We consider the relaxation model

$$\begin{cases} u_t + v_x &= 0 \\ v_t + u_x &= (f(u) - v)/\epsilon \end{cases}$$

with $u \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^n$. We assume that Df is strictly hyperbolic with eigenvalues strictly less than 1 and the initial data (u_0, v_0) have small total variation.

We prove that the solution $(u^{\epsilon}, v^{\epsilon})$ is well defined for all t > 0, and its total variation satisfies a uniform bound, independent of t, ϵ . Moreover, as ϵ tends to 0, the solutions $(u^{\epsilon}, v^{\epsilon})$ converge to a unique limit (u(t), v(t)): u(t) is the unique entropic solution of the corresponding hyperbolic system $u_t + F(u)_x = 0$ and v(t, x) = F(u(t, x)) for all t > 0, a.e. $x \in \mathbb{R}$.

The proof relies on the introduction of a new functional for the solutions of $(u^{\epsilon}, v^{\epsilon})$, corresponding to the Glimm-Liu interaction potential for the waves of same families.