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Example 1 – Problem on S2 (the sphere)

ṁ1 = α1m2m3

ṁ2 = α2m1m3

ṁ3 = α3m1m2

, α1 + α2 + α3 = 0

First integral.

I(m1,m2,m3) = m2
1 + m2

2 + m2
3.

Effectively, any conservative method acts by means of rotations.
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Example 2 – Stiefel manifold

Let

• Mn,k be the manifold of n × k-matrices with orthonormal
columns.

• so(n) be the skew-symmetric n × n-matrices, AT = −A.

Consider matrix-differential equation

Ẏ = A(Y ) · Y , A : Mn,k → so(n)

Invariant: I(Y ) = Y TY .
Applications

• Computation of Lyapunov exponents

• Multi-variate data analysis

• Image/signal processing
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Example 3 – Northern light

Equation for particle movement (Carl Størmer)

ẍ = ẋ× d(x)

x particle position, d(x) earth magnetic field at x.
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Example 4 – Linear problems as building blocks

We take as example a non-homogeneous heat equation

ut = ν(x)∆u

Fast solvers are available for the equation

ut = ν̄∆u + f (x).

The first problem can be approximated locally by the second, e.g.
set

ν̄ =

∫
ν(x) dx∫

dx

for a local known approximation u∗(·, t∗) let

f (x) = (ν(x)− ν̄)∆u∗
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Application areas for Lie group integrators

• When the solution is
known to be restricted to
some manifold

• When it is useful to be
able to move along curves
rather than straight line
segments
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Lie group action

• G : Lie group (manifold with smooth group structure)

• M: Smooth manifold (could be G itself)

Left action: Λ : G ×M → M

Λ(Id,m) = m, ∀m ∈ M

Λ(g ,Λ(h,m)) = Λ(g · h,m), ∀g , h ∈ G , m ∈ M

Transitivity: Λ(·,m) : G → M onto for every m ∈ M.

Orbit. Om = Λ(G ,m).
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Induced vector fields on M

Let g := TIdG and let g(t) be any curve on G such that

g(0) = Id, ġ(0) = v ∈ g

Then γ(t) = Λ(g(t),m) is a curve on M such that

γ(0) = m, γ̇(0) := Ev (m) ∈ TmM

Thus, any v ∈ g induces a vector field Ev on M. One writes
Ev = λ∗(v).

Frame vector fields

A basis {v1, . . . , vd} for g, defines a frame, {E1, . . . ,Ed} on M.
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The Lie algebra of a Lie group

The space g = TIdG is a linear space, but can also be used to
“encode” the group operation of G .

Lie bracket (commutator)

Let g(t) and h(s) be two curves in G , satisfying g(0) = h(0) = Id,
ġ(0) = v , ḣ(0) = w . Then

[v ,w ] :=
∂

∂t

∣∣∣∣
t=0

∂

∂s

∣∣∣∣
s=0

g(t)h(s)g(t)−1

Example

The Lie algebra of a matrix group has commutator

[v ,w ] = vw − wv
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Lie algebra on X (M)

Let x1, . . . , xν be local coordinates on M. Vector fields
X ,Y ∈ X (M) can then be expressed as

X = (X1, . . . ,Xν)
T , Y = (Y1, . . . ,Yν)

T

The Lie-Poisson bracket between X and Y is Z = (Z1, . . . ,Zν)

Zi =
∑

j

(
Xj

∂Yi

∂xj
− Yj

∂Xi

∂xj

)
Whenever v ,w ∈ g one has

λ∗([v ,w ]g) = [λ∗(v), λ∗(w)]LP
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Examples of group actions

1 The boring one. Euclidean space G = Rd = g acts on itself
(M = Rd) by addition. Id = ~0

Λ(g , x) = g + x , Ek(m) = ek

2 Matrix group acting on itself by left multiplication, G ⊆ Rn×n

(or Cn×n).

Λ : G × G → G , Λ(g , h) = g · h.

