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Abstract. We describe a correspondence between the Donaldson–Thomas invariants enu-
merating D0–D6 bound states on a Calabi–Yau 3-fold and certain Gromov–Witten invari-
ants counting rational curves in a family of blowups of weighted projective planes. This
is a variation on a correspondence found by Gross–Pandharipande, with D0–D6 bound
states replacing representations of generalised Kronecker quivers. We build on a small part
of the theories developed by Joyce–Song and Kontsevich–Soibelman for wall-crossing for-
mulae and by Gross–Pandharipande–Siebert for factorisations in the tropical vertex group.
Along the way we write down an explicit formula for the BPS state counts which arise up
to rank 3 and prove their integrality. We also compare with previous “noncommutative DT
invariants” computations in the physics literature.
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1. Introduction

1.1. A D0–D6/GW CORRESPONDENCE

Let X be a projective Calabi–Yau threefold with H1(OX ) = 0 and topological
Euler characteristic χ . In this paper, we are concerned with either 0-dimensional
or purely 3-dimensional (i.e. torsion free) coherent sheaves of OX -modules which
are isomorphic to the trivial vector bundle of some rank outside a finite length
subscheme. These are closely related to D0–D6 BPS bound states. We write their
Chern character as

(a, r) := (r,0,0,−a)∈
3⊕

i=0

H2i (X,Z),

where a =− ch3, r = ch0. The key feature of these sheaves for us is that they can
be “counted” in a suitable way.

For rank r =1 these are the ideal sheaves of 0-dimensional subschemes of X , and
a is the length of the subscheme. They are Gieseker stable with respect to every
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ample line bundle OX (1) and have a fine moduli space M(a,1)∼=Hilba(X) with a
symmetric obstruction theory in the sense of [1]. Donaldson–Thomas theory [16]
produces integral virtual counts #vir Hilba(X)∈Z. The 0-dimensional Donaldson–
Thomas partition function

∑
a≥1 #vir Hilba(X)ta has been computed as M(−t)χ in

[1,11,12] (here M(t) = ∏
k≥1(1 − tk)−k is the MacMahon function, the generating

series for 3-dimensional partitions), which was originally conjectured in [13].
For r =0 we are looking instead at direct sums of structure sheaves of 0-dimen-

sional subschemes. Their Chern character is (−a,0) where a is the length of the
OX -module. Because of automorphisms their moduli space is an Artin stack
M(−a,0) and it was not clear how to count them correctly until recently. How-
ever, as a very special case of the foundational work of Joyce and Song [9] we
now have generalised Donaldson–Thomas invariants D̄T(−a,0)∈Q; they are not,
in general, the weighted Euler characteristic of the stack M(−a,0) with respect to
its canonical Behrend function. It is shown in [9, Section 6.3] that D̄T(−a,0) =
−χ

∑
m|a 1

m2 .
To generalise to higher rank r we follow closely [10, Section 6.5] and let A be

the abelian category of coherent sheaves on X which are isomorphic to the triv-
ial vector bundle of some rank in codimension 3 (by this we mean that they are
trivial away from a codimension 3 closed subscheme. In the algebraic geometry lit-
erature these sheaves are called scheme-theoretically trivial in codimension 2; we
thank B. Totaro for this observation). Notice that A embeds as the heart of a
bounded t-structure in the triangulated category D := 〈OX ,Ox : x ∈ X〉tr ⊂ Db(X)

of D0–D6 states. The numerical Grothendieck group K (A) is isomorphic to Z
2

spanned by the classes μ = [Ox ], γ = [OX ] (where x ∈ X is any closed point).
Consider the central charge Z : K (A) → C given by Z(μ) = −1, Z(γ ) = i . Since
Z maps the effective cone K +(A) into {ρ exp(iϕ) : ρ > 0,0 < ϕ ≤ π} ⊂ C it deter-
mines a stability condition on A and so a Bridgeland stability condition on D.
The semistable objects Ass ⊂A are in fact sheaves which are either 0-dimensional
or torsion-free and isomorphic to the trivial vector bundle of some rank in codi-
mension 3. There is an Artin stack of objects of A which as in [9, Section 5.1]
is locally 2-isomorphic to the zero locus of the gradient of a regular function on
a smooth scheme, and Z gives an admissible stability condition in the sense of
[9, Section 3.2].

Joyce–Song theory then yields invariants D̄T(a, r) ∈ Q which count Z -semista-
ble objects in a suitable way. We also refer to the very recent paper of Toda [17]
for a number of foundational results on higher rank DT invariants in the sense of
this paper. When (a, r) is a primitive class the D̄T coincide with the DT invariants
of [16]. In particular, we recover the numbers counting ideal sheaves and 0-dimen-
sional subschemes. Notice also that one can show directly that D̄T(0, r)= 1

r2 and
D̄T(a, r)=0 for a =1, . . . , r −1 (see [9, Example 6.1] and [10, Section 6.5]). There-
fore, in the rest of this paper we concentrate on D̄T(a, r) with a ≥ r .

It is sometimes possible to compute higher rank D0–D6 numbers more or less
directly, using Behrend functions. The reader can find an explicit calculation of



D0–D6 STATES COUNTING AND GW INVARIANTS 151

D̄T(2,2)=− 5
4χ , together with a brief introduction to Joyce–Song invariants in this

context, in an appendix to the arXiv version of this paper.
A rather different take on the numbers D̄T(a, r) is motivated by the work of

Kontsevich and Soibelman [10] and Gross et al. [7]. The example of D0–D6 states
is studied, in particular, in [10, Section 6.5]. According to their general theory,
Kontsevich–Soibelman conjecture that one can extract integers � from the D̄T
(their underlying BPS state counts) by inverting the relation D̄T(a, r) =∑

m≥1,m|(a,r)
1

m2 �( a
m , r

m ) (i.e. by taking a Möbius transform). Moreover, they con-
jecture that these BPS state counts should be completely determined by a simple
identity taking place in the so-called tropical vertex group, a Lie group of formal
symplectomorphisms of the 2-dimensional algebraic torus.

The first main theme of this paper is a comparison of the Joyce–Song and
Kontsevich–Soibelman wall-crossing formulae. We prove the KS identity for �(a, r)

for rank r ≤3 starting from the JS formula, use it to write down explicit formulae
for the relevant BPS state counts and to prove their integrality in an elementary
way (for a different situation in which one can show that the Joyce–Song invariants
satisfy the relevant KS equation see [2]). Recently, Toda [17] also independently
studied these r =2 DT invariants, in particular the partition function is computed
in [17, Theorem 1.2] and integrality of BPS state counts is proved in loc. cit.
Theorem 1.3.

The second point of view we will pursue is to regard the Kontsevich–Soibelman
identity as a commutator expansion in the tropical vertex group. Gross, Pandhari-
pande and Siebert [7] have developed a theory which interprets such commutators
in the tropical vertex group in terms of genus zero Gromov–Witten invariants with
a tangency condition. We will explain how “counting” (in the sense of Joyce–Song)
the torsion-free sheaves on X which are isomorphic to the trivial vector bundle
of some rank in codimension 3 becomes equivalent to computing the genus zero
Gromov–Witten invariants (with a tangency condition) of some explicit 2-dimen-
sional orbifolds, depending only on χ and the given K -theory class. The precise
definitions and statement will be given in Section 4, but for now we express the
result as follows.

The BPS state counts �(ha, hr) counting torsion-free sheaves with K-theory
class a multiple of the primitive class given by coprime ch0 =r and ch3 =−a, iso-
morphic to a trivial vector bundle in codimension 3 on a CY 3-fold with Euler
characteristic χ , satisfy the identity in the ring of formal power series C[[x, y]]

∏

h≥1

(1− (−1)h2ar xha yhr )�(ha,hr)

=
∏

h≥1

exp

⎛

⎝
∑

|Pχ |=ha

(−1)Pχ hN [Pχ ](−1)h(a+r)xha yhr

⎞

⎠ , (1.1)

where N [Pχ ] are Gromov–Witten invariants of a family of orbifold blowups of
the toric surface given be the fan {(−1,0), (0,−1), (a, r)} ⊂ R

2 (with some points
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removed and a tangency condition of order h along a smooth divisor), parame-
terised by a set of graded ordered partitions Pχ with length vector depending on
the Euler characteristic χ (here

∣∣Pχ

∣∣ denotes the size and (−1)Pχ a certain sign
attached to a graded ordered partition). In particular for coprime a, r, we find

�(a, r)=−(−1)ar (−1)(a+r)
∑

|Pχ |=a

(−1)Pχ N [Pχ ]. (1.2)

The base toric surface is the weighted projective plane P(a, r,1) with some points
removed. The index h = gcd(− 1

2 ch3, ch0) for sheaves corresponds to the order
of tangency for holomorphic curves along the divisor Dout dual to (a, r). This
result should be compared with the analogous formulae found by Gross and
Pandharipande [6, Corollary 3], building on [7] and the work of Reineke [15]. In
essence Gross–Pandharipande show that the Euler characteristics of the moduli
spaces for semistable representations of the m-Kronecker quiver (with a suitable
stability condition and framing) can be computed in terms of GW theory by a for-
mula similar to (1.1). The above correspondence says that, in a different region of
the tropical vertex group, m-Kronecker quiver representations are replaced by D0–
D6 states. Notice that a physical context involving both the m-Kronecker quivers
and D0–D6 states is described in [4, Sections 3 and 5]. Geometrically, starting with
the same base orbifold P(a, r,1), the invariants for representations of the m-Kro-
necker quiver (with dimension vector proportional to (a, r)) are recovered for ordi-
nary blowups along the divisors D1, D2 dual to (−1,0), (0,−1), parametrised by
suitable partitions p1, p2 of size proportional to a, r and length m. For D0–D6
states we blow up only once along D2, and we also perform an ordinary blowup
of D1 along a partition; but the crucial difference is that now there are also higher
order corrections, or more precisely orbifold blowups in addition to ordinary ones,
and, in turn, these are parameterised by graded ordered partitions Pχ with length
vector (χ,2χ,3χ . . . ) [so that the topological Euler characteristic χ plays the same
role as the order of the quiver m (here we assume χ ≥0; for χ <0 there is a slight
modification described in Section 4)].

