Stability and wall-crossing in algebraic and differential geometry

Jacopo Stoppa Università di Pavia

STABAGDG Brussels, 23thApril 2012

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	Stability and canonical metrics	Metrics and wall-crossing	The team	Timeliness
00	00	00		
00	0	0		
00	0	0		

1. Introduction

Introduction	Sta
•0	00
00	0
00	0

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

General principle

General principle (after Narasimhan-Seshadri, Atiyah-Bott, Hitchin-Kobayashi, Donaldson, Yau, Tian...) Solutions to natural *PDEs* in complex geometry

Natural objects in complex algebraic geometry

In terms of families of solutions and objects or moduli spaces: $\mathcal{M}_{PDE}\cong \mathcal{M}_{alg}$

Introduction	Stability and canonical metrics
0.	00
00	0
00	0

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

General principle

This point of view has been spectacularly successful.

The aim of our project is to attack a number of open problems which fit in this context.

At the same time we will **expand this principle** bringing in **new insights and problems coming from recent work in the geometry of quantum field theories**.

Total duration: 4 years.

Introduction	Stability and canonical metrics	Metrics and wall-crossing
00	00	00
•0	0	0
00	0	0

Examples: gauge theory

 Hermitian Yang-Mills connections: (X, ω) a Kähler manifold (i.e. complex manifold with Riemannian metric which is perfectly adapted to complex structure).

 $E \rightarrow X$ holomorphic vector bundle; *A* on *E* compatible connection \Rightarrow a complex analogue of usual fields in physical gauge theory.

Field-strength = F_A = curvature = dA + [A, A], 2-form with values in ad(E).

Equation of motion: Tr $F_A = \lambda I$.

Thm (Hitchin-Kobayashi, Donaldson, Uhlenbeck-Yau)

A solution exists iff *E* satisfies a purely algebro-geometric condition, *slope polystability*. This is a constraint on *all the holomorphic subsheaves*.

oduction	Stability and canonical metrics	M
	00	0
	0	0
	0	0

Int

0

Examples: gauge theory

 Higgs bundles: Σ a Riemann surface, E → Σ rank 2 complex vector bundle with structure group SU(2).

A a compatible connection.

 Φ a Higgs field: 1-form with values in $ad(E) \otimes \mathbb{C}$.

Equations of motion are Hitchin's equations:

$$\mathbf{F}_{\mathcal{A}} + [\Phi, \Phi^*] = \mathbf{0}$$

 $\overline{\partial}_{\mathcal{A}} \Phi = \mathbf{0}.$

Theorem (Hitchin): solution iff $(E, \overline{\partial}_A)$ holomorphic, (E, Φ) stable.

(Open) problem (Hitchin, Simpson...):

Understand (hyperkähler) space of solutions (\mathcal{M}, g) (general gauge groups, singular fields...).

Introduction	Stability and canonical metrics	Metrics and wall-crossing	The t
00	00	00	
00	0	0	
•0	0	0	

Examples: Kähler geometry

 Kähler-Einstein metrics: (X, g) Kähler; ω_g Kähler differential 2-form.

Ricci form: $\operatorname{Ric}(\omega_g) = -\partial\overline{\partial} \log \det g_{k\overline{l}}$.

Einstein's equation in the Kähler world:

 $\operatorname{Ric}(\omega_g) = \lambda \omega_g.$

Topological constraint: $c_1(X) = \lambda[\omega_g]$.

Aubin-Calabi-Yau Theorem: If $c_1(X) \le 0$ this is the only constraint.

Kähler-Einstein (open) problem (Calabi, Yau, Tian, Donaldson...)

Solve the equation for positive Ricci curvature. Main conjecture (Yau-Tian-Donaldson): this is a purely algebro-geometric problem.

Introduction	Stability and canonical metrics	Metrics and wall-crossing	The team	Timel
00	00	00		
00	0	0		
0.	0	0		

Examples: Kähler geometry

• CscK and extremal metrics: prescribe *scalar curvature* to be constant, or as constant as possible:

Scalar curvature: $s(g) = -g^{i\overline{j}}\partial_i\overline{\partial}_j \log \det g_{k\overline{i}}$.

