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Abstract

The aim of these notes is to compute the extremal field of a Kähler
manifold in a nontrivial example.

Thus we compute the Futaki character for the family of odd sym-
plectic Grassmannians Gω(2, 2n + 1), i.e. Grassmannians of “La-
grangian” 2-planes in a complex vector space of dimension 2n + 1
endowed with a skew 2-form of maximal rank ω. These are Fano man-
ifolds and more precisely generic elements of the Plücker linear system
on the Grassmannian G(2, 2n + 1). The character is nonvanishing (so
our varieties are not Kähler-Einstein) and we identify the extremal
field in the sense of Calabi. This turns out to be the generator of
the centre of LieAut(X). This computation is crucial if one wants to
investigate the existence of an extremal metric on Gω(2, 2n + 1).

1 Introduction

The problem of the existence of a Kähler-Einstein metric on a compact com-
plex manifold X was completely solved by Yau [15] more than 25 years ago
in case X has vanishing or ample canonical bundle. When X is a Fano
manifold, on the other hand, the problem is definitely more subtle. During
the years many obstructions to the existence of a Kähler-Einstein metric on
a Fano manifold have been found, their algebro-geometric nature becoming
increasingly deep and difficult to control. The first such an obstruction was
found by Matsushima in 1957: if a Fano X supports a Kähler-Einstein metric
then Aut(X) is reductive group. The second type of obstruction is a char-
acter FX on Lie Aut(X) discovered by Futaki in 1982 and bearing his name.
If X admits a Kähler-Einstein metric this character vanishes. These two
obstructions deal with automorphisms of X, so are trivially satisfied when
Aut(X) = {1}. Other obstructions relate the existence of a Kähler-Einstein
metric to the stability of Chow and Hilbert points of (X,−mKX) and more
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generally to other stability properties of the polarised manifold (X,−KX).
The first of these obstructions was found by Tian in 1997 [14]. Other sta-
bility obstructions were later found in [2], [3], [10] [11] . Notwithstanding
the great progress towards the final solution to the Calabi conjecture in the
Fano case, there are still very few nontrivial examples were the various ob-
structions can be explicitely computed. The purpose of this note is to carry
out the computation of the Futaki invariants for a hyperplane section X of
the Grassmannian G(2, 2n + 1) embedded by Plücker. X is a Fano mani-
fold with c1(X) = 2n det(S∗), where S is the universal bundle on G and so
det(S∗) is the line bundle associated to the Plücker embedding. The group
Aut(X) is not reductive (see Theorem 2.4) so X admits no Kähler-Einstein
metric. Hwang and Mabuchi conjectured [7] that the automorphism group
of a Fano is either reductive or has nontrivial center. In fact Aut(X) has a
1-dimensional center and FX can be nonzero only on the center. These man-
ifolds have been studied recently also by Ion Mihai in his 2005 PhD thesis at
Grenoble, in connection with representation theory.

The computation is based on the localization formula due to Futaki, see
Theorem 3.3 below.

The organization of these notes is as follows: in section 2 we determine
the automorphism group of the hyperplane section. In section 3 we study
the normal bundle to the two components of the zero locus of w, the central
element of Lie Aut(X). In section 4 we compute the Futaki invariant of this
field by applying the localization formula. In our case this becomes a problem
in Schubert calculus.

Although the resulting formula (4.2) is completely explicit and can be
used to compute effectively FX(w) for particular values of n, it is quite hard
to show that the invariant is nonzero in general. In the final section, we show
that FX(w) < 0, at least for large n.

Acknowledgements. These notes are based on some old work (2005) under
the direction of G. P. Pirola and A. Ghigi, to whom I am very grateful.

2 The automorphism group

By G(2, k) we denote the Grassmannian of 2-planes in Ck. S and Q denote
respectively the universal subbundle and the quotient bundle. The Plücker
embedding corresponds to the line bundle OG(1) = det S∗ = Λ2S∗. Recall
that H0(G(2, k), S∗) = (Ck)∗ and H0(G(2, k), Λ2S∗) = Λ2(Ck)∗. Therefore
the Plücker embedding maps G(2, k) to P(Λ2Ck) and the hyperplane section
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Xα corresponding to α ∈ H0(G(2, k),O(1)) = Λ2(Ck)∗ is simply the locus
of 2-planes u such that α|u = 0. By a suitable choice of basis {ei} of Ck,

the 2-form α can always be put in the form α =
∑r−1

k=0 e∗2k+1 ∧ e∗2k+2, where
2r is the rank of α. Therefore given two forms α and β there is an element
g ∈ Gl(k, C) such that g∗α = β if and only if α and β have the same rank. It
is easy to see that the action of Gl(k, C) on hyperplanes is just the pullback
of the corresponding 2−forms. This yields the following.