3 Orthogonal matrices O(n) acting on symmetric matrices Sn

by conjugation

Λ : O(n)× Sn → Sn, Λ(Q,S) = QSQT

non-transitive.
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Some matrix groups (and their Lie algebras)

Group description Algebra description

GL(n) All invertible n × n matri-
ces

gl(n) All n × n matrices

SL(n) All n×n matrices with de-
terminant 1

sl(n) All trace free n× n matri-
ces

SO(n) Q ∈ SL(n) s.t. QTQ = I so(n) All skew-symmetric n × n
matrices

SP(2n) M ∈ SL(2n) : MJMT = J sp(2n) A ∈ sl(2n) : AJ + JAT =
0
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Flows of vector fields and the exponential mapping

The flow of a vector field F ∈ X (M)

is a one parameter family of maps

exp(tF ) : M ⊃ Dt → M

such that for any m ∈ Dt ,

exp(tF ) m = γ(t) where γ̇(t) = F (γ(t)), γ(0) = m

Example

Matrix group: G ⊆ GL(n),

FA(g) = A · g , A ∈ g, g ∈ G

exp(tFa)g = expm(tA) · g

13 / 30



Formulation of ODEs on M

Transitivity of group action implies

1 dim G = dim g ≥ dim M

2 for any m ∈ M one has λ∗(g)(m) = TmM or equivalently

span(E1(m), . . . ,Ed(m)) = TmM

ODE is a smooth vector field F on M, F ∈ X (M). It follows that
for any such F

1 There exists a map f : M → G such that F (m) = λ∗(f (m))

2 There exist functions f1, . . . , fd , each fi : M → R such that

F (m) =
d∑

k=1

fk(m)Ek(m)
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The freeze operator

Let Vg ⊂ X (M) be the linear space

Vg = spanR(E1, . . . ,Ed)

Freeze operator Fr : M×X (M) → Vg

Fr(m,F ) =
∑
k

fk(m)Ek

Example

F (y) = A(y) · y , Fr(m,F )(y) = A(m) · y
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Presumptions for Lie group integrators to be viable

• The most well-known Lie group integrators include flows of
”arbitrary” vector fields in Vg.

• It is not necessary that Vg is closed under the Lie-Poisson
bracket, i.e. forms a Lie algebra. A linear space is sufficient.

• If Vg is not a Lie algebra, then some Lie group integrators will
assume that flows can be computed (exactly) for arbitrary
vector fields in the smallest Lie algebra containing g.

• Exact flow calculations may sometimes be replaced by other
maps which are cheaper to compute.

16 / 30



The Lie-Euler scheme

Let E1, . . . ,Ed be a frame on M and suppose that an ODE on M

can be written in the form

ẏ = F (y) =
∑
k

fk(y) Ek(y)

Suppose that an approximation yn to y(tn) is given.

yn+1 = exp(∆t Fr(yn,F )) · yn

Example

ẏ = A(y) · y , yn+1 = expm(∆t A(yn)) · yn
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Euler’s free rigid body, revisited (Problem on S2)

Write ~m = (m1,m2,m3)
T .

ṁ1 = α1m2m3

ṁ2 = α2m1m3

ṁ3 = α3m1m2

, ⇒ ~̇m =


0 m3

I3
−m2

I2

−m3
I3

0 m1
I1

m2
I2

−m1
I1

0

 · ~m
Here we take

G: SO(3) (orthogonal, det 1)

g: so(3), skew-symmetric

M: S2 (sphere)

Λ: SO(3)× SO(3) → S2, Λ(g , ~m) = g · ~m

~mn+1 = expm(A(~mn)) · ~mn
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Improved Lie Euler – more advanced schemes

k1 = Fr(yn,F )

k2 = Fr(exp(∆t k1) yn,F )

yn+1 = exp(
∆t

2
(k1 + k2)))yn

is of second order. However, generalizing RK as follows

Yr = exp(∆t
∑

j aj
rkj) yn, kr = Fr(Yr ,F )

yn+1 = exp(∆t
∑

r brkr ) yn

leads to schemes of order at most 2.
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Generalizations which work – RKMK (Munthe-Kaas)

The stage vector fields kr belong to a Lie algebra (under the
Lie-Poisson bracket). It may be included as part of the scheme

Yr = exp(∆t
∑

j aj
rkj) yn, k̃r = Fr(Yr ,F )

kr = k̃r + ∆t
∑

j γj
r [k̃r , k̃j ] + . . .

yn+1 = exp(∆t
∑

r brkr ) yn

By a careful choice of correction terms, arbitrary order can be
obtained (also for explicit schemes).
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Generalizations which work – Commutator-free schemes