Remark. We emphasise that we do not need to give an ad hoc proof that the
numbers N [Pχ ] are given by suitable Gromov–Witten invariants in our case. What
we will do is to show that the Kontsevich–Soibelman wall-crossing identity for
the numbers �(a′, r ′) (equation (1.4) below) can be recast precisely in the form
covered by the general results of Gross–Pandharipande–Siebert, in particular their
“full commutator formula”, Theorem 4.1 below. As we will explain in Section 4,
in principle, their theory allows to expand every such commutator in terms of
Gromov–Witten invariants of orbifold blowups of weighted projective planes; in
our special case, this becomes feasible essentially because of the Euler product for-
mula for the MacMahon function.
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1.2. COMPARISON WITH A PHYSICS RESULT

Even before their rigorous definition by Joyce–Song, Cirafici et al. [3] have addre-
ssed the problem of computing the punctual invariants DT(a, r) supported at the
origin of the affine Calabi–Yau C

3. However, as they explain in ibid (Section 7.2),
their gauge-theoretic approach based on noncommutative deformation and locali-
sation is only valid in the Coulomb phase, where they compute the partition func-
tion simply as M((−1)r t)r . As we will see this is very different from the result
one would get by setting χ =1 in the correspondence (1.1). We will argue that the
above result in the Coulomb phase (i.e. passing from nonabelian gauge group U (r)

to the abelian U (1)r ) can be recovered, up to a factor 1
r2 , by “pretending” that

certain operators associated with ranks r ≥1 commute; this is explained more pre-
cisely in Section 2.2.

1.3. IDENTITY IN THE TROPICAL VERTEX GROUP

We follow the notation of [7]. The tropical vertex group G is a closed subgroup of
AutC[[t]](C[x, x−1, y, y−1][[t]]) in the (t)-adic topology. It is the (t)-adic completion
of the subgroup generated by the automorphisms of the form

θ(a,r), f (x)= f −r · x, θ(a,r), f (y)= f a · y

with (a, r)∈Z
2 and f a formal power series in t of the form

f =1+ t xa yr · g(xa yr , t), g(z, t)∈C[z][[t]].
Alternatively, one can see G as a subgroup of the group of formal 1-parameter
families of automorphisms of the algebraic 2-torus C

∗ ×C
∗; by direct computation

G preserves the standard holomorphic symplectic form dx
x ∧ dy

y .
A basic feature of G is that two elements θ(a,r), f , θ(a′,r ′), f ′ with (a′, r ′) a multiple

of (a, r) commute.
The group G contains some special elements

Ta,r = θ(a,r),1−(−1)ar (t x)a(t y)r ,

and for �∈Q we define

T �
a,r (x, y)= θ(a,r),(1−(−1)ar (t x)a(t y)r )� .

The notation makes sense from the point of view of Lie groups, since

Ta,b = θ(a,r), f = exp(log( f )∂)

for f = 1 − (−1)ar (t x)a(t y)r and some ∂ ∈ Zdx ⊕ Zdy so T �
a,r corresponds to

exp(� log( f )∂)= exp(log( f �)∂)= θ(a,r), f � (see [7, Section 1.1] and [8] for the gen-
eral setup). Notice that in particular

(Ta,r )
−1 = T −1

a,r = θ(a,r),(1−(−1)ar (t x)a(t y)r )−1 .
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By a fundamental result of Kontsevich–Soibelman every automorphism in the
tropical vertex group admits a unique ordered product expansion

g =
→∏

(a,r)∈Z
2+

T �(a,r)
a,r , (1.3)

where Z
2+ ⊂Z

2 means {a, r ≥ 0} \ {0} (for a precise definition of the ordered prod-
uct

∏→ see [10, Section 2.2] and for the proof of an equivalent statement see, e.g.
[7, Theorem 1.4]).

Let us now go back to the category A. Kontsevich–Soibelman introduce BPS
invariants associated to the D̄T as their Möbius transform

�(a, r)=
∑

m≥1,m|(a,r)

μ(m)

m2
D̄T

( a

m
,

r

m

)
,

where μ(m) is the Möbius function (with μ(1)=1,μ(2)=−1,μ(3)=−1, . . .).
For rank one we get simply �(a,1) = D̄T(a,1) for a ≥ 1 since these classes

are primitive. On the other hand, one can compute �(−a,0)=−χ for a ≥ 1, see
[9, Section 6.3]. Another example is �(2,2) = −χ and can be found in appendix
to the arXiv version of this paper.

In [10, Section 6.5], Kontsevich–Soibelman write down an identity in the tropi-
cal vertex group which should be satisfied by the BPS invariants �, namely

∏

a≥1

T −χ

a,0 · T0,1 =
→∏

a≥0,r≥1

T �(a,r)
a,r ·

∏

a≥1

T −χ

a,0 . (1.4)

According to the factorisation theorem recalled above this formula would deter-
mine the �(a, r) uniquely.

Let us explain the origin of the formula (1.4), referring to loc. cit. for a detailed
discussion (see also [17, Section 2]). Kontsevich–Soibelman [10] propose an
alternative approach to generalised Donaldson–Thomas invariants counting semi-
stable objects in suitable triangulated categories with respect to a Bridgeland sta-
bility condition. In particular, they propose universal formulae on how the BPS
invariants change as the stability condition moves in the space Stab. Locally these
remain constant, but there are walls in Stab on crossing which the � change
according to formulae of the form of (1.4). This theory is still conjectural in parts.
However, we can apply it formally to A. For this embed A as the heart of a
t-structure in the triangulated category D := 〈OX ,Ox : x ∈ X〉tr ⊂ Db(X) of D0–D6
states, as before. The slope function Z becomes a central charge on D defining a
Bridgeland stability condition, and the Joyce–Song BPS invariants � conjecturally
coincide with the Kontsevich–Soibelman invariants counting Z -semistable objects
with phases in some fixed sector. Kontsevich–Soibelman deform Z by prescribing
Zτ ([OX ])= i, Zτ ([Ox ])= exp(iτπ) for τ ∈ [1, 3

2 + ε) for sufficiently small ε > 0. As
soon as t >1 the heart A jumps to A′ :=〈OX ,Coh0(X)[−1]〉ext , the intersection of
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the tilting of A inside Db(X) with respect to 0-dimensional sheaves with the sub-
category D (i.e. −[Ox ] becomes effective in K (A′) as it is the class of Ox [−1]).
The BPS invariants, however, remain unchanged until τ ≥ 3

2 . For τ > 3
2 the heart

remains the same, A′, but now the only semistable objects have unmixed classes
which are multiples of either [OX ] or −[Ox ]. The latter objects have BPS invari-
ants −χ as we already discussed. By assumption OX is rigid and so according to
[9, Section 6.1], we have �(rOX ) = δr,1. The equality of factorisations (1.4) then
becomes the Kontsevich–Soibelman wall-crossing formula for this particular wall-
crossing.

1.4. THE TROPICAL VERTEX FOR GW INVARIANTS

Clearly, the wall-crossing formula (1.4) can be rewritten as an expansion for a
commutator in the group G,

(T0,1)
−1 ·

⎛

⎝
∏

a≥1

T −χ

a,0

⎞

⎠ · T0,1 ·
⎛

⎝
∏

a≥1

T −χ

a,0

⎞

⎠
−1

=
→∏

a≥1,r≥1

T �(a,r)
a,r .

Using the definition of Ta,0 and the well-known product formula for the
MacMahon function M(x)=∏

a≥1(1− xa)−a one can check that this is equivalent
to

(θ0,1)
−1 · θ(1,0),M(−t x)χ · θ0,1 · θ(1,0),M(−t x)−χ =

→∏

a≥1,r≥1,gcd(a,r)=1

θ(a,r), f(a,r)
(1.5)

with

f(a,r) =
∏

k≥1

(1− (−1)k2ar (t x)ka(t y)kr )�(ka,kr).