Lemma 2.1 Hyperplane sections of G(2, k) in the Plücker embedding split
into bk/2c classes of projective isomorphism indexed by the rank of the cor-
responding 2−form.

It is a simple matter to decide which classes contain smooth sections.

Lemma 2.2 The smooth hyperplane sections of G(2, k) are exactly those
given by a 2-form of maximal rank.

Proof. In Plücker coordinates the equation of a hyperplane section of rank
r is

{λ12 + ... + λ2r−1,2r = 0} ∩G(2, k).

Recall that elements u ∈ G(2, k) can be parametrised by 2 × k matrices
Z of rank 2, whose rows give a basis of u. (These are the so-called Stiefel
coordinates for G(2, l), see [5, p. 92].) For such a matrix Z denote by Zij

the 2× 2-minor composed of the i-th and the j-th column and let Uij denote
the set of 2× k matrices for which det Zij 6= 0. The affine coordinates on Uij

(or better on its image in G(2, k)) are the (nontrivial) entries of the matrix

Z−1
ij · Z =

(
x11 . . . 1 0 . . . x1k

x21 . . . 0 1 . . . x2k

)
.

If r < bk/2c and α = e∗1∧e∗2 + · · · +e∗2r−1∧e∗2r, then Xα∩Uk−1,k has equation

x11x22 − x12x21 + · · ·+ x1,2r−1x2,2r − x1,2rx2,2r−1 = 0.

This is a homogeneous affine quadric hypersurface so the origin, which cor-
responds to the point u = ek−1 ∧ ek, is a singular point of Xα. On the other
hand if r = bk/2c the equation becomes

x11x22 − x12x21 + · · ·+ x1,2n−3x2,2n−2 − x1,2n−2x2,2n−3 + 1 = 0

if k = 2n and

x11x22 − x12x21 + · · ·+ x1,2n−3x2,2n−2 − x1,2n−2x2,2n−3 − x2,2n = 0

if k = 2n + 1. In both cases Xα ∩ Uk−1,k is smooth. The intersection of Xα

with any other Uij behaves in a similar way.
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Q.E.D.

The smooth hyperplane section of G(2, 2n) turns out to be a rational ho-
mogeneous space. In fact it is the set of isotropic 2-planes in the complex
symplectic vector space (C2n, α). The action of Sp(2n, C) is transitive on
such planes, therefore Xα is homogeneous and supports a Kähler-Einstein
metric by a theorem of Borel-Hirzebruch. In particular the Futaki invari-
ant vanishes. This is the reason why in these notes we restrict attention to
section of G(2, k) with k = 2n + 1 an odd number.

From now on, we will denote by X the smooth hyperplane section of
G = G(2, 2n + 1) corresponding to α = e∗1 ∧ e∗2 + · · ·+ e∗2n−1 ∧ e∗2n.

The following is a well-known application of Bott theorem [1]. For an
elementary proof see [8].

Theorem 2.3
Lie Aut(G(k, n)) ∼= sl(n, C);

Aut0(G(k, n)) ∼= PSl(n, C).

The second isomorphism is induced by the action of A ∈ Sl(n, C) on k-planes
sending π to Aπ.

We come back to the problem of finding Lie Aut(X). There is one re-
markable subgroup of Aut(X), namely automorphisms of G that leave X
fixed. By the above result, we can choose a matrix representative M for any
such automorphism. Let A denote the antisymmetric (2n + 1) × (2n + 1)
matrix associated to the canonical form α. An admissible M must satisfy
tMAM = µA for some nonzero complex number µ. By a straightforward
calculation, M must then be of the form

M =

(
µS 0
a µ−2n

)
where S ∈ Sp(n, C), µ ∈ C∗, a ∈ C2n. This shows that Lie Aut(G) contains
the semi-direct sum algebra g = sp(n, C) ⊕ C ⊕ C2n. The natural way to
think about g is to consider matrices of the form(

µI + H 0
a −2nµ

)
where µ ∈ C, H is a complex symplectic 2n × 2n matrix and a ∈ C2n. The
main result of this section is the following.

Theorem 2.4
Lie Aut(X) = g.
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The following result reduces the problem to a (not so simple) dimension
count.

Lemma 2.5 Let M be a compact complex manifold with h1(M,O) = 0. Let
L → M be an Aut(M)−equivariant line bundle. Suppose that the action of
Aut(M) on the divisors in |L| has an open orbit U . Finally let D be any
smooth divisor in U such that the restriction map

r : H0(M, T ′M) → H0(D, T ′M |D)

is an isomorphism. Then

h0(D, T ′D) = h0(M, T ′M)− h0(D, L|D). (2.1)

Proof. Let D be given by s = 0, for some s ∈ H0(M, L). Let v be any
holomorphic vector field on M ; it generates a 1-parameter subgroup φt. Since
L is Aut(M)-equivariant, φt lifts to a 1-psg φ∗t of L. The derivative Lvs =
d
dt

