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Motivation from spaces of stability conditions

C = suitable triangulated category (e.g. Db(X ),Fuk(Y )...).
Stab(C) = Bridgeland’s space of numerical stability conditions.
Stab(C) is a complex manifold locally modelled on Hom(Γ,C)
for Γ = K (C).

Conjecturally Stab(C) should carry much more geometric
structure.
• (Almost) Frobenius manifold.
• Should parametrise families of natural irregular

connections, with geometric meaning.
(E.g. T.B. “Spaces of stability conditions" Sec. 7).
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BTL’s model case

Model studied by T. B. and V. Toledano-Laredo:

A = finite dim. C-algebra.
A = Modfd (A), finite length Abelian category.

Example: fd reps of finite quiver Q without loops.

Γ = K (A) ∼= ZN .
Stab(A) = positive homs Z : Γ→ C, Z (K>0(A)) ⊂ H
(“central charges").

Stab(A) ∼= HN .
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(Semi)stable reps

M ∈ A is (semi)stable if

phaseZ (N) < (≤)phaseZ (M)

for nontrivial N < M. Here phaseZ (M) = phase(Z ([M]).

Mss
Z (α) = (coarse, projective) moduli space of Z -sstables in

class α (A. King).
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BTL connections

BTL: Stab(A) parametrises natural family of irregular
connections on P1, with values in (derivations of) Ringel-Hall
algebra.

H(A) = Ringel-Hall algebra:
C-vector space spanned by constr. f : Ob(A)→ C.
Convolution: f ∗ g(M) =

∫
{0→B→M→C→0} f (B)g(C)dχ.

∗ is associative, noncommutative.

H(A) is Γ-graded Lie algebra with commutator bracket.
We will mostly work in Γ-completion.
Central charges are derivations via [Z ,g] = Z (α)g for
deg(g) = α.
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Intermediate step: stability data on H(A)

δγ = char. function of class γ, Z -sstables.
` ⊂ H = a ray.

Group elements S` = 1 +
∑

Z (γ)∈` δγ
(char. function of semistables with phase = phase(`)).

Remark. Can write S` = exp
(∑

Z (α)∈` εα

)
(Lie algebra exp), with
εα =

∑
n
∑

γ1+···+γn=α
(−1)n−1

n δγ1 ∗ · · · ∗ δγn

(effective decompositions).
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Intermediate step: stability data on H(A)

Lemma (HN recursion: Reineke, Kontsevich-Soibelman ...).

V ⊂ H = convex sector.

Then
∏→
`⊂V S`(Z ) is constant in Z , as long as no rays cross ∂V .

Remark: in Kontsevich-Soibelman terminology, {εα(Z )} is a
continuous family of stability data on graded Lie algebra
H(A).
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Aside: general notion of stability data

The notion of continuous families of stability data makes sense
for arbitrary Γ-graded Lie algebras g over Q (KS).

(Z , {εα(Z )}) is C0 as Z varies if
∏→
`⊂V S`(Z ) is constant in Z ,

as long as no rays cross ∂V .

So the space of pairs (Z , {εα(Z )}) (with extra “support
condition") becomes a topological space Stab(g).

KS: Stab(g) is a complex manifold locally modelled on
Hom(Γ,C).
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Back to BTL connections

Theorem (BTL). There exist connections on P1 of the form

∇BTL(Z ) = d −
(

Z
t2 + f (Z )

t

)
dz

whose (generalised) monodromy at 0 (Stokes data) is given
precisely by the group elements S`(Z ).

There are explicit formulae for residue f (Z ) ∈ H(A) (inner
derivation).

By C0 property of stability data, the ∇BTL(Z ) have constant
(generalised) monodromy (“isomonodromic family").

Remark. ∇BTL(Z ) have double pole at 0, simple pole at∞.
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Explicit formulae for residues

The residue f (Z ) of ∇BTL(Z ) is positively graded,
f (Z ) =

∑
α∈K>0(A) fα

and
fα(Z ) =

∑
n≥1

∑
α1+···+αn=α

Jn(Z (α1), . . . ,Z (αn))εα1 ∗ · · · ∗ εαn

for certain sectionally holomorphic, universal
special functions Jn.