This is precisely the kind of commutator expansions studied in [7] by Gross–
Pandharipande–Siebert. They have shown that for the ordered product factorisation

[θ(a′,r ′), f ′ , θ(a′′,r ′′), f ′′ ]=
→∏

a≥1,r≥1,gcd(a,r)=1

θ(a,r), f(a,r)

of the commutator of two generators of G one can write the coefficients of the
power series log f(a,r) in terms of the GW invariants of orbifold blowups of a toric
surface Xa,r (with a tangency condition). We will describe explicitly how this result
applies to our case, relating D0–D6 states to GW invariants of orbifolds.

1.5. SYMMETRY

Explicit computation with the rank 2 and 3 formulae for � which we establish in
Section 2 suggests the identity

�(a,a − i)=�(a, i) for i =1, . . . ,a
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(so, in particular, �(a,a) = −χ for a ≥ 1). One can in fact prove this symmetry
using GW invariants and the correspondence (1.1). Indeed the method of [6, Sec-
tion 5] (curve-counting symmetries induced by elementary transformations of ruled
surfaces) yields an equality

f(a,r)|t y=−1
= f(a,a−r)|t y=−1

(gcd(a, r)=1). A direct proof at the level of sheaves is also possible and has been
suggested to the author by Y. Toda. It is proved in [17, Proposition 2.2] that
the tilted category A′ above is equivalent to the category of two-term complexes
[O⊕r

X
s �� F ] for a 0-dimensional sheaf F (say with length a). Each such com-

plex has a dual [(H0(F)/s(O⊕r
X ))∗ ⊗OX

��Ext3
OX

(F,OX ) ]. The vector space
H0(F)/s(O⊕r

X ) has dimension a − r , while Ext3
OX

(F,OX ) is 0-dimensional with
length a. A complex in A′ is (semi)stable if and only if its dual is inducing the
equality �(a, r) = �(a,a − r) for a > r . There are analogous symmetries in the
GW/Kronecker quivers correspondence given by the reflection functors of
[6, Section 5.3].

1.6. PLAN OF THE PAPER

In Sections 2 and 3 we show that the Joyce–Song invariants satisfy the relevant
Kontsevich–Soibelman identities for rank up to 3. Section 2 also contains explicit
formulae for the BPS state counts which arise up to rank r =3 and an elementary
proof of their integrality (as we mentioned analogous r =2 formulae and integral-
ity results have been found by Toda [17]). Finally in Section 4, we briefly review
the theory of Gross–Pandharipande–Siebert and apply it to our special case, thus
obtaining the required formulae for D0–D6 states counts in terms of GW invari-
ants of orbifold blowups of weighted projective planes.

After the first appearance of this and Toda’s papers, Nagao [14] has proved
the integrality of D0–D6 BPS counts, in general, using representations of certain
bipartite quivers.

2. Kontsevich–Soibelman Side

In this section, we use a small part of the theory developed by Kontsevich and
Soibelman [10, Sections 1–6]. An introduction from a physical perspective can be
found in [5, Section 2].

2.1. BAKER–CAMPBELL–HAUSDORFF FORMULA

Write � for the lattice Z
2 with basis γ = (0,1),μ= (1,0) and anti-symmetric bilin-

ear form 〈γ,μ〉 = −1 (in the categorical picture above this corresponds to γ =
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[OX ],μ=[Ox [−1]]). The positive cone �+ ⊂� is given by those elements with non-
negative components (a, r),a + r ≥1.

Consider the �+-graded Lie algebra g generated over C by symbols eη, η ∈ �+
with bracket

[eξ , eη]= (−1)〈ξ,η〉〈ξ, η〉eξ+η. (2.1)

Then writing η= (a, r) for an element of � there is a natural identification

T(a,r) = Tη = exp

⎛

⎝−
∑

n≥1

enη

n2

⎞

⎠ (2.2)

seeing the automorphism Tη as an element of the exponential of the completion of
g (see [10, Section 1.4] for this identification, and notice that here we are replacing
the t-grading with the finer �+-grading). We rewrite the KS formula (1.4) as

∏

n≥1

T −χ
nμ · Tγ ·

⎛

⎝
∏

n≥1

T −χ
nμ

⎞

⎠
−1

=
→∏

n≥0,r≥1

T �(nμ+rγ )
nμ+rγ . (2.3)

Let us define elements in the completion

A =χ
∑

n≥1

∑

i≥1

einμ

i2
, B =−

∑

j≥1

e jγ

j2
.

In what follows we will denote the left and right hand sides of (2.3) simply by lhs,
rhs. Using repeatedly (2.1) and (2.2) the left hand side of (2.3) can be rewritten as

lhs= exp(A) exp(B) exp(−A).

We will use the following form of the Baker–Campbell–Hausdorff (BCH) formula,

exp(A) exp(B) exp(−A)= exp

⎛

⎝B +
∑

k≥1

Adk
A(B)

k!

⎞

⎠

= exp(B +[A, B]+ 1
2
[A, [A, B]]+ · · · ). (2.4)

Let us write n, i for multi-indexes of length k ≥1 with integer entries nl , il ≥1, and
n · i=∑k

l=1 nl il for their ordinary scalar product. For k ≥1 we can compute

Adk
A(B)=−χk

∑

n,i

∑

j≥1

(−1) j n · i j k−2
∏

nl∏
il

en · i μ+ jγ .

Thus, we find

log(lhs)=−
∑

j≥1

e jγ

j2
−

∑

k≥1

χk

k!
∑

len(n)=len(i)=k

∑

j≥1

(−1) j n · i j k−2
∏

nl∏
il

en · i μ+ jγ . (2.5)
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2.2. RANK r =1

Consider the subspace g>m of g generated by eη with 〈μ,η〉> m. By (2.1) this is
an ideal g>m < g, so, in particular, we can form the quotient Lie algebra g/g>1.
The right hand side rhs of (2.3) can be projected via

π≤1: exp(g)→ exp(g/g>1)

taking the form

π≤1(rhs)=π≤1(T0,1)
∏

a≥1

π≤1(T
�(a,1)

a,1 ).

Now

π≤1(T0,1)= exp(−eγ ), π≤1(T
�(a,1)

a,1 )= exp(−�(a,1)eaμ+γ ),

and in the quotient we have [eaμ+γ , ea′μ+γ ]=0, so

log(rhs)=−eγ −
∑

a≥1

�(a,1)eaμ+γ .

Comparing with the left hand side gives the rank r =1 KS formula

�(a,1)= (−1)a
∑

k≥1

χk

k!
∑

len(n)=len(i)=k,n · i=a

∏
nl∏
il

. (2.6)

These are the usual 0-dimensional DT invariants, but this particular way to repre-
sent them turns out to be very useful for the generalisation to higher rank.

Remark. The r =1 formula thus gives

∑

a≥0

ta(−1)a
∑

k≥0

χk

k!
∑

len(n)=len(i)=k,n · i=a

∏
nl∏
il

= M(−t)χ =
∏

k≥1

(1− (−t)k)−χk .

In general, comparing with (2.5) above we find

∑

a≥0

ta(−1)ra
∑

k≥0

rk−2 χk

k!
∑

len(n)=len(i)=k,n · i=a

∏
nl∏
il

= 1
r2

M((−1)r t)rχ . (2.7)

In the light of (2.3) we see that if we could assume formally that the operators
Ta,r for r ≥ 1 commute (but retaining, crucially, that they do not commute with
rank 0 operators) we would get the partition function 1

r2 M((−1)r t)rχ for rank r
DT invariants. We believe that this is related to the physical computation in [3]
mentioned in the introduction; in particular, assuming that the Ta,r commute for
r ≥ 1 should be similar to the breaking of the gauge group from U (r) to U (1)r

(which only makes sense for r ≥1).
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Remark. In a previous version of this paper it was stated erroneously that
1
r2 M((−1)r t)rχ is also the partition function for DT invariants on the wall (say
DT0) where the phases of OX ,Ox [−1] coincide. This is wrong by a factor of(∏

n≥1 T −χ
nμ

)−1
in the wall-crossing formula, as pointed out by Y. Toda. Indeed

when the phases of OX ,Ox [−1] coincide there is a single Kontsevich–Soibelman
operator collecting the BPS contributions of all the semistable objects (which all
have the same phase), exp(−∑

α �0(α)eα). According to the general theory of [10,
Section 2.3], and, in particular, the identity at the bottom of page 27, the relevant
wall-crossing (or rather wall-hitting) identity becomes

∏

n≥1

T −χ
nμ · Tγ = exp

(
−

∑

α

�0(α)eα

)
.

The underlying BPS invariants �0 are not expected to be integers since the degen-
erate stability condition is not generic in the sense of [9] Section 1.4.

Computing the first few terms in the BCH expansion we find, for example
DT0(1,1)=−χ

2 ,DT0(2,1)= 5
4χ + 1

12χ2,DT0(3,1)=− 10
6 χ − 5

12χ2. As we will briefly
remark later, these results are also in perfect agreement with the Joyce–Song
formula.

