Existence and uniqueness results for Fokker–Planck equations in Hilbert spaces

G. Da Prato, Scuola Normale Superiore, Pisa

Let H be a separable Hilbert space. We are given a linear self-adjoint negative operator $A: D(A) \subset H \to H$, a family of nonlinear operators b(t): $D(b(t)) \subset H \to H$, $t \in [0, T]$, and a linear bounded operator $B \in L(H)$.

We are concerned with the stochastic differential equation

$$dX = (AX + b(t, X))dt + BdW(t), \quad X(0) = x \in H, \quad t \in [0, T].$$

Let $\mathscr{L}(t), t \in [0,T]$, be the corresponding Kolmogorov operators

$$\mathscr{L}(t) = \frac{1}{2} \operatorname{Tr} \left[BB^* D^2 \varphi \right] + \langle Ax + b(t, x), D\varphi \rangle.$$

Given a Borel probability measure ζ , we want to find a family of Borel probability measures μ_t , $t \in [0, T]$, such that $\mu(0) = \zeta$ and the following Fokker–Planck equation is fulfilled

$$\frac{d}{dt} \int_{H} \varphi(x) \,\mu_t(dx) = \int_{H} \mathscr{L}\varphi(x) \,\mu_t dx, \tag{1}$$

for all φ belonging to a suitable space of test function \mathscr{E} .

We shall discuss some recent existence and uniqueness results for (1) proved in collaboration with V. Bogachev and M. Röckner. When B has a bounded inverse a very general uniqueness result can be proved. Some situations will be also discussed when B is degenerate, possibly B = 0, where Kolmogorov operators reduce to transport operators.