φ∗t s is therefore a well defined section of L. Put E = TDU . Since U is an
orbit for the action of Aut(M) on |L|, E = {Lvs|v ∈ H0(M, T ′M)}. Thus we
get a decomposition H0(M, L) = E ⊕ Cs. Now we show that the restriction
map r : E → H0(D, L|D) is an isomorphism. The restriction (to D) short
exact sequence induces the exact sequence

0 → C ∼= H0(M,OM) → H0(M, L) → H0(D, L|D) → 0

where we usedOM(L)(−D) ∼= OM and h1(M,O) = 0. This gives surjectivity.
To get injectivity (when resctricted to E) just observe that the kernel of the
first map in the above sequence can be canonically identified with Cs. To
conclude, consider the short exact sequence

0 → OD(T ′D) → OD(T ′M |D) → OD(L|D) → 0

where we used the adjunction formula ND|M ∼= [D]|D. The induced cohomol-
ogy sequence is

0 → H0(D, T ′D) → H0(D, T ′M |D)
j→ H0(D, L|D) → ... .

We will show that the last map (which is sometimes called the adjunction
map) is surjective. For this, lift v ∈ H0(D, T ′MD) to ṽ ∈ H0(M, T ′M)
uniquely (this is possible by hypothesis). It is easy to check that j(v) = Levs.
Therefore the following diagram commutes:

H0(M, T ′M) −−−→ Ey y
H0(D, T ′M |D)

j−−−→ H0(D, L|D)
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where the upper row is the infinitesimal action v 7→ Lvs (which is surjective)
and the columns are isomorphisms. So the adjunction map j is onto. This
proves (2.1).

Q.E.D.

Next we need the following vanishing results for some cohomology groups.

Lemma 2.6 Let G = G(s, l + 1). If k ≥ l + 1 − s, 2p > (l − k)(l − k + 1)
and q ≥ 0, then

Hp(G, Ωq(k)) = 0.

In particular
Hp(G, Ωq(l)) = 0

for any q and any positive p.

Proof. See [12], page 176.

Lemma 2.7 ([12]) Let G = G(s, l + 1) and 1 ≤ k ≤ l. If q > n − s and
G 6= G(2, 4), then for any p

Hp(G, Ωq(k)) = 0.

Proof. See [12], page 163.

Corollary 2.8 For 1 ≤ s < l we have

H0(G(s, l + 1), T ′G(−1)) ∼= 0;

H1(G(s, l + 1), T ′G(−1)) ∼= 0.

Proof. Set G = G(s, l + 1), n = dimCG, p ∈ {0, 1}. Applying twice Serre
duality we get Hp(G, TG(−1)) ∼= Hp(G, Ωn−1(l)). In the case p = 1, we
conclude by the Lemma 2.6. When p = 0, we apply Lemma 2.7. This works
in our case since k = l, q = n− 1 > n− s whenever s > 1, hence when s = 2.

Q.E.D.

Proof of 2.4. We show first that 2.5 applies when M = G = G(2, 2n + 1),
D = X, L = [X] = det(S∗). Everything is straightforward except that
the restriction map H0(G, T ′G) → H0(X, T ′G|X) is an isomorphism. The
restriction short exact sequence on sheaves induces the exact sequence

0 → H0(G, T ′G(−1)) → H0(G, T ′G) → H0(X, T ′G|X) →
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→ H1(G, T ′G(−1))

and we are done by the above vanishing result. So we get

dim(Lie Aut(X)) = dim(Lie Aut(G))− h0(X, L|X).

Now count dimensions: we have dim(g) = 2n2 + 3n + 1, dim(Lie Aut(G)) =
4n(n + 1), dim(H0(X, L|X)) = 2n2 + n− 1, so dim(g) = dim(Lie Aut(X)) =
2n2 + 3n + 1.

Q.E.D.

3 Zero loci and their normal bundles

Now we turn to the computation of the Futaki invariant of a smooth hyper-
plane section X of G(2, 2n + 1).

We know that Lie Aut(X) is the semidirect sum sp(n, C) ⊕ b ⊕ c where
b ∼= C and c ∼= C2n. Note that b is the (1-dimensional) center of Lie Aut(X).

It follows from the general theory that the Futaki invariant vanishes on
sp(n, C) and c.

Lemma 3.1
FX |sp(n,C) = 0.

Proof. The Lie algebra sp(n, C) is semisimple and the Futaki invariant
vanishes on brackets, see [4].

Lemma 3.2
FX |c = 0.

Proof. In fact c is the Lie algebra of the unipotent radical of Aut(X) and a
theorem of Mabuchi [9] shows that F vanishes on such a subalgebra.

It remains to compute FX |b. As a generator for b we choose the field w
associated to the matrix diag(1, 1, ...,−2n). The associated 1-psg is repre-
sented by φt = diag(et, et, ..., e−2nt).