2.3. RANK r =2

Similarly, we can work out a formula for �(a,2). Let us consider the quotient
g/g>2 with projection π≤2 : exp(g) → exp(g/g>2); the projection of the right hand
side is

π≤2(rhs)=π≤2(T0,1)

→∏

a≥1,1≤r≤2

π≤2(T
�(a,r)
(a,r) ).

Explicitly,

π≤2(T
�(0,1)

0,1 )= exp
(

−eγ − 1
4

e2γ

)
,

π≤2(T
�(a,1)

a,1 )= exp
(

−�(a,1)

(
eaμ+γ + 1

4
e2aμ+2γ

))
,

π≤2(T
�(a,2)

a,2 )= exp(−�(a,2)eaμ+2γ ).

Since by (2.1) [g/g>2, [g/g>2,g/g>2]]=0 the BCH formula gives

log(rhs)=−eγ − 1
4

e2γ −
∑

a≥1

�(a,1)(eaμ+γ + 1
4

e2aμ+2γ )−
∑

a≥1

�(a,2)(eaμ+2γ )

+1
2

∑

a′<a′′
(−1)a′−a′′

(a′ −a′′)�(a′,1)�(a′′,1)e(a′+a′′)μ+2γ .
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When a is odd (i.e. in the primitive case) comparing with lhs gives

�(a,2)=
∑

k≥1

2k−2 χk

k!
∑

len(n)=len(i)=k,n · i=a

∏
nl∏
il

+ (−1)a

2

∑

a′<a′′,a′+a′′=a

(a′ −a′′)�(a′,1)�(a′′,1), (2.8)

while for a >0 and even there is an additional term,

�(a,2)=
∑

k≥1

2k−2 χk

k!
∑

len(n)=len(i)=k,n · i=a

∏
nl∏
il

+ (−1)a

2

∑

a′<a′′,a′+a′′=a

(a′ −a′′)�(a′,1)�(a′′,1)

− 1
4
�(a/2,1). (2.9)

According to the definition of BPS invariants in each case we get

D̄T(a,2)=
∑

k≥1

2k−2 χk

k!
∑

len(n)=len(i)=k,n · i=a

∏
nl∏
il

+ (−1)a

2

∑

a′<a′′,a′+a′′=a

(a′ −a′′)�(a′,1)�(a′′,1). (2.10)

EXAMPLE. The first few terms of the partition function for rank r =2 and χ =1
BPS states are

ZBPS
r (t)=−t2(1+6t +21t2 +61t3 +165t4 +426t5 +· · · )

The physics result from [3] gives instead

ZBPS
r,Coulomb(t)=1−2t +7t2 −18t3 +47t4 −110t5 +258t6 −568t7 +· · ·

2.4. RANK r =3

Under the projection π≤3: exp(g)→ exp(g/g>2) we find

π≤3(rhs)=π≤3(T0,1)

→∏

a≥1,1≤r≤3

π≤3(T
�(a,r)
(a,r) )
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with

π≤3(T
�(0,1)

0,1 )= exp
(

−eγ − 1
4

e2γ − 1
9

e3γ

)
,

π≤3(T
�(a,1)

a,1 )= exp
(

−�(a,1)

(
eaμ+γ + 1

4
e2aμ+2γ + 1

9
e3aμ+3γ

))
,

π≤3(T
�(a,2)

a,2 )= exp(−�(a,2)eaμ+2γ )

π≤3(T
�(a,3)

a,3 )= exp(−�(a,3)eaμ+3γ ).

We can compute which terms x with 〈μ, x〉=3 appear in log(rhs) in the Lie alge-
bra g/g>3. These terms have a different form according to an ordered partition for
the rank r = 3, namely 3,2 + 1,1 + 2,1 + 1 + 1, corresponding to the order of the
Lie brackets involved. The type 3 term is

−1
9

∑

a≥0

�(a,1)e3aμ+3γ −
∑

a≥1

�(a,3)eaμ+3γ .

The type 2+1 comprises

1
2

∑

a1<a2

[
− 1

4
�(a1,1)e2a1μ+2γ ,−�(a2,1)ea2μ+γ

]

= 1
4

∑

a1<a2

(a1 −a2)�(a1,1)�(a2,1)e(2a1+a2)μ+3γ

and

1
2

∑

a1<2a2

[−�(a1,2)ea1μ+2γ ,−�(a2,1)ea2μ+γ ]

= 1
2

∑

a1<2a2

(−1)a1−2a2(a1 −2a2)�(a1,2)�(a2,1)e(a1+a2)μ+3γ .

Similarly for type 1+2 there are terms

1
2

∑

a1<a2

[
−�(a1,1)ea1μ+γ ,−1

4
�(a2,1)e2a2μ+2γ

]

= 1
4

∑

a1<a2

(a1 −a2)�(a1,1)�(a2,1)e(a1+2a2)μ+3γ

and

1
2

∑

2a1<a2

[−�(a1,1)ea1μ+γ ,−�(a2,2)ea2μ+2γ ]

= 1
2

∑

2a1<a2

(−1)2a1−a2(2a1 −a2)�(a1,1)�(a2,2)e(a1+a2)μ+3γ .
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For the type 1+1+1 term recall the BCH formula up to order 3 Lie brackets,

log(exp(X) exp(Y ))= X +Y + 1
2
[X,Y ]+ 1

12
([X, [X,Y ]]+ [Y, [Y, X ]]),

and applying this inductively to the ordered product factorisation we find contri-
butions

1
4

∑

a1<a2<a3

[[−�(a1,1)ea1μ+γ ,−�(a2,1)ea2μ+γ ],−�(a3,1)ea3μ+γ ]

=−1
4

∑

a1<a2<a3

(−1)a1−a2(−1)a1+a2−2a3(a1 −a2)(a1 +a2 −2a3)

×�(a1,1)�(a2,1)�(a3,1)e(a1+a2+a3)μ+3γ

and

1
12

∑

a1<a3,a2<a3

[−�(a1,1)ea1μ+γ , [−�(a2,1)ea2μ+γ ,−�(a3,1)ea3μ+γ ]]

=− 1
12

∑

a1<a3,a2<a3

(a2 −a3)(2a1 −a2 −a3)�(a1,1)�(a2,1)�(a3,1)

×e(a1+a2+a3)μ+3γ ,

1
12

∑

a2<a1

[−�(a2,1)ea2μ+γ , [−�(a2,1)ea2μ+γ ,−�(a1,1)ea1μ+γ ]]

=− 1
12

∑

a2<a1

(a1 −a2)
2(�(a1,1))2�(a2,1)e(2a1+a2)μ+3γ .

Summing over the previous terms we find the lengthy r =3 KS identity

�(a,3)= (−1)a
∑

k≥1

3k−2 χk

k!
∑

len(n)=len(i)=k,n · i=a

∏
nl∏
il

+1
4

∑

a1<a2,2a1+a2=a

(a1 −a2)�(a1,1)�(a2,1)

+1
2

∑

a1<2a2,a1+a2=a

(−1)a1−2a2(a1 −2a2)�(a1,2)�(a2,1)

+1
4

∑

a1<a2,a1+2a2=a

(a1 −a2)�(a1,1)�(a2,1)

+1
2

∑

2a1<a2,a1+a2=a

(−1)2a1−a2(2a1 −a2)�(a1,1)�(a2,2)

−1
4

∑

a1<a2<a3,a1+a2+a3=a

(a1 −a2)(a1 +a2 −2a3)�(a1,1)�(a2,1)�(a3,1)

− 1
12

∑

a1<a3,a2<a3,a1+a2+a3=a

(a2−a3)(2a1−a2−a3)�(a1,1)�(a2,1)�(a3,1)
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− 1
12

∑

a2<a1,2a1+a2=a

(a1 −a2)
2(�(a1,1))2�(a2,1)

−1
9
�(a/3,1) (2.11)

where it is understood that the last term only appears when a > 0 and 3 | a. As
in the case of rank r =2 this gives an identity for D̄T(a,3)=�(a,3)+ 1

9�(a/3,1)

where the last term only appears if a >0 and 3 |a.

2.5. APPLICATION TO INTEGRALITY

In the next section we will prove that the Joyce–Song invariants D̄T(a, r) for r ≤
3 satisfy the above KS identities. Here, we show how to deduce integrality of the
BPS state counts for r ≤ 3 from these identities in an elementary way. A different
proof for r =2 has also been found by Toda [17]. The best result towards integral-
ity, in general, has been proved by Reineke [15].

Consider first the case r =2. When 2 �a we have �(a,2)=D̄T(a,2) which is inte-
gral by Joyce–Song theory since the class (a,2) is primitive. Therefore, we assume
2 |a. Going back to the r =2 KS identity, notice that

∑

a′<a′′,a′+a′′=a

(a′ −a′′)�(a′,1)�(a′′,1)=
∑

a′<a′′,a′+a′′=a

(a −2a′′)�(a′,1)�(a′′,1)

≡0 mod 2.

So integrality of �(a,2) follows if we can prove that

∑

k≥1

2k−2 χk

k!
∑

len(n)=len(i)=k,n · i=a

∏
nl∏
il

− 1
4
�(a/2,1)

is an integer. This, in turn, is equivalent to

∑

k≥1

(2χ)k

k!
∑

len(n)=len(i)=k,n · i=a

∏
nl∏
il

≡�(a/2,1) mod 4.

