematical
Modeling of Collective Behavior in Socio-Economic and Life Sciences, G. Naldi, L. Pareschi and G. Toscani Eds. Birkhauser, Boston
(2010) 297-336 Download
·
D.
Matthes, G. Toscani, Propagation of Sobolev
regularity for a class of random kinetic models on the real line, Nonlinearity
23 (2010) 2081-2100 Download
· R. Duan, M. Fornasier, G. Toscani, A kinetic flocking model with diffusion, Commun. Math. Phys. 300, (2010) 95–145 Download
· C. Brugna, G. Toscani, Wealth redistribution in Boltzmann-like models of
conservative economies, in Econophysics &
Economics of Games, Social Choices and Quantitative Techniques, B. Basu, B.K. Chackabarti, S.R. Chackavarty, K.
Gangopadhyay (Eds.) Springer Verlag, Milan (2010) 71-82 Download
·
G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani, Convergence
to self-similarity for the Boltzmann equation for strongly inelastic Maxwell
molecules, Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire, 27, (2) (2010) 719-737 Download
· J.A. Carrillo, M. Fornasier,
J. Rosado, G. Toscani, Asymptotic flocking dynamics
for the kinetic Cucker-Smale model, SIAM J. Math. Anal. 42, (1) (2010). 218-236 Download
·
G. Toscani, Wealth redistribution in conservative linear
kinetic models with taxation, Europhysics Letters 88
(1) (2009) 10007 Download
· M. Bisi, G. Spiga, G. Toscani,
Kinetic models of conservative economies with wealth redistribution, Commun. Math. Sci.
7 (4) (2009) 901-916 Download
· B. Duering, D. Matthes, G.Toscani, A Boltzmann-type
approach to the formation of wealth distribution curves, (Notes of the Porto
Ercole School, June 2008) Riv. Mat. Univ. Parma
(1) 8 (2009) 199-261 Download
· G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani, Strong Convergence towards self-similarity for
one-dimensional dissipative Maxwell models, J. Funct.
Anal. 257 (7) (2009) 2291-2324 Download
·
V. Comincioli, L. Della Croce, G. Toscani,
A Boltzmann-like equation for choice formation, Kinetic and related Models 2
(1) (2009) 135- 149 Download
·
J.A.
Carrillo, S. Cordier, G. Toscani, Over-populated
tails for conservative-in-the-mean inelastic Maxwell models, Discrete and Continuous
Dynamical Systems A. 24 (1) (2009) 59-81 Download
·
F. Salvarani, G. Toscani, The
diffusive limit of Carleman-type models in the range
of very fast diffusion equations, J.Evol.Equ.
9 (2009) 67-80 Download
· B. Duering, G.Toscani, International and
domestic trading and wealth distribution, Commun. Math. Sci.
6 (4) (2008) 1043-1058 Download
· B. Duering, D. Matthes, G.Toscani, Kinetic Equations modelling Wealth
Redistribution: A comparison of Approaches, Phys. Rev. E,
78, (2008) 056103 Download
·
M. Bisi,
G. Spiga, G. Toscani, On the hydrodynamic closure of
a transport-diffusion equation, Europhysics Letters
83, (2008) 40007 Download
·
B. Lods, C. Mouhot, G. Toscani,
Relaxation rate, diffusion approximation and Fick's law for inelastic
scattering Boltzmann models, Kinetic and related Models, 2 (2008) 223-248 Download
·
B. Duering, D. Matthes, G.Toscani,
Exponential and algebraic relaxation in kinetic models for wealth distribution,
in Proceedings WASCOM 2007 N. Manganaro, R. Monaco,
S. Rionero Eds., World Scientific, Singapore 2008,
228-238 Download
· G.
Toscani, Funzionali entropia ed equilibrio di sistemi di molte particelle,
Bollettino UMI serie IX, Vol. 1 (3) (2008), 509-524 Download
·
G. Toscani, Hydrodynamics from the dissipative Boltzmann
equation, in "Mathematical models of granular matters" G. Capriz, P. Giovine and P. M.
Mariano Editors, Lecture Notes in Mathematics n.1937 (2008) 59-75 Download
· U. Gianazza, G. Savaré, G. Toscani, The
Wasserstein gradient flow of the Fisher information and the quantum
drift-diffusion equation, Arch. Rat. Mech. Anal.