The computation of FX(w) is based on the folllowing localization formula.

Theorem 3.3 Let M be an n-dimensional Fano manifold and w a holo-
morphic vector field on M whose zero locus is the disjoint union of smooth
submanifolds Zλ. Denote by Lλ(x) : NZλ|X → NZλ|X the operator Lλ(v) =
(∇vw)⊥. We say that w is nondegenerate if Lλ is an automorphism of the

7



normal bundle. Under such hypotheses the following localization formula
holds

FX(w) =
1

n + 1

∑
λ

∫
Zλ

(tr(Lλ) + c1(X))n+1

det(Lλ +
√
−1
2π

Kλ)

where Kλ are the curvature operators of the normal bundles to Zλ.

See ([4], Theorem 5.2.8 p. 73) and [13] a complete discussion; here we just
say that in practice one has to expand the denominator as a formal power
series in the Chern classes ci(Kλ) and integrate the terms of degree dim(Zλ).

The rest of these notes will be devoted to the application of this result in
our case.

Lemma 3.4 The field w has nondegenerate zero locus.

Proof. We must check that Z(w) contains only smooth connected compo-
nents Zλ with nonsingular transverse derivative Lλ. In fact Z(w) = Z1 ∪ Z2

where Z1 = G(2, span(e1, ..., e2n)) ∩X and Z2 = {Λ ∈ X|e2n+1 ∈ Λ} = {Λ ∈
G(2, 2n + 1)|e2n+1 ⊂ Λ}. Note that Z1 is the Grassmannian of lagrangian
2-planes in the symplectic space (span(e1, ..., e2n), α), while Z2 is isomorphic
to P2n−1 via the map v ∧ e2n+1 ↔ [v]. So we have dim(Z1) = 4n − 5 and
dim(Z2) = 2n − 1. The normal bundles to Z1, Z2 have rank respectively
2, 2(n − 1). Now checking that Li = ∇⊥W ∈ End(NZi|X) are isomorphisms
is a local matter: Z1 can be covered by the usual charts Uij ∩ Z1 with the
restriction 1 ≤ i < j ≤ 2n. Let vk, wk denote local coordinates for any point
in Uij. Parametric equations for its trajectory under φt in Uij are given by(

etv1 etv2 ... et ... 0 ... e−2ntv2n−1

etw1 etw2 ... 0 ... et ... e−2ntw2n−1

)
.

In particular we see that Uij is φt−invariant and upon multiplying by diag(e−t, e−t)
we get parametric equations in the coordinates of Uij:(

v1 v2 ... 1 ... 0 ... e−(2n+1)tv2n−1

w1 w2 ... 0 ... 1 ... e−(2n+1)tw2n−1

)
.

We see that local equations for Z1 inside Uij ∩ X are v2n−1 = w2n−1 = 0
and thus ∂v2n−1 , ∂w2n−1 is a basis for the normal bundle in all of Uij. It is
now easy to conclude that w = −(2n + 1)

(
∂v2n−1 + ∂w2n−1

)
and finally that

L1 = diag(−2n−1,−2n−1). Next cover Z2 with charts Ui,2n+1, 1 ≤ i ≤ 2n.
A calculation similar to the one above yields L2 = diag(2n + 1, ..., 2n + 1)

in the basis ∂w1 , ..., ∂̂wi
, ..., ∂w2n−1 of NZ2|X1 over Ui,2n+1 (remember that L2

must be a (2n− 2)× (2n− 2) matrix).
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Q.E.D.

In the following we use the following notation: Ni = NZi|X and Ii denotes
the integrand over Zi in the localization formula. So that

FX(w) =

∫
Z1

I1 +

∫
Z2

I2. (3.1)

The following useful facts were obtained as a byproduct of the above proof.

Lemma 3.5

rank N1 = 2

tr L1 = −4n− 2

det L1 = (2n + 1)2

rank N2 = 2(2n− 1)

tr L2 = (2n + 1)(2n− 2)

det L2 = (2n + 1)2n−2

(3.2)

The most important ingredients for the Futaki localization formula are the
Chern classes ck(Ni). We will actually determine the normal bundles up to
C∞ isomorphism.

Lemma 3.6 Let S2n be the universal subbundle on G(2, 2n) and SP2n−1 and
QP2n−1 be respectively the universal and quotient bundles on P2n−1. Then
there are isomorphisms as C∞ vector bundles:

N1
∼= S∗

2n|Z1

N2
∼= QP2n−1/S∗

P2n−1

Proof. We prove only the first statement; the second one is similar. Note
that in the C∞ category there are splittings NZ1|X ⊕NX|G2n+1 |Z1

= NZ1|G2n+1

and NZ1|G2n+1 = NZ1|G2n ⊕NG2n|G2n+1 |Z1
. Also Z1 is a hypersurface in G2n so

NZ1|G2n = [Z1]|Z1
= O(1)Z1 . On the other hand

NG2n|G2n+1 |Z1
= T ′G2n+1/T

′G2n|Z1
= (S∗

2n+1 ⊗Q2n+1)/(S
∗
2n ⊗Q2n)|Z1

.

