We consider the 2×2 parabolic systems

$$u_t^{\varepsilon} + A(u^{\varepsilon})u_x^{\varepsilon} = \varepsilon u_{xx}^{\varepsilon}$$

on a domain $(t, x) \in [0, +\infty[\times]0, l[$ with Dirichlet boundary conditions imposed at x = 0 and at x = l. The matrix A is assumed to be in triangular form and strictly hyperbolic, and the boundary is not characteristic, i.e. the eigenvalues of A are different from 0.

We show that, if the initial and boundary data have sufficiently small total variation, then the solution u^{ε} exists for all $t \ge 0$ and depends Lipschitz continuously in L^1 on the initial and boundary data.

Moreover, as $\varepsilon \to 0^+$, the solutions $u^{\varepsilon}(t)$ converge in L^1 to a unique limit u(t), which can be seen as the vanishing viscosity solution of the quasilinear hyperbolic system

$$u_t + A(u)u_x = 0, \quad x \in]0, \ l[.$$

This solution u(t) depends Lipschitz continuously in L^1 w.r.t the initial and boundary data. We also characterize precisely in which sense the boundary data are assumed by the solution of the hyperbolic system.