194, (1) (2009) 133-220 Download
·
D.
Matthes, G.Toscani, Analysis
of a model for wealth redistribution, Kinetic and related Models, 1 (2008),
1-22 Download
· D. Matthes, G. Toscani, On
steady distributions of kinetic models of conservative economies, J. Statist. Phys., 130 (2008) 1087-1117 Download
· J.A. Carrillo, G. Toscani,
Contractive probability metrics ans asymptotic
behavior of dissipative kinetic equations (Notes of the Porto Ercole School,
June 2006) Riv. Mat. Univ. Parma,
(7) 6, (2007) 75-198 Download
· J.A. Carrillo, M. Di Francesco, G. Toscani,
Strict Contractivity of the 2-Wasserstein distance
for the porous medium equation by mass-centering, Proc. Amer.
Math. Soc. 135 (2007), 353-363 Download
·
B. Duering, G. Toscani,
Hydrodynamics from kinetic models of conservative economies, Physica A:
Statistical Mechanics and its Applications, 384 (2007) 493-506 Download
· M.J. Càceres, G. Toscani, Kinetic approach to long time behavior of
linearized fast diffusion equations, J. Statist. Phys., 128 (4)
(2007) 883-925 Download
·
G. Aletti, G. Naldi, G. Toscani, First-order continuous models of opinion
formation, SIAM J. Appl. Math., 67 (3) (2007) 837-853 Download
· G. Toscani, Kinetic models
of opinion formation, Commun. Math. Sci. 4 (3) (2006) 481-496 Download
·
M. Bisi,
J.A. Carrillo, G. Toscani, Decay rates in probability
metrics towards homogeneous cooling states for the inelastic Maxwell model, J. Statist.Phys., 124 (2-4) (2006) 625-653 Download
· L. Pareschi, G. Toscani, Self-similarity and power-like tails in
nonconservative kinetic models, J. Statist. Phys. 124
(2-4) (2006) 747-779 Download
· L. Gosse, G. Toscani, Lagrangian numerical approximations to one-dimensional convolution-diffusion
equations, SIAM J. Sci. Comput.,
28 (4) (2006) 1203-1227 Download
· M.P.Gualdani, A. Juengel, G.Toscani, A nonlinear fourth-order parabolic equation with
nonhomogeneous boundary conditions, SIAM J. Math. Anal., 37 (6)
(2006) 1761-1779 Download
· L. Gosse, G. Toscani,
Identification of asymptotic decay to self-similarity for one-dimensional
filtration equations, SIAM J. Numer. Anal., 43 (6) (2006) 2590-2606 Download
· J.A. Carrillo, M. Di Francesco, G. Toscani,
Intermediate asymptotics beyond homogeneity and
self-similarity: long time behavior for nonlinear diffusions, Arch. Ration. Mech. Anal., 180 (1) (2006) 127-149 Download
·
S.
Cordier, L. Pareschi, G. Toscani,
On a kinetic model for a simple market economy, J. Statist. Phys., 120 (2005)
253-277 Download
· M.J. Càceres, J.A. Carrillo,
G.Toscani, Long-time
behavior for a nonlinear fourth order parabolic equation, Trans. Amer.
Math. Soc. 357 (2005) 1161-1175 Download
· M. Bisi,
J.A. Carrillo, G. Toscani, Contractive Metrics for a Boltzmann equation
for granular gases: Diffusive equilibria,
J. Statist. Phys., 118
(1-2) (2005) 301-331 Download
· F. Filbet, L. Pareschi, G. Toscani, Accurate
numerical methods for the collisional motion of (heated) granular flows, J. Comput. Phys. 202, (1)
( 2005) 216-235 Download
·
B. Lods, G. Toscani, Long time
behavior of non--autonomous Fokker--Planck equations
and the cooling of granular gases., Ukrainian Math. J., 57 (6) 778-789 (2005) Download
· F. Salvarani, G. Toscani, Large-time asymptotics
for nonlinear diffusions: the initial-boundary value problem, J. Math. Phys. 46, 023502 (2005) (11 pages) Download
·
G. Toscani, A central limit theorem for solutions of the
porous medium equation, J. Evol. Equ.