Here we just used the usual representation of the holomorphic tangent space
to a Grassmannian. But

Q2n+1|Z1
= C2n+1/S2n+1|Z1

= C⊕Q2n

and so

NG2n|G2n+1 |Z1
= ((S∗

2n ⊗ C) ⊕ (S∗
2n ⊗Q2n))/(S∗

2n ⊗Q2n|Z1
) ∼= S∗

2n|Z1
.

Substituting we find

NZ1|X ⊕NX|G2n+1 |Z1
= O(1)|Z1

⊕ S∗
2n|Z1

.

Obviously NX|G2n+1 = O(1)X hence we get NZ1|X
∼= S∗

2n|Z1
.
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Q.E.D.

In view of their use in the localization formula, we will express the Chern
classes ck(Ni) as Poincaré duals of certain Schubert cycles. Thus we di-
gress for a moment to establish the notation and some relevant facts about
Schubert cycles of the complex Grassmannian G(k,m). Let V1 ( V2... (
Vm ( Cm+1 be a flag of subspaces. For any multiindex a = (a1, ..., ak)
set Wa = {Λ ∈ G(k,m)|dim(Λ ∩ Vn−k+i−ai

) = i, 1 ≤ i ≤ k}. Note that
Wa is empty unless the ai are noninscreasing and ai ≤ n − k. For any
a the closure Wa = {Λ|dim(Λ ∩ Vn−k+i−ai

) ≥ i} is an analytic subvariety
of G(k,m). Let σa1, ... ,ak

=
[
Wa1, ... ,ak

]
denote the corresponding homol-

ogy class in H∗(G(k,m), Z) (so that the real codimension is 2
∑k

i ai). It is
a classical fact that the homology of G(k,m) is freely generated by these
classes, that is, Schubert cycles. The following result is sometimes called
Chern-Gauss-Bonnet theorem. For a proof see [6], p.410.

Theorem 3.7
cr(S) = (−1)rσ∗1,...,1

where ( )∗ stands for Poincare duality and the multiindex {1, ..., 1} has lenght
r.

Note as a particular case that c1(O(1)G) = σ∗1. Now we come back to
ck(Ni). Recall that Chern classes satisfy f ∗(ck(E)) = ck(f

∗(E)) and ck(E
∗) =

(−1)kck(E). This immediately yields

Lemma 3.8
c1(N1) = i∗σ∗1

c2(N1) = i∗σ∗1,1.

where i : Z1 ↪→ G(2, 2n) is the inclusion.

We could have taken the cycles above to live in G(2, 2n + 1) as well; this
is immaterial because of the compatibility of inclusions. This remark holds
for any similar situation we will encounter. The situation for Z2 is even
simpler since this is just a projective space Z2

∼= P2n−1. So if we let σ
denote the homology class of a hyperplane, the cohomology is generated by
σ∗ ∈ H2(P2n−1, Z). Write S, Q for the universal and quotient on P2n−1.
Then obviously the only nonzero Chern class of S∗ is c1(S

∗) = σ∗ while the
classes of Q can be worked out by applying Whitney formula to the relation
S ⊕ Q = C2n. We get cr(Q) = (σ∗)r, 1 ≤ r ≤ 2n − 1. Applying Whitney
formula once more to the relation N2 ⊕ S∗ = Q and equating we obtain

(1 + σ∗)(1 + c1(N2) + ... + c2n−2(N2)) = 1 + σ∗ + ... + (σ∗)2n−1 =
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= (1 + σ∗)(1 + (σ∗)2 + ... + (σ∗)2n−2).

Lemma 3.9 It is
c2k+1(N2) = 0 ,

c2k(N2) = (σ∗)2k

for 0 ≤ k ≤ n− 1.

4 Localization formula and Schubert calculus

Lemma 4.1 The formal power series for det(I +
√
−1
2π

L−1
1 K1)

−1 is

1 + (y − z) + (y − z)2 + ...

where y = (2n+1)−1c1(N1), z = (2n+1)−2c2(N1). The contribution of degree
2k in this series is

k∑
m=dk/2e

(
m

2m− k

)
(−1)k−my2m−kzk−m.