Jn = a sum over graphs (trees) of iterated integrals
(multilogarithms).

Remark BTL prove that fα(Z ) coincides with Joyce’s
holomorphic generating functions for invariants counting
semistable objects in class α.
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BTL mysteries

• What is the special role of P1?
• Do ∇BTL(Z ) have some geometric content? E.g. what

about their flat sections?
• How do sums over graphs (trees) arise? Do these trees

have a special combinatorial/geometric meaning?
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Insights from mathematical physics

C0 stability data appear naturally in the physics of N = 2
four-dimensional gauge theories on R3 × S1

(Gaiotto, Moore, Neitzke).

(Γ, 〈−,−〉) = lattice with Z-valued “symplectic" form.
g = derivations of the Poisson algebra C∞(Γ⊗ R/Z,C).

B ⊂ Hom(Γ,C) = suitable Lagrangian submanifold.

The gauge theory should provide natural C0 map
B → Stab(g), Z 7→ {log S`(Z )},
S`(Z ) = (explicit) Poisson automorphisms of C∞(Γ⊗ R/Z,C).
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GMN connections

GMN construction. There should exist family of connections
∇GMN(Z ) on P1, for Z ∈ B, of the form

∇GMN(Z ) = d −
(
A(−1)(Z )

z2 + A(0)(Z )
z +A(1)

)
dz

A(i)(Z ) = complex vector field on Γ⊗ R/Z,
with generalized monodromy at 0 and∞ (Stokes data)
given by {S`(Z )}.

In particular ∇GMN(Z ) would be isomonodromic.
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GMN connections: geometric meaning

∇GMN(Z ) should have basis of local flat sections Xi(z; Z )
(fixed by z → 0, z →∞ asymptotics), such that:

Ω(z; Z ) = − 1
8πR 〈−,−〉

ijd logXi ∧ d logXj

is the family of holomorphic symplectic forms
for a Hyperkähler metric g on Γ⊗ R/Z-local system on B.

Here z ∈ P1 = twistor sphere.

For “theories in class S", g should extend to Hitchin’s metric on
a class of moduli spaces of meromorphic connectionsM.
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GMN connections: poles

∇GMN(Z ) has double poles at 0,∞.

Monodromy at 0 and∞ are “complex conjugate".

There should also by symmetry A(−1)(Z ) = A(1)(Z ).
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Our setup

g = C[Γ], the group algebra gen. by eα with eαeβ = eα+β.

g = Poisson with [eα,eβ] = 〈α, β〉eα+β (KS algebra).

Z 7→ {aγ(Z )} any positive C0 family U → Stab(g).

ĝ = completion of g+ ⊂ g.

S`(Z ) = exp(
∑

Z (α)∈` aα(Z )) ∈ exp(ĝ).

ĝ ⊂ D∗(ĝ) = comm. algebra derivations.
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Existence result

Theorem (F. G.-F. S.). There exists a family of connections
∇(Z ) on P1, for Z ∈ U , of the form

∇(Z ) = d −
(
A(−1)(Z )

z2 + A(0)(Z )
z +A(1)

)
dz,

A(i)(Z ) ∈ D∗(ĝ),
with generalized monodromy at 0 and∞ (Stokes data) given by
{S`(Z )}.

In particular ∇(Z ) is isomonodromic.

Remark: proof very different from BTL and much closer to
physical approach.
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Aside: stability data on g

Examples coming from GMN setup produce positive
U → Stab(g).

For many quivers Q (ext. Dynkin, m-Kronecker...)
BTL families in H(C[Q]) produce positive U → Stab(C[K (Q)])
after integration map and quasi-classical limit.

(More generally we would only get families in D∗( ̂C[K (Q)])).
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Explicit formulae

We have explicit formulae for ∇(Z ) via Aut(ĝ)-valued flat
sections in Stokes sectors.