5 (2005) 185-203 Download
· J.A. Carrillo, G. Toscani,
Wasserstein metric and large-time asymptotics of
nonlinear diffusion equations, in New trends in
mathematical physics, World Sci. Publ.,
Hackensack, NJ, (2004) 234–244. Download
Old Papers
1. F.Barbaini, G.Toscani,
Costruzione di misure mediante tempi d'arresto, Rend.
Ist. Lombardo, 1(A) 109, (1975) 49-64
2. I.Guarneri, G.Toscani, Statistical equilibrium
of a classical, randomly driven radiating system, Lett.Nuovo Cimento 14, n.3, serie 2 (1975) 101-107
3. I.Guarneri, G.Toscani, Stochastic electrodynamics of a one-dimensional
cavity, Bollettino UMI 1(5) 14-B (1977) 31-41
4. C.Bertoluzza, G.Toscani, Caratterizzazione della legge di
composizione d'esperienza per misure d'informazione idempotenti, Rend. Ist. Lombardo 1(A) 112 (1978) 99-109
5. C.Bertoluzza, G.Toscani, Diramativit`a
generalizzata e leggi di composizione in teoria dell'informazione, Rend. Ist. Lombardo 1(A) 113 (1979) 84-91
6. E.Gabetta, G.Toscani,
Multiple random scattering in one dimension,
Bollettino UMI 1(5) 17-B (1980) 1047-1062
7. G.Toscani, An approach to white-noise via wide-sense stationary
processes with piecewise constant sample functions, Bollettino
UMI 118-A (1981) 309-315
8. E.Gabetta, G.Toscani, Stochastic
stability of a class of linear dynamical systems, Rend. Sem. Mat.Univ. Polit. Torino 40 (2) (1981) 53-62
9. G.Toscani, Products of independent random processes and
gaussian white-noise, Rend. Sem. Mat.Univ. Polit.
Torino, Special Issue (1982) 233-239
10. G.Toscani, Sums of independent random processes, Bollettino UMI 1(6) 1-A (1982) 241-248
11. G.Toscani, Random motion of a perfectly inelastic particle,
Atti VI Congr. Naz. AIMETA, Genova (1982), 1,
268-276
12. G.Toscani, Solution globale du modele a vitesse
discrète de l'équation de
Boltzmann en théorie cinetique,
C.R.A.S. t.296 Serie 1 (1983) 577-580
13. G.Toscani, On the discrete velocity models of the Boltzmann
equation in several dimensions, Ann.Matem. Pura Appl.
Vol.CXXXVIII (1984) 279-308
14. N.Bellomo, R.Illner,
G.Toscani, Sur le problème
de Cauchy pour l'équation de Boltzmann semi-discrète, C.R.A.S. t.299, Serie I (1984) 835-839
15. G.Toscani, On the semidiscrete
Boltzmann equation, Atti VII Congr. Naz. AIMETA,
Trieste (1984), 1, 85-89
16. N.Bellomo, G.Toscani, On the Cauchy
problem for the nonlinear Boltzmann equation:global existence,uniqueness, and asymptotic behaviour,
J. Math.Phys. 12 (1985) 340-345
17. G.Toscani, On the asymptotic behaviour
and stability of the solution for the Broadwell model of the Boltzmann equation
in three dimensions, Math.Meth. in Appl. Sc. 17
(1985) 340-345
18. G.Toscani, Diffusion with collision of a perfectly inelastic
particle, Bollettino UMI 1(6) 4-B (1985) 801-812
19. G.Toscani, Global existence and asymptotic behaviour
for the discrete velocity models of the Boltzmann equation, J. Math.Phys. 111 (1985) 2918-2921
20. G.Toscani, N.Bellomo Global
existence, uniqueness and stability of the nonlinear Boltzmann equation with
almost general gas-particle interaction potential, Rend.Circolo
Matem. Palermo, Suppl. Serie II, n.8 (1985) 419-433
21. G.Toscani, The semidiscrete Boltzmann
equation for hard-spheres, Meccanica 120 (1985)
249-252
22. G.Toscani, Global existence and asymptotic behaviour
for the discrete velocity models of the Boltzmann equation, Quaderni
del CNR, GNFM Proceedings of Workshop on Mathematical Aspects of Fluid and