Proof. Remember that for a C∞ complex bundle E → M with curva-
ture matrix K it is det(I + t

√
−1
2π

K) = 1 + tc1(E) + t2c2(E) + ... where
ck(E) ∈ H2k

d (M) are the Chern classes. In our case this gives simply

det
(
I +

(
− 1

2n+1

) √−1
2π

K1

)
= 1 − ((2n + 1)−1c1(N1)− (2n + 1)−2c2(N1)) . If

we set y = (2n + 1)−1c1(N1), z = (2n + 1)−2c2(N1) we must then elaborate
on the series 1+(y−z)+(y−z)2 + ... where y is a 2-form and z a 4-form. We
need to find the term of this series of degree 2k, for each k. Note that since
only forms of even degree are involved, we can work like in a commutative

ring and use the binomial formula. So (y−z)m =
∑m

l=0

(
m
l

)
(−1)m−lylzm−l.

The contribution of degree 2k is obtained for 2l + 4(m − l) = 2k that is
l = 2m− k for 0 ≤ m ≤ k ≤ 2m. Now to conclude just sum over m.

Q.E.D.

Lemma 4.2 The integrand in the localization formula over Z1 (with all con-
stants taken into account) is

I1 =
1

(2n− 1)

4n−2∑
h=3

(
4n− 2

h

)
2h−1(2n+1)h−2

h−3∑
m=dh−3

2
e

(−1)m+1

(
m

2m− h + 3

)
×

x4n−2−hy2m−h+3zh−3−m.

where x = c1(X), y = (2n + 1)−1c1(N1), z = (2n + 1)−2c2(N1).
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Proof. Since we have to integrate over Z1 we can consider only the compo-
nent of degree dimR Z1 in the integrand, that is

I1 =

[(
tr L1 + c1(X)

)n+1

det(L1 +
√
−1
2π

K1)

]
dimR Z1

=

[ (
tr L1 + c1(X)

)n+1

(2n + 1)2 det(I +
√
−1
2π

L−1
1 K1)

]
dimR Z1

First we write down the numerator of the integrand. Put x = c1(X) and
remember that dim(X) = 4n− 3 to get

(−(4n + 2) + x)4n−2 =
4n−2∑
h=0

(
4n− 2

h

)
(−2)h(2n + 1)hx4n−2−h.

The form x4n−2−h has degree 8n−4−2h. Since we must integrate over Z1, we
are concerned only with forms of degree dimR(Z1) = 2(4n− 5) = 8n− 10, so
we are only interested in the product with a term of degree 2h−6 = 2(h−3)
coming from the power series expansion of the denominator. Such a term
exists exactly when h ≥ 3, and we have already found what it looks like.
Sum over h and reorder to get the result.

Q.E.D.

The above lemma shows that calculating
∫

Z1
I1 reduces to evaluating the

cap products < [x4n−2−hy2m−h+3zh−3−m], [Z1] > for 3 ≤ h ≤ 4m − 2 and
dh−3

2
e ≤ m ≤ h− 3.

Lemma 4.3
< [x4n−2−hy2m−h+3zh−3−m], [Z1] >=

=
(2n)4n−2−h

(2n + 1)h−3
< (σ∗1,1)

h−3−m, (σ1)
2(2n+m−h+1) > .

Proof. This is an immediate consequence of our Chern classes computations
that can be put in the form

[x] = 2n σ∗1; [y] = (2n + 1)−1σ∗1;

[z] = (2n + 1)−2σ∗1,1; [Z1] = σ1.

The first equality follows from the fact that x = c1(X) = c1(O(2n). The
second and the third follow from Lemma 3.8. The last simply follows from
the fact that σ1 is the homology class of a hyperplane section.

Q.E.D.
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Our task is then to evaluate a cap product of Schubert cycles of comple-
mentary dimensions. This can be done by the basic incidence relation in
complementary dimensions of Schubert calculus (see [6], p. 198).

Lemma 4.4 If
∑

ai =
∑

bi then

< σ∗a1,a2,...,ak
, σn−k−b1,...,n−k−bk

>= δak,b1 · ... · δa1,bk
.

Before we can apply this relation in our case we must work out the powers
σk

1 , σk
1,1 for any k. This requires the last result from Schubert calculus that

we shall use in our work, namely Pieri formula.

Lemma 4.5 (Pieri formula) Denote by • the intersection product. Let a
be any multiindex of the form a = (a, 0, ..., 0). Then

σa • σb =
∑

bi ≤ ci ≤ bi−1P
ci = a +

P
bi

σc (4.1)

Lemma 4.6 For 1 ≤ k ≤ 2n the following relation holds among Schubert
cycles of G(2, 2n):

σk
1 =

∑
0≤j≤i, i+j=k

γi,jσi,j

where

γi,j =

(
i + j

j

)
−
(

i + j
j − 1

)
and γ0,0 = 0.

Proof. Any cycle in G(2, 2n) has the form σa1,a2 . If we follow the convention
that nonadmissible cycles vanish, we have σ1σa1,a2 = σa1+1, a2 + σa1, a2+1.
This is an immediate application of Pieri formula. If we denote by γi,j the
coefficient of σi,j in the power σi+j

1 , we get the identities

γi+1,j = γi,j + γi+1,j−1

γi,j+1 = γi,j + γi−1,j+1

where the vanishing convention is in force too. Moreover the initial conditions
γi,0 = 1 and γ0,j = 0 determine γi,j uniquely. To conclude just note that

γi,j =

(
i + j

j

)
−
(

i + j
j − 1

)
meets all these conditions.