But notice that we can use the r = 1 KS identity to relate the left hand side of
the above congruence to the MacMahon function M(t), namely the left hand side
is just the coefficient of ta in the formal power series M(t)2χ =∏

n≥1(1 − tn)−2nχ .
The right hand side is the coefficient of ta/2 in the formal power series M(−t)χ =∏

n≥1(1− (−t)n)−nχ . So the r =1,2 KS identities together reduce integrality to the
following computation.

LEMMA 2.12. For 2 |a

[ta]M(t)2χ ≡ (−1)a/2[ta/2]M(t)χ mod 4.
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Proof. We use the identity for Euler products

[ta]
∏

n≥1

(1− tn)−cn =
∑

p�a

∏

i≥1

(
cn −1+ pi − pi+1

pi − pi+1

)
, (2.13)

where (in contrast to the rest of the paper) the sum is over partitions rather than
ordered partitions. We learned of this representation from [15, Lemma 5.3]. In our
case this gives

[ta]M(t)2χ =
∑

p�a

∏

i≥1

(
2iχ −1+ pi − pi+1

pi − pi+1

)

and

[ta/2]M(t)χ =
∑

q�a/2

∏

j≥1

(
jχ −1+qi −qi+1

qi −qi+1

)
.

Note that
(

2iχ −1+ ξ

ξ

)
≡0 mod 2 for ξ ≡1 mod 2,

so the restriction of the first sum to partitions which contain parts of each parity
is ≡ 0 mod 4. On the other hand, if the partition only contains odd parts, there
must be an even number of them since (as a is even) and then the sum is still ≡0
mod 4 by the congruence

(
2iχ −1+ ξ

ξ

)
≡0 mod 4 for i ≡0 mod 2 and ξ ≡1 mod 2

applied when ξ is the last part of the partition. It remains to show that for a par-
tition p with even parts

∏

i≥1

(
2iχ −1+ pi − pi+1

pi − pi+1

)
≡ (−1)a/2

∏

i≥1

(
iχ −1+ pi/2− pi+1/2

pi/2− pi+1/2

)
mod 4.

But this follows from
(

2iχ −1+ ξ

ξ

)
≡ (−1)ξ/2

∏

i≥1

(
iχ −1+ ξ/2

ξ/2

)
mod 4 for ξ ≡0 mod 2

which can be proved by induction.
Similarly in the r = 3 case we already know that the Joyce–Song invariants are

integral for primitive classes, so we assume 3 |a. We need an analogue of the above
lemma.

LEMMA 2.14. For 3 |a

[ta]M(−t)3χ ≡[ta/3]M(−t)χ mod 9.
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For the proof see the arXiv version of this paper. One can then show that the
result would follow from the integrality of

− 1
12

∑

a1<a3,a2<a3,a1+a2+a3=a

(a2 −a3)(2a1 −a2 −a3)�(a1,1)�(a2,1)�(a3,1)

and

− 1
12

∑

a2<a1,2a1+a2=a

(a1 −a2)
2(�(a1,1))2�(a2,1).

But this holds since we are assuming 3 |a so for the first term

2a1 −a2 −a3 =3a1 −a =3
(

a1 − a

3

)
,

and similarly for the second

a1 −a2 =3a1 −a =3
(

a1 − a

2

)
.

3. Joyce–Song Side

In this section, we use Joyce–Song theory for precisely the same wall-crossing
described in introduction. The tilted category A′ satisfies again the assumptions
of the theory and the Joyce–Song invariants do not change until the phase of μ

crosses that of γ . One can check directly that for φ(μ) > φ(γ ) the Joyce–Song
invariants, which we call D̄T

−
, vanish for all mixed classes. The general wall-cross-

ing formula in JS theory (see [9, Section 5]) is

D̄T(α)=
∑

n≥1

∑

α1,...,αn

(−1)n−1

2n−1
U(α1, . . . , αn;φ∓)

·
∑

ϒ

∏

{i→ j}⊂ϒ

(−1)〈αi ,α j 〉〈αi , α j 〉
∏

k

D̄T
−
(αk),

where we are summing over effective decompositions
∑

i αi of the K -theory class
α (weighted by certain combinatorial coefficients U, recalled below) and ordered
trees ϒ , respectively (more precisely the relevant trees are labelled by {1,2, . . . ,n},
and satisfy i → j ⇒ i < j). The bracket above denotes the Euler form. In general, it
is not known if the D̄T invariants satisfy the Kontsevich–Soibelman wall-crossing
formula and only the more complicated Joyce–Song identity has been rigorously
established.

3.1. RANK r =1

3.1.1. Decompositions and Partitions

Fix a K -theory class α =γ +aμ and let

α =α1 +· · ·+αn (3.1)
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be an ordered decomposition into effective classes; this corresponds to a 2D ordered
partition of the integer vector (a,1). This decomposition a priori gives a contribu-
tion to D̄T(α) via Joyce–Song wall-crossing, which is given by a multiple of the
D̄T

−
invariant of the 2D partition,

∏
k D̄T

−
(αk). However, D̄T

−
(β) vanishes for

“mixed classes” 〈β, γ 〉, 〈β,μ〉 �=0. Thus, we can effectively restrict to summing over
pairs (p, i) given by an ordered partition p for a of length n − 1 and an integer
i = 1, . . . ,n denoting the place of the (unique) summand γ in the decomposition,
so that the decomposition of α above looks like

γ +aμ= p1μ+· · ·+ pi−1μ+γ + piμ+· · ·+ pn−1μ (3.2)

(writing p= (p1, . . . , pn−1)). We write p�a for an ordered partition of a.

3.1.2. S Symbols

Let us denote by φ∓ = arg ◦Z∓ the phase functions with respect to two different
central charges Z∓ with τ > 3

2π and τ < 3
2π , respectively. We need to compute

Joyce’s S symbol (see, e.g. [9, Definition 3.12])

S(p, i)=S(p1μ, . . . , pi−1μ,γ, piμ, . . . , pn−1μ;φ∓).

Its value is determined by a set of “seesaw” inequalities (the inequalities (a) and
(b) in [9] Definition 3.12), which say roughly that S is an ordering operator.
More precisely let α1, . . . , αn be a collection of charges (with n ≥ 1). If for all i =
1, . . . ,n −1 we have either

1. φ−(αi )<φ−(αi+1) and φ+(α1 +· · ·+αi )≥φ+αi+1 +· · ·+α(n), or
2. φ−(αi )≥φ−(αi+1) and φ+(α1 +· · ·+αi )<φ+αi+1 +· · ·+α(n)

then one defines S(α1, . . . , αn; s,w) to be (−1)#{indices satisfying (1)}. Otherwise
S(α1, . . . , αn; s,w) vanishes.

Suppose i >2. Then since

φ−(p1μ)=φ−(p2μ),

φ+(p1μ)<φ+(γ + p2μ+· · ·+ pn−1μ)

the seesaw inequalities do not hold and S = 0. For i = 2 the inequalities do hold
since

φ−(p1μ)>φ−(γ ),

φ+(p1μ)≤φ+(γ + p1μ+· · ·+ pn−1μ);
φ−(γ )<φ−(p2μ),

φ+(γ + p1μ)>φ+(p2μ+· · ·+ pn−1μ);
φ−(pkμ)=φ−(pk+1μ),

φ+(γ + p1μ+· · ·+ pkμ)>φ+(pk+1μ+· · ·+ pn−2μ)
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for k = 2, . . . ,n − 2. When the seesaw inequalities hold S is (−1)#adjacent(≤,>)pairs,
which gives

S(p,2)= (−1)n−2. (3.3)

Similarly for i =1 the seesaw inequalities hold since

φ−(γ )<φ−(p1μ),

φ+(γ )>φ+(p1μ+· · ·+ pn−1μ);
φ−(pkμ)=φ−(pk+1μ),

φ+(γ + p1μ+· · ·+ pkμ)<φ+(pk+1μ+· · ·+ pn−1μ)

for k =1, . . . ,n −2, giving

S(p,1)= (−1)n−1. (3.4)

Remark. Let φ0 denote the degenerate phase function of the wall (i.e. for τ = 3
2π ).

Then one can easily compute a few S symbols when hitting the wall from τ > 3
2π ,

e.g.

S(γ,μ;φ−
0 )=S(γ,2μ;φ−

0 )=0, S(μ, γ ;φ−
0 )=S(2μ,γ ;φ−

0 )=1,

S(γ,μ,μ;φ−
0 )=S(μ, γ,μ;φ−

0 )=S(μ,μ;φ−
0 )=0.