Plasma Dynamics, C.Cercignani, S.Rionero,
M.Tessarotto Eds., (1985) 565-573
23. N.Bellomo, G.Toscani, On the Cauchy
problem for the nonlinear Boltzmann equation: global existence, uniqueness and
asymptotic stability, Quaderni del CNR, GNFM
Proceedings of Workshop on Mathematical Aspects of Fluid and Plasma Dynamics, C.Cercignani, S.Rionero, M.Tessarotto Eds., (1985) 45-60
24. G.Toscani, On the nonlinear Boltzmann equation in unbounded
domains, Arch.Ration. Mech. Anal. 195 (1986) 37-49
25. V.Protopopescu, G.Toscani, Existence
globale pour un problème mixte
associè á l'équation de
Boltzmann non-lineaire, C.R.A.S. t.302 Serie I, n.6
(1986) 255-258
26. N.Bellomo, G.Toscani, The nonlinear
Boltzmann equation: analysis of the influence of the cut-off on the solution of
the Cauchy problem, XV Int. Symposium on R.G.D., B.G.Teubner
Editor Vol.I (1986) 167-174
27. N.Bellomo, G.Toscani, Lecture notes
on the Cauchy problem for the nonlinear Boltzmann equation, Internal Report Dip.Matem. Polit. Torino, Levrotto
& Bella Editors (1986) 1-101
28. G.Toscani, New results on the Boltzmann equation in unbounded
domains, Trans.Theory and Stat. Phys. 116 (2-3)
(1987) 223-230
29. N.Bellomo, G.Toscani, On theEnskog-Boltzmann equation in the whole space R3: Some
global existence,uniqueness and stability results, Comput.Math. Applic. 13 n.9-11
(1987) 851-859
30. G.Toscani, V.Protopopescu, The
nonlinear Boltzmann equation with partially absorbing boundary conditions.Global existence and uniqueness results, J.
Math. Phys. 128 (1987) 1140-1145
31. G.Toscani, H-theorem and asymptotic trend to equilibrium for a
rarefied gas in the vacuum, Arch.Ration. Mech.
Anal.100 (1987) 1-12
32. R.Monaco, G.Toscani, New results on
the semidiscrete Boltzmann equation for a binary gas
mixture, Meccanica 122 (1987) 179-184
33. G.Toscani, Global solutions to the Boltzmann equation near a
local Maxwellian, Rend. Sem. Mat.Univ. Pol. Torino, Fasc.Spec. Hyperbolic Equations (1988) 279-286
34. G.Toscani, C.V.M.Vandermee An
abstract approach to nonlinear Boltzmann type equations, Ann.Univ.
Ferrara Sez.7, Vol. XXXIV (1988) 75-100
35. G.Toscani, Global solutions of the initial value problem for
the Boltzmann equation near a local Maxwellian, Arch.Ration.
Mech. Anal. 102 (1988) 231-241
36. G.Toscani, On the Cauchy problem for the discrete Boltzmann
equation with initial values in L1( R+), Commun.Math.
Phys. 1121 (1989) 121-142
37. N.Bellomo, G.Toscani, On the Enskog-Boltzmann equation in unbounded domains: some global
existence and stability results Proceedings of III Meeting on Waves and
Stability in Continuous Media, Bari, 1985 M.Maiellaro,
L.Palese Eds., Bari (1989) 1-18
38. A.Palczewski, G.Toscani, Global solution
of the Boltzmann equation for rigid spheres and initial data close to a local
Maxwellian, J. Math.Phys. 430 (1989) 2445-2450
39. N.Bellomo, M.Lachowicz, A.Palczewski, G.Toscani, On the
initial value problem for the Boltzmann equation with a force term, Trans.Theory & Stat. Phys. 118 (1) (1989) 87-102
40. G.Toscani, Recent developments on the existence theory for the
discrete velocity models, Proceedings of Discrete Kinetic Theory, Lattice Gas
Dynamics and Foundation of Hydrodynamics, Torino, 1988, R.Monaco
Ed.World Scientific, Singapore (1989) 355-370
41. N.Bellomo, G.Toscani, On the Cauchy
problem for the discrete Boltzmann equation with multiple collisions:
existence, uniqueness and stability, Stab.Meth. Appl.