Q.E.D.
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Lemma 4.7 In G(2, 2n) for 1 ≤ k ≤ n it is

σk
1,1 = σk,k.

Proof. By Pieri formula we find σ1,1 = σ2
1 − σ2. On the other hand for any

cycle σa1,a2 it is

σ2σa1, a2 = σa1+2, a2 + σa1+1, a2+1 + σa1, a2+2,

σ2
1σa1, a2 = σa1+2, a2 + 2σa1+1, a2+1 + σa1, a2+2

again by Pieri. So we get

σ1,1σa1, a2 = σa1+1, a2+1

and we are done.

Q.E.D.

We are now in a position to prove

Theorem 4.8∫
Z1

I1 = 24n−3n4n−2 2n + 1

(2n− 1)

4n−2∑
h=3

1

nh

(
4n− 2

h

)
×

h−3∑
m=dh−3

2
e

(−1)m+1

(
m

2m− h + 3

)
c2n+1+m−h

where cl denotes the l-th Catalan number cl = (l + 1)−1

(
2l
l

)
.

Proof. By 4.3 we just need to evaluate < (σ∗1,1)
h−3−m, (σ1)

2(2n+m−h+1) > for all

h and by 4.7 this equals < σh−3−m,h−3−m, (σ1)
2(2n+m−h+1) >. By the incidence

relation in complementary dimensions, the result is simply the coefficient of
the cycle σ2n+1+m−h,2n+1+m−h in the power σ

2(2n+1+m−h)
1 . In the notation of

Lemma 4.6 this is γ2n+1+m−h,2n+1+m−h. Substitute this value in the integrand
and simplify to get the result, noting that for all i

γi,i =

(
2i
i

)
−
(

2i
i− 1

)
=

1

i + 1

(
2i
i

)
= ci.

Q.E.D.

The situation for Z2 is much simpler because this is a projective space.
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Lemma 4.9 Let I2 be the integrand of the localization formula over Z2 (with
all constants taken into account). Then∫

Z2

I2 =
(2n + 1)(2n− 2)2n−1(2n)2n−3

4n− 2
×

(
(2n)2

(
4n− 2
2n− 1

)
− (2n− 2)2

(
4n− 2
2n + 1

))
.

Proof. The computation is similar to those in Lemmas 4.1 and 4.2. The
denominator term in the integrand over Z2 which we need to expand is

det

(
I +

1

2n + 1

√
−1

2π
K2

)
= 1 +

c1(N2)

2n + 1
+

c2(N2)

(2n + 1)2
+ ... +

c2n−2(N2)

(2n + 1)2n−2
.

Setting y = (2n + 1)−1σ∗ (σ∗ ∈ H2(P2n−1, Z) denoting the generator as
usual) and recalling our computation of Chern classes (see Lemma 3.9) we
can rewrite this as

1 + (y2) + ... + (y2)n−1 =
1− y2n

1− y2
.

Thus

det(...)−1 = (1 + y2 + ... + y2n−2)−1 = (1− y2)
∞∑

k=0

yk(2n).

But now remember that dimRZ2 = 2(2n − 1); since y has degree 2, as far
as integration over Z2 is concerned

∑∞
k=0 yk(2n) = 1. Next we set x = c1(X)

and we write down the numerator in the localization formula as

((2n + 1)(2n− 2) + x)4n−2 =
4n−2∑
i=0

(
4n− 2

i

)
((2n− 2)(2n + 1))ix4n−2−i.

Since x has degree 2 and since we can complete only with a 1 or −y2 term
from the denominator, the only forms in the integral of the right degree
dimRZ2 = 2(2n− 1) are x2n−1,−x2n−3y2 (up to constants). In other words

I2 =
1

(4n− 2)(2n + 1)2n−2
×

((
4n− 2
2n− 1

)
(2n− 2)2n−1(2n + 1)2n−1x2n−1

−
(

4n− 2
2n + 1

)
(2n− 2)2n+1(2n + 1)2n+1x2n−3y2

)
.
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Now it is easy to see that i∗c1(X) = 2nσ∗ where i∗ : Z2 ↪→ X denotes
inclusion. From this it is straightforward to compute the cap products we
need:

< [x2n−1], [P2n−1] >= (2n)2n−1;

< [x2n−3y2], [P2n−1] >=
(2n)2n−3

(2n + 1)2
.

Substituting into the localization formula and simplyfing we get the result.

Q.E.D.