3.1.3. U Symbols

Let α1, . . . , αn be a collection of charges (with n ≥1). Joyce introduced certain com-
binatorial coefficients (see, e.g. [9, Definition 3.12]), which play a fundamental role
in the wall-crossing formula, and whose general definition is rather involved,

U(α1, . . . , αn;φ∓)

=
∑

1≤l≤m≤n, 0=a0<a1<···<am=n, 0=b0<b1<···<bl=m:
Define β1, . . . , βm by βi =αai−1+1 +· · ·+αai .
Define γ1, . . . , γl by γi =βbi−1+1 +· · ·+βbi .
Then φ−(βi )=φ−(α j ), i =1, . . . ,m, ai−1 < j ≤ai ,
and φ+(γi )=φ+(α1 +· · ·+αn), i =1, . . . , l

(−1)l−1

l
·
∏l

i=1
S(βbi−1+1, βbi−1+2, . . . , βbi ; s,w)

·
m∏

i=1

1
(ai −ai−1)! .

We need to compute these symbols in our case. Consider again the decompo-
sition (3.2). We can obtain a new one of the same form by partitioning the head
and tail sets

{p1μ, . . . , pi−1μ}, {piμ, . . . , pn−1μ}
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according to partitions q′, q′′ of i − 1,n − i and taking the partial sums of q′, q′′.
We call this a contraction (p′, i) of the decomposition (p, i). A contraction carries
a weight

1∏
k q ′

k !
∏

l q ′′
l ! .

The ideal sheaves K -theory classes (a,1) are primitive. In this situation Joyce’s
U(p, i) symbol reduces to the weighted sum over all contractions of (p, i) with non-
vanishing S symbol.

Suppose i >1. Then the only choice for q′ is the trivial partition of i −1 (i.e. we
must contract all of {p1μ, . . . , pi−1μ} to the single class (p1 + · · · + pi−1)μ) with
weight (i − 1)!−1. On the other hand, we can contract the tail with an arbitrary
q � n − i with weight (

∏
k qk !)−1. The contracted decomposition is of type (p′,2),

has length 2+ len(q) and thus S symbol (−1)len(q).
For i =1 instead the head is empty and the q-contracted decomposition has type

(p′,1), length 1+ len(q) and thus S= (−1)len(q). So we see that for i ≥1

U(p, i)= 1
(i −1)!

∑

q�n−i

(−1)len(q)

∏
k qk ! . (3.5)

The result is independent of p. Next notice the identity
∑

q�s

(−1)len(q)

∏
l ql ! = (−1)s

s!
which is easily proved by induction,

∑

q�s

(−1)len(q)

∏
l ql ! =−

s∑

q1=1

1
q1!

∑

q′�s−q1

(−1)len(q′)
∏

l q ′
l !

=−
s∑

q1=1

(−1)s−q1

q1!(s −q1)! = (−1)s

s! .

Using this identity we find for i ≥1

U(p, i)= (−1)n−i

(i −1)!(n − i)! . (3.6)

Notice that, in particular
n∑

i=1

(−1)i U(p, i)= (−1)n 2n−1

(n −1)! .

Remark. As an example of the general definition we compute a few U symbols
when hitting the wall, e.g.

U(γ,μ;φ−
0 )=U(γ,2μ;φ−

0 )=−1
2
, U(μ, γ ;φ−

0 )=U(2μ,γ ;φ−
0 )= 1

2
,

U(γ,μ,μ;φ−
0 )= 1

12
, S(μ, γ,μ;φ−

0 )=−1
6
, U(μ,μ;φ−

0 )= 1
12

.
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3.1.4. Sums over Trees

The wall-crossing for the decomposition (3.1) carries a sum over trees factor
∑

ϒ

∏

{k→l}⊂ϒ1

(−1)〈αk ,αl 〉〈αk, αl〉

which is especially simple for r = 1. Since 〈pkμ, plμ〉 = 0 the only ordered tree
which gives a nonvanishing factor is the unique ordered tree rooted at i with leaves
labelled by 1, . . . i −1, i +1, . . .n. The factor is then

∏

k

(−1)pk

i−1∏

l=1

〈plμ,γ 〉
n−1∏

l=i

〈γ, plμ〉= (−1)n+i
∏

k

(−1)pk pk = (−1)a(−1)n+i
∏

k

pk .

3.1.5. D̄T
−

of a Partition

Since D̄T
−
(γ )=1 this is simply the product

∏

k

DT−(pkμ),

in particular, it only depends on the unordered partition underlying p. Thus, we
compute

D̄T
−
(p, i)= (−1)n−1χn−1

n−1∏

k=1

⎛

⎝
∑

m|pk

1
m2

⎞

⎠ .

3.1.6. r =1 Wall-Crossing

We can now write down the rank r =1 wall-crossing formula explicitly in terms of
ordered partitions for integers,

D̄T(a,1)= (−1)a
∑

n≥2

(−1)n(−χ)n−1 (−1)n−1

2n−1

(
n∑

i=1

(−1)i U(p, i)

)

×
⎛

⎝
∑

p�a,len(p)=n−1

∏

k

pk

⎛

⎝
∑

m|pk

1
m2

⎞

⎠

⎞

⎠

= (−1)a
∑

n≥2

χn−1

(n −1)!

⎛

⎝
∑

p�a,len(p)=n−1

∏

k

pk

⎛

⎝
∑

m|pk

1
m2

⎞

⎠

⎞

⎠ .

This can be compared directly with the KS wall-crossing. Rearranging we find

∑

p�a,len(p)=k

∏

l

pl

⎛

⎝
∑

m|pl

1
m2

⎞

⎠=
∑

len(n)=len(i)=k,n · i=a

∏
nl∏
il

. (3.7)

which proves the required equivalence.
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Remark. Similarly we can compute on the wall (emphasising the contribution of
each partition),

D̄T
0
(1,1)=−1

2
U(γ,μ)(−1)2(1)(−χ)− 1

2
U(μ, γ )(−1)(1)(1)(−χ)

=−χ

4
− χ

4
=−χ

2
,

D̄T
0
(2,1)=−1

2
U(γ,2μ)(−2)(1)(−χ)− 1

2
U(2μ,γ )(2)(1)(−χ)

+ 1
4

U(γ,μ,μ)(−1)2(1)(−χ)2 + 1
4

U(μ, γ,μ)(−1)(1)(−χ)2

+ 1
4

U(μ,μ, γ )(−1)2(1)(−χ)2 = 5
4
χ + 1

12
χ2,

in agreement with our previous KS computations on the wall.

3.2. r =2

3.2.1. Decompositions

The rank r =2 wall-crossing formula contains a copy of the r =1 case, up to scale,
given by ordered decompositions of the form

2γ +aμ= p1μ+· · ·+ pi−1μ+2γ + piμ+· · · pn−1μ. (3.8)

This is because for decompositions of the form above it makes no difference if the
K -theory class is not primitive: U remains the sum of S over all possible contrac-
tions. The factor

∏

k

(−1)pk pk

⎛

⎝
∑

m|pk

1
m2

⎞

⎠= (−1)a
∏

k

pk

⎛

⎝
∑

m|pk

1
m2

⎞

⎠

in the χn−1 coefficient of the r =1 formula must be replaced by

2n−1
∏

k

pk
1
4

⎛

⎝
∑

m|pk

1
m2

⎞

⎠

accounting for products ±(−1)〈pkμ,2γ 〉〈pkμ,2γ 〉 and D̄T
−
(2γ )= 1

4 , giving

D̄T(a,2)=
∑

n≥2

2n−3 χn−1

(n −1)!

⎛

⎝
∑

p�a,len(p)=n−1

∏

k

pk

⎛

⎝
∑

m|pk

1
m2

⎞

⎠

⎞

⎠

+ contribution of new decompositions.

The first term coincides precisely with the first term of the rank r =2 KS formula
(we may call this the “‘scaling” behaviour of both the KS and the JS formulae
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in the D0–D6 case). The residual contribution comes from decompositions of the
form

2γ +aμ= p1μ+· · ·+ pi−1μ+γ + piμ

+· · ·+ p j−2μ+γ + p j−1μ+· · ·+ pn−2μ (3.9)

with copies of γ sitting at places 1≤ i < j ≤n, which we denote by (p, i, j), where p

is a length n −2≥1 ordered partition of a. In the rest of this section we compute
this residual contribution.

3.2.2. Sum over Trees

For fixed values of indexes i, j, 1≤ i < j ≤n choose a special integer l ∈{1, . . . ,n} \
{i, j}; then choose possibly empty subsets of

{1, . . . , i −1} \ {l}, {i +1, . . . , j −1} \ {l}, { j +1, . . . ,n} \ {l}

with cardinality h,m, t , respectively. These choices give rise to a well-defined orde-
red tree rooted at i, j by connecting the chosen sets to the vertex labelled i , the
special vertex l to both i, j and the remaining edges to j . Two such trees can be
distinguished by their Prüfer code, and all admissible trees for (3.9) are of this
form.

A fixed tree contributes to the wall-crossing formula by a common factor∏
k(−1)pk pk = (−1)a ∏

k(−1)pk pk times by a factor specific to the tree. Suppose
first l ∈{1, . . . , i −1}; then this factor is

(−1)#{edges outgoing from i or j} pl = (−1)m(−1)n− j pl .