Anal. in Continua 1 (1990) 165-184
42. G.Borgioli, R.Monaco, G.Toscani, On the semidiscrete Enskog equation, Proceedings of the V Meeting on Waves and
Stability in Continuous Media, Sorrento, 1989, S.Rionero
Ed.World Scientific, Singapore (1991) 34-40
43. G.Borgioli, A.Pulvirenti, G.Toscani, On the Cauchy problem for the semidiscrete Enskog equation,
Proceedings of Advances in Kinetic Theory and Continuoum
Mechanics, R.Gatignol & Soubbaramayer
Eds., Springer Verlag, Berlin (1991) 91-98
44. G.Toscani, W.Walus, Recent results on
the fractional step method in discrete kinetic theory, Proceedings of Discrete
Models od Fluid Dynamics, Coimbra 1990, A.Alves Ed., World Scientific, Singapore (1991) 123-130
45. G.Toscani, Existence results for some nonlinear hyperbolic
system from kinetic theory of gases, Non linear
hyperbolic equations and field theory, M.K.V.Murthy&
L.Spagnolo Eds.(1991) Pitman Research Note Series
46. G.Toscani, On the discrete Boltzmann equation with multiple
collisions, Atti Accad.Peloritana Pericolanti,
Classe Sci. Fis. Mat. Nat. V. LXVIII, Suppl. 1 (1991)
441-457
47. G.Toscani, W.Walus, The
initial-boundary value problem for the four velocity plane Broadwell model, Math.Meth. and Models in Appl. Sci. 1 (1991) 293-310
48. G.Toscani, On Shannon's entropy powers inequality, Ann.Univ. Ferrara, Sez. 7, Vol. XXXVII (1991) 167--184
49. G.Toscani, An inequality for convex functionals and its
application to a Maxwellian gas Le Matematiche, XLVI,
1 (1991) 481 491
50. G.Toscani, Convergence towards equilibrium for a gas of
Maxwellian pseudomolecules, Cont.Mech. Termodyn. 4 (1992) 95-107
51. G.Toscani, New a priori estimates for the spatially homogeneous
Boltzmann equation, Cont.Mech. Termodyn.
4 (1992) 81-93
52. G.Toscani, A.V.Bobylev On the
generalization of the Boltzmann H-theorem for a spatially homogeneous Maxwell
gas, J. Math.Phys. 33 (1992), 2578--2586.
53. G.Toscani, Lyapunov functionals for a Maxwell gas, Arch.Ration. Mech. Anal. 119 (1992) 301-307
54. V.Comincioli, G.Toscani,
Operator splitting of the Boltmann equation for a
Maxwell gas in “Boundary Value Problems for Partial Differential Equations and
Applications”, RMA Res. Notes Appl. Math., 29 C.Baiocchi
and J.L.Lions Eds., Masson Paris, (1993) 345--350
55. E.Gabetta, G.Toscani, On convergence
to equilibrium for Kac's caricature of a Maxwellian gas, J. Math.Phys.
35, 1 (1994) 190-208
56. E.Gabetta, G.Toscani, On entropy
production rates for some kinetic equations, Bull.Tech.
Univ. Istanbul 47, (1994) 219-230
57. G.Toscani, Bivariate
distributions with given marginals and applications to kinetic theory of gases, Atti
"Convegno Nazionale del Gruppo AIMETA di Meccanica Stocastica'' E.
Mascolino Ed., Messina (1994)
58. G.Toscani, Strong convergence in Lp
for a spatially homogeneous Maxwell gas with cut-off, Transp.The.&
Stat. Phys. 26 (1995) 319-328
59. P.L.Lions, G.Toscani, A sthrenghtened central limit theorem for smooth densities,
J. Funct.Anal. 128 (1995) 148-167
60. V.Comincioli, G.Naldi,
G.Toscani, Nonlinear diffusion and fluid dynamical
limit from discrete velocity models, Comm. Appl. Nonlinear Anal. 2 (1995) 1-29
61. E.Gabetta, G.Toscani, B.Wennberg Metrics for probability distributions and the
trend to equilibrium for solutions of the Boltzmann equation J. Statist.Phys. 81 (1995) 901-934
62. A.Pulvirenti, G.Toscani, The theory of
nonlinear Botzmann equation for Maxwell molecules in
Fourier representation Ann.Matem. Pura Appl. Vol.