Csck equation and extremal equations:

 $s(g) = \hat{s} = a$ topological constant.

 $\nabla^{1,0} s(g) = \chi = \text{ess.}$ unique holomorphic vector field.

CscK (open) problem (Calabi, Yau, Tian, Donaldson...) Which manifolds have a cscK (or extremal) metric? **Main conjecture (Yau-Tian-Donaldson): when** $[\omega] = c_1(L)$ for $L \rightarrow X$ ample, this is a purely algebro-geometric problem.

Introduction	Stability and canonical metrics	Metrics and wall-crossing	The team	Timeliness
00	00	00		
00	0	0		

2. Stability and canonical metrics

Introduction	Stability and canonical metrics	Metrics and wall-crossing	The team	Timeliness
00	•0	00		
00	0	0		
00	0	0		

K-stability

K-(semi, poly)stability: [ω_g] = c₁(L). Embed X → P^{N_k} using powers L^k. K-(semi,poly)stability is a constraint on all degenerations X of (X, L) induced by flowing under a C^{*} ~ P^{N_k}, F(X) > 0 (≥ 0).

Theorem (Donaldson)

 $\omega_g \in c_1(L) \operatorname{cscK} \Rightarrow (X, L) \operatorname{K-}semi$ stable.

Theorem (S.): "blow-up method"

If moreover Aut(X, L) discrete \Rightarrow K-*stable*. In the extremal case get *relative* K-*poly*stability (with Székelyhidi).

Conjecture (Yau-Tian-Donaldson)

In general, $cscK \Leftrightarrow K$ -polystable.

Introdu	uction
00	
00	
00	

K-stability: problems and limitations

- No uniform control: for analytic purposes need uniform bound on F(X)/||X||, but it's lacking.
- **Might not be sufficient:** conjectural counterexample by Apostolov, Calderbank, Gauduchon and Tonnesen-Friedman.
- Not natural: natural statements like stability ⇒ reductivity, Zariski openness, Atiyah-Bott type theorems on worst degenerations are all very hard conjectures.
- Not compatible with Gromov-Hausdorff limits: in the approach of Donaldson (also with Chen, ...) Gromov-Hausdorff limits lead to a different notion: b-stability.

Introduction	
00	
00	

Our main objectives

General objective

Go beyond K-stability. Need much more flexible notion with respect to natural algebro-geometric operations, but still necessary for cscK (extremal). Study its relation to K-stability and asymptotic Chow stability.

Conjecture A and similar problems

Prove naturality properties for our new notion, and a posteriori for K-stability: equivariance and compatibility to maximal tori, Zariski openness, reductivity of Aut(X)...

b-stability

Obtain a detailed understanding of Donaldson's b-stability (the algebraic counterpart of Gromov-Hausdorff limits). **Prove that** a cscK manifold is b-stable.

Introduction	Stability and canonical
00	00
00	0
00	•

Sketch of methodology

Candidate: stability by filtrations

metrics

Encode degenerations by filtrations of $\bigoplus_k H^0(X, L^k)$, not necessarily finitely generated (Witt-Nystrom, Székelyhidi). Better behaved, but all the main problems still open. **Bring in methods from birational geometry and the analysis of ample linear series**.

Variations of the blow-up method

Donaldson made progress on cscK \Rightarrow b-stable using blow-up method, in the equivariant case. **Develop a non-equivariant version for the blow-up method**.

Approximation

Develop an **approximation theory for Donaldson's general families** in b-stability by one dimensional objects.

