GENERALIZED T-SPLINES AND T-MESHES GUARANTEEING THEIR LINEAR INDEPENDENCE

DURKBIN CHO

ABSTRACT. The T-spline functions, first introduced in [6] and in [7], are nowadays a relevant tool in isogeometric analysis (see, e.g., [1, 2]). The use of T-splines gives some considerable improvements on the classical tensor-product splines and NURBS, such as the possibility to apply local refinements, a heavy reduction of the number of control points needed, and the ability to easily avoid gaps when joining several surfaces.

The T-spline approach is mainly applied to polynomial splines, but in some situation the use of non-polynomial splines gives noteworthy advantages: for example, exactly reproducing some relevant shapes (such as cycloids and helices) which can only be approximated by using polynomial splines requires the use of non-polynomial splines (see, e.g., [5]). For this reason, we propose the extension of the T-spline framework to the generalized B-splines (see [5] for details), which are locally spanned both by polynomial and non-polynomial functions. This leads to the new concept of Generalized T-splines (see [3] for our results about the trigonometric case).

In this talk, we will analyze the main properties of the Generalized T-splines [4]; in particular we will study their linear independence, which is a key point to be able to use them in the isogeometric framework. This study will allow us to define a class of T-meshes which guarantee the linear independence both of Generalized T-splines and of classical T-splines of the same bi-order associated to the same T-mesh; moreover, we will show that this class of T-meshes properly includes the well-known analysis-suitable (equivalently, dual-compatible [8, 9]) T-meshes.

References

- Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M.A. Scott and T.W. Sederberg. Isogeometric analysis using T-splines. *Comput. Methods Appl. Mech. Engrg.*, 199: 229–263, 2010.
- [2] J.A. Cottrell, T.J.R. Hughes and Y. Bazilevs, Isogeometric analysis: toward integration of CAD and FEA, John Wiley & Sons, 2009.
- [3] C. Bracco, D. Berdisnky, D. Cho, M. Oh and T. Kim. Trigonometric Generalized T-splines. Comput. Methods Appl. Mech. Engrg., 268: 540–556, 2014.
- [4] C. Bracco and D. Cho. Generalized T-splines and VMCR T-meshes. Comput. Methods Appl. Mech. Engrg., 280: 176–196, 2014.
- [5] C. Manni, F. Pelosi and M.L. Sampoli. Generalized B-splines as a tool in isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 200: 867–881, 2011.
- [6] T.W. Sederberg, J. Zheng, A. Bakenov and A. Nasri. T-splines and T-NURCCs. ACM Trans. Graph., 22(3): 477–484, 2003.
- [7] T.W. Sederberg, D.L. Cardon, G.T. Finnigan, N.S. North, J. Zheng and T. Lyche. T-spline simplification and local refinement. ACM Trans. Graph., 23(3): 276–283, 2004.
- [8] L. Beirão da Veiga, A. Buffa, D. Cho, and G. Sangalli. Analysis-suitable T-splines are dual-compatible. Comput. Methods Appl. Mech. Engrg., 249-252: 42-51, 2012.
- [9] L. Beirão da Veiga, A. Buffa, G. Sangalli and R. Vazquez. Analysis-suitable T-splines of arbitrary degree: definition and properties. *Math. Mod. Meth. Appl. Sci.*, 23: 1979–2003, 2013

 † Department of Mathematics, Dongguk University, Pil-dong 3-ga, Jung-gu, Seoul, 100-715, Korea. *Email address:* durkbin@dongguk.edu