CLXXI (1996) 181-204
63. E. Gabetta, L. Pareschi, G. Toscani, Wild's sums
and numerical approximation of nonlinear kinetic equations, Transp.The.
& Stat. Phys. 25 (1996) 515-530
64. E.Gabetta, G.Toscani, B.Wennberg The Tanaka functional and exponential
convergence for non cut-off molecules, Transp.The. & Stat. Phys. 25 (1996) 543-554
65. A.V. Bobylev, G.Toscani,
Two dimensional half-space problems for the Broadwell discrete velocity model,
Continuum Mech.Thermodyn. 8, (1996) 257-274
66. G.Toscani, Kinetic approach to the asymptotic behaviour of the solution to diffusion equations Rendic. di Matem.Serie VII 16
(1996) 329-346
67. G.Toscani, On regularity and asymptotic behaviour
of a spatially homogeneous Maxwell gas Rendiconti Circolo Mat.Palermo Suppl. 45
(1996) 649-662
68. A. Pulvirenti, G.Toscani, Fast diffusion as a
limit of a two-velocity kinetic model Rendiconti Circolo Mat. Palermo Suppl. 45 (1996) 521-528
69. E. Gabetta, L. Pareschi, G. Toscani, Relaxation
schemes for nonlinear kinetic equations, SIAM J. Numer.Anal.
34 (1997) 2168--2194
70. P.L.Lions, G.Toscani, Diffusive
limits for finite velocity Boltzmann kinetic models, Revista
Mat. Iberoamer. 13 (1997) 473--513
71. V.Comincioli, G.Naldi,
G.Toscani, The diffusive limit of two velocity
models: the porous medium equation, Transp.The. &
Stat. Phys. 26 (1997) 49-63
72. G.
Toscani, Sur l'inégalité logarithmique
de Sobolev CRAS 324, S'erie I (1997) 689-694
73. S. Jin, L. Pareschi, G. Toscani, Diffusive relaxation
schemes for multiscale
discrete-velocity kinetic equations, SIAM J. Numer. Anal. 35 2405-2439 (1998)
74. A. Pulvirenti, G. Toscani, On the grazing collision limit for the spatially
homogeneous Boltzmann equation Rendiconti Circolo Mat.Palermo Suppl. 57
(1998) 405-412
75. G. Toscani, The grazing
collisions asymptotics of the non cut-off Kac equation, M2AN Math.Model.
Numer. Anal., 32 (1998) pp 763-772
76. J.A. Carrillo, G. Toscani,
Exponential convergence toward equilibrium for homogeneous Fokker-Planck-type
equations, Math.Methods Appl. Sci., 21 (1998)
1269-1286
77. E.A. Carlen, E. Gabetta, G. Toscani, Propagation of smoothness and the rate of
exponential convergence to equilibrium for a spatially homogeneous Maxwellian
gas, Commun.Math. Phys. 199, 521-546 (1999).
78. G. Toscani, C. Villani
Probability metrics and uniqueness of the solution to the Boltzmann equation
for a Maxwell gas, J. Statist.Phys., 94 619-637
(1999)
79. G. Naldi, L. Pareschi, G. Toscani, Hyperbolic
relaxation approximation to nonlinear parabolic problems, on International
Series of Numerical Mathematics, 130 Birkhäuser
Verlag, Basel (1999) 747-756
80. G. Toscani, C. Villani,
Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for
the spatially homogeneous Boltzmann equation, Commun.Math.
Phys. 203, (1999) 667-706
81. G. Toscani, Entropy
production and the rate of convergence to equilibrium for the Fokker-Planck
equation, Quarterly of Appl.Math., Vol. LVII (1999),
521-541
82. G. Toscani, Remarks on
entropy and equilibrium states, Appl.Math. Letters,
12 (1999) 19-25
83. S. Jin, L. Pareschi, G. Toscani, Uniformly accurate
diffusive relaxation schemes for multiscale transport equations, SIAM J.
Numerical Analysis 38, 13, (2000) pp. 913-936.
84. A. Arnold, P. Markowich, G. Toscani, On large time asymptotics
for drift-diffusion-Poisson systems, Transport Theory Statist.Phys.