There are 2i−22n− j
( j−i−1

m

)
trees for such fixed l. For l ∈{i +1, j −1} the factor is

(−1)#{edges outgoing from i or j} pl−1 = (−1)m+1(−1)n− j pl−1,

and there are 2i−12n− j
( j−i−2

m

)
trees for such fixed l. Finally, l ∈{ j +1, . . . ,n} gives

a factor

(−1)#{edges outgoing from i or j} pl−2 = (−1)m(−1)n− j+1 pl−2

for 2i−12n− j−1
( j−i−1

m

)
trees. Thus, the sum over graphs turns out to be

∑

ϒ

∏

{k→l}⊂ϒ1

(−1)〈αk ,αl 〉〈αk, αl〉

=
∏

k

(−1)pk pk

⎛

⎝2i−22n− j (−1)n− j
i−1∑

l=1

pl

j−i−1∑

m=0

(−1)m
(

j − i −1
m

)
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+2i−12n− j (−1)n− j
j−1∑

l=i+1

pl−1

j−i−2∑

m=0

(−1)m+1
(

j − i −2
m

)

+2i−12n− j−1(−1)n− j+1
n∑

l= j+1

pl−2

j−i−1∑

m=0

(−1)m
(

j − i −1
m

)⎞

⎠ .

By the binomial theorem this equals

⎧
⎪⎨

⎪⎩

(−1)n(−1)i+12n−3(−1)a ∏
k pk(

∑i−1
l=1 pl −∑n−2

l=i pl) if j = i +1,

(−1)n(−1)i+12n−3(−1)a ∏
k pk pi if j = i +2,

0 otherwise.

(recall n ≥3). The upshot of this is that among decompositions (3.9) the only that
can possibly contribute to the wall-crossing are those with (i, j) as above.

3.2.3. S and U

We only need to compute U of the decompositions with nonvanishing
∑

ϒ factor.
Notice first that as in the r =1 case the S symbol of a partition can only be non-
vanishing if the first copy of γ lies in the first or second place. As in the prim-
itive case U(p, i, j) contains a “first order” term which is the weighted sum of S
over admissible contractions of p. For an arbitrary p we must contract the head
{p1μ, . . . , pi−1μ} to the singleton {(p1 +· · ·+ pi−1)μ}.

Suppose first j = i +1. Then contracting the head to a singleton plus contracting
the tail using a partition q has S symbol

(−1)len(q)+1δp1+···+pi−1<pi +···+pn−2 .

If we also contract the couple {γ, γ } (with weight 1/2) the S symbol becomes
(−1)len(q). The first order U symbol for j = i +1 is therefore

1
(i −1)!

∑

q�n−i−1

(−1)len(q)

∏
l ql !

(
−δp1+···+pi−1<pi +···+pn−2 + 1

2

)

= 1
2

(−1)n−i−1

(i −1)!(n − i −1)! (δp1+···+pi−1≥pi +···+pn−2 − δp1+···+pi−1<pi +···+pn−2).

For j = i +2 the corresponding first order term is

1
(i −1)!

∑

q�n−i−1

(−1)len(q)

∏
l ql ! (δp1+···+pi−1<pi +···+pn−2 · δp1+···+pi ≥pi+1+···+pn−2)

= (−1)n−i−1

(i −1)!(n − i −1)! (δp1+···+pi−1<pi +···+pn−2 · δp1+···+pi ≥pi+1+···+pn−2).
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In both cases when 2 |a there is also a “second order” term. For j = i +1 it is

−1
2

1
(i −1)!

∑

q�n−i−1

(−1)len(q)

∏
l ql ! δp1+···+pi−1=pi +···+pn−2

=−1
2

(−1)n−i−1

(i −1)!(n − i −1)!δp1+···+pi−1=pi +···+pn−2 ,

while for j = i +2 we get

−1
2

1
(i −1)!

∑

q�n−i−1

(−1)len(q)

∏
l ql ! (−δp1+···+pi =pi+1+···+pn−2 + δp1+···+pi−1=pi +···+pn−2)

= 1
2

(−1)n−i−1

(i −1)!(n − i −1)! (δp1+···+pi =pi+1+···+pn−2 − δp1+···+pi−1=pi +···+pn−2).

3.2.4. r =2 Wall-Crossing

Recall that our aim is to compare the residual contribution given in Joyce–Song
theory by decompositions of the form (3.9) with the corresponding term in the r =
2 KS formula, namely

(−1)a

2

∑

a′<a′′,a′+a′′=a

(a′ −a′′)�(a′,1)�(a′′,1).

By the above discussion it is enough to sum over p and i since j is either i +1 or
i +2, and the (−1)n−1

2n−1 U factor over such a sum over decomposition equals

(−1)a

2
(−1)n

4
1

(i −1)!(n − i −1)!
∏

k

pk

⎛

⎝
∑

m|pk

1
m2

⎞

⎠

·
((

i−1∑

l=1

pl −
n−2∑

l=i

pl

)
(
δp1+···+pi−1<pi +···+pn−2 − δp1+···+pi−1≥pi +···+pn−2

)

−pi (2δp1+···+pi−1<pi +···+pn−2 · δp1+···+pi ≥pi+1+···+pn−2

− δp1+···+pi−1=pi +···+pn−2 + δp1+···+pi =pi+1+···+pn−2)

)
.

Notice that the second order term for U when j = i + 1 is only nonzero when∑i−1
l=1 pl =∑n−2

l=i pl , hence it gives no contribution in the formula above.
Now sum over all p, i and compare to the KS term. The second factor in the

formula above acts as on ordering operator, giving the sum over a′ <a′′. This can
be seen using the fact that for a fixed partition p there exists a unique i with

δp1+···+pi−1<pi +···+pn−2 · δp1+···+pi ≥pi+1+···+pn−2 =1.
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The first factor equals the sum over all products �(a′,1)�(a′′,1) by the usual
rearrangement

∑

p�a′,len(p)=k

∏

l

pl

⎛

⎝
∑

m|pl

1
m2

⎞

⎠=
∑

len(n)=len(i)=k,n · i=a′

∏
nl∏
il

,

(same for a′′), and the r =1 KS wall-crossing, i.e.

�(a′,1)= (−1)a′ ∑

k≥1

χk

k!
∑

len(n)=len(i)=k,n · i=a′

∏
nl∏
il

,

(same for a′′).

3.3. r =3

Exactly as for r =2 case there is a copy of the rank r =1 KS formula, up to scal-
ing γ to 3γ , contributing

(−1)a
∑

n≥2

3n−1 χn−1

(n −1)!

⎛

⎝
∑

p�a,len(p)=n−1

∏

k

pk
1
9

⎛

⎝
∑

m|pk

1
m2

⎞

⎠

⎞

⎠

which can be identified with the term

(−1)a
∑

k≥1

3k−2 χk

k!
∑

len(n)=len(i)=k,n · i=a

∏
nl∏
il

in the r =3 KS formula.
Let us now consider the case when exactly 2 copies of γ appear in the decom-

position, or in other words decompositions (p,2i + 1 j ), (p,1i + 2 j ) for i < j . Both
cases are very close, up to scale, to the decompositions studied for the r = 2
case. One can go through all of the previous subsection, treating the first or sec-
ond copy of γ as a “variable” which can be rescaled to 2γ , without any addi-
tional changes, until we reach the very last paragraph where the r =1 formula for
�(a′,1),�(a′′,1) is used. This must now be replaced with the corresponding r =2
formula for �(a′,2) (respectively, �(a′′,2)), which gives a contribution

1
2

∑

a1<2a2,a1+a2=a

(−1)a1−2a2(a1 −2a2)�(a1,2)�(a2,1)

+ 1
2

∑

2a1<a2,a1+a2=a

(−1)2a1−a2(2a1 −a2)�(a1,1)�(a2,2)

− 1
4

∑

a1<a2<a3,a1+a2+a3=a

(a1 −a2)(a1 +a2 −2a3)�(a1,1)�(a2,1)�(a3,1)
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+ 1
4

∑

a1<a2,2a1+a2=a

(a1 −a2)�(a1,1)�(a2,1)

+ 1
4

∑

a1<a2,a1+2a2=a

(a1 −a2)�(a1,1)�(a2,1)

in the r =3 KS identity.
It remains to consider the “genuine” new decompositions, i.e. those of the form

(p,1i +1 j +1k) for i < j < k. We expect that these contribute

− 1
12

∑

a2<a1,2a1+a2=a

(a1 −a2)
2(�(a1,1))2�(a2,1)

− 1
12

∑

a1<a3,a2<a3,a1+a2+a3=a

(a2 −a3)(2a1 −a2 −a3)�(a1,1)�(a2,1)�(a3,1).

This can be shown be summing over graphs of the form

•l
plμ

��
��

��
��

��
��

��
��

•i
γ • j

γ •k
γ

. . . . . . . . .

and

•l1
l1μ

��
��

��
��

��
��

��
��

•l2
l2μ

��
��

��
��

��
��

��
��

•i
γ • j

γ •k
γ

. . . . . . . . .

for l1 < l2.

Remark. In the arXiv version of this paper we outline an inductive argument for
the KS identities starting from the JS identities, for arbitrary rank r .