Introduction	Stability and canonical metrics	Metrics and wall-crossing	The team	Timeliness
00	00	00		
00	0	0		
00	0	0		

3. Hyperkähler metrics and wall-crossing

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

roduction	Stability and canonical metrics
)	00
)	0
)	0

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Seiberg-Witten and Higgs bundles

- Seiberg-Witten: Study $\mathcal{N} = 2$ Yang-Mills theories on $\mathbb{R}^3 \times S^1_{\mathcal{B}} \Rightarrow a \sigma$ -model $\mathbb{R}^3 \rightarrow$ hyperkähler \mathcal{M} .
- Higgs bundles: Claim (M, g) is a moduli space of solutions to F_A + R[Φ, Φ*] = ∂_AΦ = 0, with prescribed singularities!

Study the **geometry of** moduli of **Higgs bundles** (\mathcal{M}, g) (especially Hitchin fibration $\mathcal{M} \to \mathcal{B}$) **via** the structure of $\mathcal{N} = 2$ **Yang-Mills** (i.e. its operators, spectrum...).

ntroduction	Stability and canonical metrics	Metrics and wall-crossing
00	00	0.
00	0	0
00	0	0

The team

• BPS spectrum: states in $\mathcal{N} = 2$ Yang-Mills killed by half the supersymmetry operators.

Find mathematical framework (Donaldson-Thomas theory?): Bridgeland, Smith...

Wall-crossing: the number of BPS states is a function Ω(γ, u) of charge and coupling constant u ∈ B.

 $\Omega(\gamma, u)$ jump when *u* crosses critical locus: **wall-crossing** formulae as in Joyce-Song, Kontsevich-Soibelman.

Gaiotto-Moore-Neitzke conjecture(s)

 $\Omega(\gamma, u)$ completely determines (\mathcal{M}, g) by (nonperturbative) instanton corrections in *R* through integral equation. Wall-crossing reflects continuity of *g*.

roduction	Stability	and	canonical	metrics
	00			
	0			
	0			

Our main objectives

General objective

Study the conjecture(s) of Gaiotto-Moore-Neitzke for a large class of (\mathcal{M}, g) . Prove **existence and uniqueness of solutions** for their integral equation.

Asymptotic expansion

Study the **convergence of the natural asymptotic expansion** for solution emerging from GMN.

Additional structures

Study natural additional structures on (\mathcal{M}, g) : **hyperholomorphic connections**. What is the **mirror** for these constructions?

oduction	Stability and can	onical me
	00	
	0	
	0	

Sketch of methodology

Finite BPS spectra

Concentrate initially on examples where $\Omega(\gamma, u)$ is **everywhere** finite.

Comparisons

Establish **precise comparisons** with algebro-geometric work of Joyce and Bridgeland, Toledano-Laredo. Conjecture (S.): asymptotic expansion recovers Joyce's theory (checked in many cases).

Nahm-type equations

Recast as **infinite dimensional Nahm-type equations**. Bring in recent ideas of Donaldson on infinite dimensional Nahm and geodesics in the space of Kähler potentials.

Introduction	Stability and canonical metrics	Metrics and wall-crossing	The team	Timeliness
00	00	00		
00	õ	õ		

4. The team

- Jacopo Stoppa (Università di Pavia and Trinity College, Cambridge) - Principal Investigator. *CscK, K-stability, DT theory, quivers and tropical vertex, GMN theory.*
- Gabor Székelyhidi (University of Notre Dame) Team Member. CscK and extremal metrics, Monge-Ampère equations, Kahler-Ricci flow, Sasaki geometry.
- **Two postdocs** (2 + 2 years). With suitable expertise in algebraic or differential geometry.
- One doctoral student (3 years). Initially working in low-dimensional examples for b-stability or finite spectrum examples in GMN theory.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

5. Timeliness and flexibility

Very active research areas: recent or forthcoming works of Donaldson (also with Chen, Sun); Bridgeland, Smith...

Forthcoming **Junior Research Trimester** at HIM, Bonn, Sep-Dec 2012 (P.I. will be group leader for "BPS states" group).

Project is **flexible** and can adapt to the area of expertise of highly qualified post-doctoral members.

Good range of PhD problems to attract an excellent candidate.