29 (2000), no. 3-5, 571--581.
85. L. Pareschi, G. Russo, G. Toscani, Fast spectral methods for the Fokker-Planck-Landau
equation, J. Comput.Phys. 165 (2000), 216--236.
86. G. Toscani, C. Villani, On
the trend to equilibrium for some dissipative systems with slowing increasing a
priori bounds, J. Statist.Phys., 98 (2000) 1279--1309
87. L.
Pareschi, G.Russo, G.
Toscani, Méthode spéctrale
rapide pour l'équation de Fokker-Planck-Landau, CRAS
330, Série I, (2000) 517--522
88. J. A. Carrillo, G. Toscani,
Asymptotic L1-decay of the porous medium equation to self-similarity
, Indiana Univ.Math. J., 46 (2000), 113--142
89. A. Arnold, P. Markowich, G. Toscani, A. Unterreiter, On
generalized Csiszar--Kullback
inequalities, Monatschefte für Mathematik,
131, (2000) 235--253,
90. G. Toscani, One-dimensional
kinetic models with dissipative collisions, M2AN Math.Model.
Numer. Anal., 34 (2000), 1277-1292
91. V. Comincioli, G. Naldi, L. Pareschi, G. Toscani, Numerical methods for multiscale hyperbolic
systems and nonlinear parabolic equations, Ann.Univ.
Ferrara, Sez. 7, Vol. XLV Suppl., (2000) 255--266
92. G. Naldi, L. Pareschi, G. Toscani, Convergence
of kinetic approximation to nonlinear parabolic problems, in Godunov Methods
(Oxford 1999), E.F. Toro (Editor), 655--662 Kluwer/ Plenum Publishers, New York
(2001)
93. A. Jüngel, P.A. Markowich, G. Toscani, Decay
rates for solutions of degenerate parabolic systems, Electron.J.
Diff. Eqns., Conf. 06, (2001), pp. 189-202.
94. A. Arnold, P. Markowich, G. Toscani, A. Unterreiter, On
convex Sobolev inequalities and the rate of convergence to equilibrium for
Fokker-Planck type equations, Commun.Partial Diff. Equa. 26 (2001), 43-100
95. J.A. Carrillo, A. Jüngel,
P.A. Markowich, G. Toscani,
A. Unterreiter, Entropy dissipation methods for
degenerate parabolic equations and systems and generalized Sobolev
inequalities, Monatschefte für Mathematik,
133 (2001), 1-82
96. J.L. Lopez, J. Soler, G. Toscani,
Time rescaling and asymptotic behavior of some fourth order degenerate
diffusion equations, Comput.Math. Appl., 43 (2002)
721-736
97. G. Naldi, L. Pareschi, G. Toscani, Relaxation
schemes for partial differential equations and applications to degenerate
diffusion problems, Surv.Math. Ind. 10, (2002)
315--343
98. V. Comincioli, G. Naldi, T. Scapolla, G. Toscani, Multiscale hyperbolic equations: numerical
approximation in the diffusive regime, in Recent Trends in Numerical Analysis,
L. Brugnano& D. Trigiante
Eds. Nova Science Publishers, (2001)
99. J.A. Carrillo, G. Toscani,
Long-Time asymptotics for strong solutions of the
thin film equation, Commun.Math. Phys., 225 (2002)
551-571
100. J.A. Carrillo, C. Lederman, P.A. Markowich
and G. Toscani, Poincare Inequalities for Linearizations of Very Fast Diffusion Equations,
Nonlinearity 15, (2002) 565-580
101. T. Goudon, S. Junca, G. Toscani, Fourier-based
distances and Berry-Esseen like inequalities for
smooth densities, Monatschefte für Mathematik, 135 (2002) 115-136
102. L. Gosse, G. Toscani, An
asymptotic preserving well-balanced scheme for the hyperbolic heat equation,
CRAS Série I, 334 (2002) 1-6
103. L. Gosse, G. Toscani, Space
localization and well-balanced scheme for discrete kinetic models in diffusive
regimes, SIAM J. Numer.Anal. 41, (2) (2003) 641-658
104. G. Naldi, L. Pareschi, G. Toscani, Spectral
methods for one-dimensional kinetic models of granular flows and numerical
quasi-elastic limit, M2AN Math.Model. Numer. Anal., 37, (2003) 73-90
105. A. Jüngel, G. Toscani, Decay rates of solutions to a nonlinear
fourth--order parabolic equation, Z. Angew.Math.