4. From D0–D6 to GW

In this section we explain how the theory of Gross–Pandharipande–Siebert, in
particular the main result from [7], the “full commutator formula” Theorem 5.6,
applies to the case of D0–D6 states. From this point of view, the link between
D0–D6 states and GW invariants is given by the product formula for the
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MacMahon function. We briefly recollect the full commutator formula in the form
we will need.

4.1. ORBIFOLD BLOWUPS

Let D ⊂ S be a divisor in a smooth surface and x ∈ D a smooth point. Smooth-
ness implies that for each j ≥1 there is a unique subscheme of D of length j with
reduced scheme x . We view this nonreduced scheme as a subscheme x j

D ⊂ S. For
j ≥ 2 the scheme-theoretic blowup S j of S along x j

D has a unique singular point
of type A j−1 lying in the exceptional divisor E . Thus, we can put on S j the struc-
ture of a smooth orbifold over S j . For example, the blowup of C

2 along a length
2 subscheme Z supported at the origin has an ordinary double point at the point
of E corresponding to the direction cut out by Z , and so is locally the smooth
orbifold C

2/Z2. In this case one can check directly that, on the smooth orbifold,
E2 =− 1

2 , and, in general, one can prove that, on S j , E2 =− 1
j .

4.2. GRADED ORDERED PARTITIONS

A graded ordered partition P is a d-tuple P = (p1, . . . , pd) of ordered partitions
such that every part of p j is divisible by j . Its parts are labelled by p j

k for j =
1, . . . ,d and k =1, . . . , � j = len(p j ). We set len(P)= (�1, . . . , �d) and |P|=∑

j,k p j
k .

4.3. TORIC ORBIFOLDS

Let (a, r) denote a primitive vector. The fan given by (−1,0), (0,−1) and (a, r)

defines a toric surface X = X(a,r), the weighted projective plane P(a, r,1). The faces
then correspond to toric divisors D1, D2, Dout . Removing the 3 torus fixed points
[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] we obtain a quasi-projective toric orbifold Xo

(a,r) with
divisors Do

1, Do
2, Do

out .
Let now G= (P1,P2) be pair of graded ordered partitions P1 = (p1

1, . . . , p
d1
1 ), P2 =

(p1
2, . . . , p

d2
2 ). For i = 1,2 we choose distinct points x j

ik ∈ Do
i corresponding to the

parts p j
ik of p

j
i . We pick a toric resolution X̃ → X whose corresponding divisors

D̃1, D̃2, D̃out are disjoint and we define a smooth orbifold X̃ [G] over X̃ as the orb-
ifold blowup of X̃ at the points x j

ik , with weights p j
ik . The underlying singularities

become worse as j increases. We denote by Xo[G]⊂ X̃ [G] the preimage of Xo. The
exceptional divisors are E j

ik , and we can define a class β ∈ H2(X̃ ,Z) by prescribing
the intersection numbers β · D̃i =|Pi | for i =1,2, β · D̃out =gcd(|P1|, |P2|) (the index
of a possibly nonprimitive vector) and β · D = 0 for all other generators of the
Picard group. From β we obtain a natural class βG on the blowup, i.e. in orbifold
cohomology H2(X̃ [G]), by pulling back and subtracting the weighted exceptional
divisors, namely

βG =π∗β −
∑

i=1,2

di∑

j=1

�
j
i∑

k=1

p j
ik[E j

ik].
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4.4. MODULI SPACES OF RELATIVE STABLE MAPS

Gross–Pandharipande–Siebert consider the moduli stack M(X̃ [G]/D̃out ) of genus 0
stable relative maps in the class βG with full tangency of order gcd(|P1|, |P2|) at
an unspecified point of the divisor D̃out , and the open substack M(Xo[G]/Do

out )

given by maps which avoid X̃ [G] \ Xo[G]. One of their main technical results
([7, Proposition 5.5]) proves that M(Xo[G]/Do

out ) is proper with a deformation-
obstruction theory of virtual dimension 0, so for all G one has well-defined GW
invariants

N [G]=
∫

[M(Xo[G]/Do
out )]vir

1∈Q.

4.5. FULL COMMUTATOR FORMULA

For d1,d2 �1 consider the functions

σ =
d1∏

j=1

�
j
1∏

k=1

(
1+ s j

k x j ), τ =
d2∏

j=1

�
j
2∏

k

(
1+ t j

k y j )

as elements of the ring of formal power series C[[x, y, s•• , t•• ]] in as many variables
as necessary. We define monomials

sP1 =
d1∏

j=1

�
j
1∏

k=1

(
s j

k

) p
j
1k
j , tP2 =

d2∏

j=1

�
j
2∏

k=1

(
t j
k

) p
j
2k
j .

Let (a, r)∈Z
2 be a primitive vector. Gross–Pandharipande–Siebert prove a formula

for the formal power series log f(a,r) attached to (a, r) in the ordered product fac-
torisation for the commutator τ−1σ−1τσ .

THEOREM 4.1 (Gross–Pandharipande–Siebert [7] Theorem 5.6). There is an iden-
tity of formal power series

log f(a,r) =
∑

h≥1

∑

G=(P1,P2)

hN [G]sP1 tP2 xha yhr

where the sum is over all graded ordered partitions P1 of length (�1
1, . . . , �

d1
1 ) and P2

of length (�1
2, . . . , �

d2
2 ) such that (|P1|, |P2|)=h · (a, r).

4.6. APPLICATION TO D0–D6 STATES

We wish to apply the above result to study the wall-crossing identity (1.5). Thus,
we should consider elements of C[x, y][[u]] given by



178 JACOPO STOPPA

σ̃ =
∏

n≥1

(1− (−u)n xn)nχ , τ = (1−uy).

We can fit τ in the setup for Theorem 4.1 just described by choosing d2 =1, �1
2 =1

and t1
1 =−u. As for σ̃ , suppose to start with that χ ≥ 0. Then we can truncate σ

to a fixed d1 �1 and write

σ =
d1∏

j=1

jχ∏

k=1

(1− (−u) j x j ),

which we can fit in the notation for Theorem 4.1 by choosing

�
j
1 = jχ, s j

k =−(−1) j u j for k =1, . . . , jχ.

Now fix a primitive vector (a, r). The admissible ordered partitions (P1,P2) actu-
ally have the form (P1, hr) for some h ≥1, so tP2 = (−1)hr uhr . On the other hand,
P1 = (p1

1, p2
1, . . . , p

d1
1 ) is a d1-tuple of ordered partitions, with len(p

j
1)= jχ and |P1|=

ha, and where each part of p
j
1 is divisible by j . It follows that

sP1 =
d1∏

j=1

jχ∏

k=1

(−(−1) j u j )
p

j
1k
j = (−1)P1(−1)hauha

where we define the sign of a graded ordered partition as (−1)P1 = (−1)
∑

j,k
p

j
1k
j .

By the full commutator formula then

log f(a,r) =
∑

h≥1

∑

|Pχ |=ha

(−1)P1 hN [Pχ ](−1)h(a+r)(ux)ha(uy)hr

where the sum is over all graded ordered partitions Pχ with length vector

len(Pχ )= (χ,2χ, . . . ,d1χ)

for d1 �1 (by which we mean that we only need to choose a finite d1 large enough
for fixed (a, r) and h). So for χ ≥ 0, we have obtained the required D0–D6/GW
duality in the ring C[[x, y]]

∏

h≥1

(1− (−1)h2ar xha yhr )�(ha,hr)

=
∏

h≥1

exp

⎛

⎝
∑

|Pχ |=ha

(−1)P1 hN [Pχ ](−1)h(a+r)xha yhr

⎞

⎠ . (4.2)

The two sets of invariants are completely determined through each other.
When χ <0 we introduce one more truncation parameter N �1 (which we can

assume for convenience to be odd) and factor the d1, N -truncation of σ̃ as
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σ̃ =
d1∏

j≥1

j |χ |∏

k=1

∏

ξ N =1,ξ �=1

(1− ξ̄ (−u) j x j ),

or in other words we set

�
j
1 = j |χ |(N −1), s j

k,ξ =−ξ̄ (−u) j .

Then we compute

sP1 =
d1∏

j=1

jχ∏

k=1

∏

ξ N =1,ξ �=1

(−ξ̄ (−u) j )

p
j
1,(k,ξ)

j = (−1)hauha .

Accordingly, the D0–D6/GW formula has to be modified by dropping the (−1)Pχ

sign, and by enlarging the set of partitions over which the GW sum extends to
those graded ordered partitions Pχ with

∣∣Pχ

∣∣=ha and length vector

len(Pχ )= ((N −1)|χ |,2(N −1)|χ |, . . . ,d1(N −1)|χ |)
for d1, N �1 (once again, this means that fixing d1, N large enough will suffice for
fixed (a, r) and h).

We point out that the difference in our treatment of the χ ≥ 0 and χ < 0 cases
reflects the different kind of quivers appearing in the work of Nagao [14] accord-
ing to the sign of the Euler characteristic, in particular the appearance of loops
for χ >0.
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