Theorem 4.10 Let X be a smooth hyperplane section of G(2, 2n + 1) and
let w be the generator of the center of Lie Aut(X). Then

FX(w) =

= 24n−3n4n−2 2n + 1

(2n− 1)

{
4n−2∑
h=3

1

nh

(
4n− 2

h

)
×

h−3∑
m=dh−3

2
e

(−1)m+1

(
m

2m− h + 3

)
c2n+1+m−h

}
+

+
(2n + 1)(2n− 2)2n−1(2n)2n−3

4n− 2

{
(2n)2

(
4n− 2
2n− 1

)
− (2n− 2)2

(
4n− 2
2n + 1

)}
.

(4.2)

As a simple application using a symbolic calculus package we can get the
first few values of FX .

n = 1 ⇒ f = 0;

n = 2 ⇒ f = −10240

3
;

n = 3 ⇒ f = −1693052928

5
;

n = 4 ⇒ f = −1415071464947712

7
.

5 Final remarks

In this section we sketch a proof of the following lemma. This is achieved by
comparing the asymptotic behaviour of the two terms entering in (4.2). The
details are elementary but quite tricky.
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Lemma 5.1 FX(w) < 0 for n � 2.

Proof. Rearrange
∫

I1 as a weighted sum of Catalan numbers; that is write∫
I1 = Cn

2n−3∑
l=0

γlc2n−2−l

where Cn = 24n−3n4n−2 2n+1
(2n−1)

and

γl = (−1)l

4n−2∑
k=3+2l

(−1)kn−k

(
4n− 2

k

)(
k − 3− l

l

)
.

We will later sketch a proof that γl has sign (−1)l+1 and that |γl| is non-
increasing for l ≥ 1, at least for n � 2. Using this and the fact that the
sequence of Catalan numbers is strictly increasing, it is easy to conclude that∫

I1 < Cn(γ0c2n−2 + γ1c2n−3) = Cnc2n−2

(
γ0 + γ1

c2n−3

c2n−2

)
.

An explicit calculation shows that γ0 + γ1
c2n−3

c2n−2
→ −13

3
+ 3 e−4 as n →∞ so

we get
∫

I1 < −4Cnc2n−2 for n � 2. Next rewrite the other contribution as∫
I2 = Cn

(
1− 1

n

)2n−1
((

4n− 2
2n− 1

)
−
(

1− 1

n

)2(
4n− 2
2n− 3

))
.

This is asymptotic to 2e−2Cn(c2n−1 + c2n−2), which in turn is asymptotic to
10e−2Cnc2n−2. This shows that FX(w) < 0 for large n. To complete the
proof, we note that

γl = (−1)l+1n−3−2l

(
4n− 2
3 + 2l

)
F

(
5 + 2l − 4n, l + 1

2l + 4

)(
1

n

)
using Gaussian hypergeometric notation; that is F is the unique (finite) sum∑

s≥0 al,n
s with first term 1 and such that

r(l, s, n) =
al,n

s+1

al,n
s

=
(s + 5 + 2l − 4n)(s + l + 1)

n(s + 1)(s + 2l + 4)

for s ≥ 0. A straightforward computation shows that r(l, s, n) < 0 for n ≥ 2,
0 ≤ l ≤ 2n − 3, 0 ≤ s ≤ 4n − 5 − 2l and |r(l, s, n)| ≤ 1 for n ≥ 2,
1 ≤ l ≤ 2n − 3, 1 ≤ s ≤ 4n − 5 − 2l. Thus for each admissible l ≥ 1, F

is an alternating sum of an even number of terms, beginning with 1, and
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nonincreasing in absolute value from the second place. This implies that
γl,n ≥

∑6
s=0 al,n

s and one can show that this rational function is positive for
all admissible values when n � 2. If this is not so, choose sequences nk, lk
such that nk → ∞ and γlk,nk

< 0. In case lk/nk → 0, pass to the limit as
n →∞ for l fixed in

∑6
s=0 al,n

s and study the resulting rational function of l
to get a contradiction. If lk/nk is not infinitesimal, choose a subsequence such
that lk/nk → c (0 < c < 2), pass to the limit as n → ∞ in

∑6
s=0 ac n,n

s and
study the resulting rational function of c to get a contradiction. A similar
argument works to show that

γl+1,n

γl,n

≤ n−2

((
4n− 2

3 + 2l + 2

)/(
4n− 2
3 + 2l

))(( 7∑
s=0

al+1,n
s

)/(
6∑

s=0

al,n
s

))
< 1

at least for n � 2.

Q.E.D.
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Basel, 2000, Notes taken by Meike Akveld.

[14] Gang Tian, Kähler-Einstein metrics with positive scalar curvature, In-
vent. Math. 130 (1997), no. 1, 1–37.

[15] Shing Tung Yau, Calabi’s conjecture and some new results in algebraic
geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 5, 1798–1799.

Università di Pavia,
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