Phys. 54, (2003) 377-386
106. F. Frommlet, J.L. López, J.
Soler, G. Toscani, Nonlinear rescaling, dispersion
lemmas and conservation laws for some linear kinetic and quantum-kinetic problems.Comm. Appl. Nonlinear Anal. 10 (2003), 1--20.
107. G. Toscani, Entropy methods
for the asymptotic behaviour of fourth-order
nonlinear diffusion equations. "WASCOM 2001"-11th Conference on Waves
and Stability in Continuous Media (Porto Ercole, june
3-9, 2001 ), World Sci.Publishing,
River Edge, NJ, (2002) 569--578.
108. L. Pareschi, G. Toscani, C. Villani, Spectral methods for the non cut-off Boltzmann equation and
numerical grazing collision limit, Numer.Math., 93
(2003) 527-548
109. A.V. Bobylev, C. Cercignani,
G. Toscani, Proof of an asymptotic property of
self-similar solutions of the Boltzmann equation for granular materials, J. Statist.Phys., 111 (2003) 403-417
110. M.P. Gualdani, A. Jüngel, G. Toscani, Exponential
decay in time of solutions of the viscous quantum hydrodynamic equations, Appl.Math. Letters, 16 (2003) 1273-1278
111. L. Gosse, G. Toscani,
Asymptotic preserving and well-balanced schemes for radiative transfer and the Rosseland approximation, Numer.Math.
98 ( 2) (2004) 223 - 250
112. M. Bisi, G. Spiga, G. Toscani,
Hydrodynamics from grad's equations for weakly inelastic granular flows,
Physics of Fluids 16 (12) (2004) 4235-4247
113. Hailiang Li, G. Toscani, Long-time asymptotics of kinetic models of granular flows, Arch.Ration. Mech. Anal., 172 (3) (2004) 407-428
114. B. Lods, G. Toscani, The dissipative linear Boltzmann equation for hard
spheres, J. Statist.Phys., 117 (3-4) (2004) 635-664
115. A. Pulvirenti, G. Toscani, Probabilistic treatment of some dissipative
kinetic models, in "WASCOM 2003"-12th Conference on Waves and
Stability in Continuous Media, World Sci. Publishing, River Edge, NJ, ( 2004) 407--420
116. G. Toscani et al. Entropy
and equilibria of many particle systems: an essay on recent research.Monatschefte für Mathematik,
142 (1-2) (2004) 35-43
117. L. Pareschi, G. Toscani, Modelling and numerical methods for granular
gases, in "Modeling and Computational Methods for Kinetic Equations",
P. Degond, L. Pareschi and
G. Russo Eds., Birkhauser, Boston (2004) 259-285
118. M. Bisi, G. Toscani,
Self-similar solutions of a nonlinear friction equation in higher dimensions, Ann.Univ. Ferrara - Sez 7 - Ann. Univ. Ferrara - Sez. VII -
Sc. Mat. Vol. L, (2004) 91-110.
119. J.A. Carrillo, M.P. Gualdani,
G. Toscani, Finite speed of propagation in porous
media by mass transportation methods, CRAS Série I, 338 (10) (2004) 815-818
120. A. Pulvirenti, G. Toscani, Asymptotic properties of the inelastic Kac model,
J. Statist.Phys., 114 (2004) 1453-1480
121. J.A. Carrillo, G. Toscani,
Wasserstein metric and large-time asymptotics of
nonlinear diffusion equations, in New trends in
mathematical physics, World Sci.Publ., Hackensack,
NJ, (2004) 234–244.
122. G. Spiga, G. Toscani, The
dissipative linear Boltzmann equation. Appl. Math. Letters, 17 (3): 295-301
(2004)
123. L. Pareschi, G.Russo, G. Toscani,
A kinetic approximation of Hele-Shaw flow, CRAS Série I, 338 (2) (2004) 177-182
124. G. Toscani, Kinetic and hydrodinamic models of nearly elastic granular flows, Monatschefte für Mathematik, 142
(1-2) (2004) 179-192