X (z; Z )eα =
eα exp∗

(
z−1Z (α) + zZ̄ (α)− 〈α,

∑
T WT (Z )GT (z; Z )〉

)
.

T = Γ-decorated graphs (trees).

WT (Z ) = combinatorial weights in Q.

GT (z; Z ) = iterated integrals (resembling multilogs).

Trees and iterated integrals appear naturally by iteration of a
single integral operator (as in GMN).
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BTL limit

Theorem (F. G.-F. S.).
1 The BTL construction goes through for C0 families in

Stab(g), yielding ∇BTL
g (Z ). (For ext. Dynkin etc. this

coincides with “semi-classical limit" via adjoint).
2 There exists a family of gauge transformations g(R),

R ∈ R>0, such that

lim
R→0

g(R) · ∇(z = Rt ; RZ ) = ∇BTL
g (t ; Z ).

Thus BTL connection ∇BTL
g (t ; Z ) is the fixed point of GMN type

connection ∇(z; Z ) under scaling limit z → Rt ,Z → RZ , R → 0.

Jacopo Stoppa Stability, connections and curves



Comparison with GMN

By its very costruction, ∇(Z ) should compare to ∇GMN(Z )
under “reduction of structure algebra"

X(Γ⊗ R/Z)⊗ C→ D∗(ĝ)

We check that this actually works in the main example when
∇GMN(Z ) is well-defined: the Ooguri-Vafa hyperkähler metrics.

Remark. The scaling limit z → Rt ,Z → RZ , R → 0 is called
“conformal limit" in recent work of Gaiotto, where is is related to
the oper submanifold inM.
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Semiflat limit

Because of the specific form

∇(Z ) = d −
(
A(−1)(Z )

z2 + A(0)(Z )
z +A(1)

)
dz

it makes sense to study a different scaling limit:

∇(z; RZ ),R →∞.

This is called the “semiflat" limit by GMN, and in the geometric
context of ∇GMN(Z ) it is (conjecturally) mirror dual to a large
complex structure limit.

Does our rough approximation ∇(Z ) display some
interesting behaviour in the sf limit?
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Model case

Q = κ-Kronecker quiver.

Stab(Rep(Q)) = H2.

U+ ⊂ Stab(Rep(Q)) = trivial chamber (only simples are stable).

⇒ get family ∇(z; Z ) over Stab(Rep(Q)).

Fix generic z∗ ∈ C∗ and recall expansion
X (z; Z )eα =
eα exp∗

(
z−1Z (α) + zZ̄ (α)− 〈α,

∑
T WT (Z )GT (z; Z )〉

)
.
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Role of plane tropical curves

Theorem (F. G.-F. S.). As Z crosses the boundary of U+ from
the interior, a special function GT (z∗; Z ,R) appearing in the
expansion for the flat section X (z∗; Z ,R) is replaced by a linear
combination of the form∑

T ′
±GT ′(z∗; Z ,R),

where we sum over a finite set of trees (not necessarily
distinct). The terms corresponding to a single-vertex tree in the
sum above are uniquely characterised by their asymptotic
behaviour as R →∞. These leading order terms are in
bijection with a finite set of weighted trivalent graphs Ci , which
have a natural interpretation as combinatorial types of rational
tropical curves immersed in R2. They come with a sign
ε(Ci(T )) = ±1 determined by residue theorem.
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Connection to GPS and tropical invariants

Theorem (F. G.-F. S.). The sum of contributions ε(Ci(T )) = ±1
over tropical types Ci , weighted by the coefficients WT in the
expansion for flat section in U+,∑

deg(T )=w

WT
∑

i

ε(Ci(T ))

equals a tropical invariant N trop(w) enumerating plane rational
tropical curves, times a simple combinatorial factor in Γ⊗Q.

Proof: based on work of Gross-Pandharipande-Siebert.

The tropical invariants N trop(w) equal in fact certain relative
Gromov-Witten invariants of weighted projective planes, and
play a crucial role in GPS.

Jacopo Stoppa Stability, connections and curves


