In a joint work with Lev Truskinovsky we show that continuum models for ideal plasticity can be obtained as a rigorous mathematical limit starting from a discrete microscopic model describing a visco-elastic crystal lattice with quenched disorder. The constitutive structure changes as a result of two concurrent limiting procedures: the vanishing-viscosity limit and the discrete to continuum limit. In the course of these limits a non-convex elastic problem transforms into a convex elastic problem while the quadratic rate-dependent dissipation of visco-elastic solids transforms into a singular rate-independent dissipation of an ideally plastic solid. In order to emphasize ideas we employ in our proofs the simplest prototypical system describing transformational plasticity of shape-memory alloys. The approach, however, is sufficiently general and can be used for similar reductions in the cases of more general plasticity and damage models. This talk concerns joint work with Lev Truskinovsky.