One can also replace the one exponential with compositions.
(Celledoni, O, Marthinsen, 2003)

Yr = exp(∆t
∑

j αj
q,rkj) · · · exp(∆t

∑
j αj

1,rkj) yn,

kr = Fr(Yr ,F ),

yn+1 = exp(∆t
∑

r βr
qkr ) · · · exp(∆t

∑
r βr

1kr ) yn.
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Example RKMK from Kutta (1901)

4th order RKMK scheme (Munthe-Kaas & O, 1999)

Y1 = yn, k1 = Fr(Y1,F ),

Y2 = exp(∆t
2 k1) yn, k2 = Fr(Y2,F ),

Y3 = exp(∆t
2 k2 − ∆t 2

8 [k1, k2]) yn, k3 = Fr(Y3,F ),

Y4 = exp(∆t k3) yn, k4 = Fr(Y4,F ),

v = ∆t
6 (k1 + 2k2 + 2k3 + k4)− ∆t 2

12 [k1, k4] ,

yn+1 = exp(v) yn.
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Example CFREE from Kutta (1901)

4th order CFREE scheme (Celledoni, O, Marthinsen, 2003)

Y1 = yn, k1 = Fr(Y1,F ),

Y2 = exp(∆t
2 k1) yn, k2 = Fr(Y2,F ),

Y3 = exp(∆t
2 k2) yn k3 = Fr(Y3,F ),

Y4 = exp(∆t (k3 − 1
2k1))Y2, k4 = Fr(Y4,F ),

yn+ 1
2

= exp(∆t
12 (3k1 + 2k2 + 2k3 − k4)) yn ,

yn+1 = exp(∆t
12 (−k1 + 2k2 + 2k3 + 3k4)) yn+ 1

2
.

Note the reuse of Y2 in Y4.
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RKMK in a natural way

The schemes of Munthe-Kaas may be derived by

1 making the ansatz

y(t) = Λ(exp(σ(t)), yn), σ(0) = 0

where σ(t) is a curve in g, and exp is now the map from the
Lie algebra to the Lie group.

2 deriving a differential equation for σ, (σ̇ = · · · ), and solving
with a standard (RK)-method as a DE in the linear space g.

3 transforming back to M setting yn+1 = Λ(exp(∆t σ1), yn).

• The procedure involves the derivative of the exponential
mapping.

• It has an infinite expansion in commutators, which can be
truncated.

• It is from here the commutators of RKMK stem.
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Other coordinate maps

One can think of exp : g → G as a coordinatization of the Lie
group G in a patch containing the identity element.
Idea: Replace exp by other (differentiable) map φ : g → G and
write

y(t) = Λ(φ(σ(t)), yn)

follow thereafter the above procedure. One would ask for φ to

1 be exactly computable, at least to roundoff level.

2 be inexpensive to compute (at least compared to exp)

3 have a (trivialized) derivative map which can be inverted
inexpensively, not necessarily exactly as long as it maps g to g
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Examples of coordinate maps

1 Canonical coordinates of the second kind. Let v1, . . . , vd be a
basis for g.

φ2(α1v1 + · · ·+ αdvd) = exp(α1v1) · · · exp(αdvd)

Its derivative map can be inverted by exploiting the structure
theory for Lie algebras (O&Marthinsen, 1999).

2 For some matrix Lie groups, the Cayley transform is highly
efficient

φc(v) = (I − v)−1(I + v)

Its derivative map is easy to derive and compute

3 The notion of retractions or tangent space parametrizations
has been used in papers by Celledoni et al.

26 / 30



Some remarks on isotropy

Recall the previous example of the free rigid body

~̇m =


0 m3

I3
−m2

I2

−m3
I3

0 m1
I1

m2
I2

−m1
I1

0

 · ~m
Can write ~̇m = I−1~m× ~m. But since ~m× ~m = 0, we can also write

~̇m = (I−1~m + g(~m) · ~m)× ~m

for an arbitrary function g : S2 → R.

The choice of g(~m) does however affect the Lie group integrator.
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Dealing with isotropy

To types of approaches have been studied in the literature

1 The freedom comes from the fact that the Lie group is
”larger” than the manifold. One may restrict the action to a
subspace of the Lie algebra. Reduces computational cost.
(Celledoni & O, Krogstad ++)

2 One may make use of the extra freedom to improve the
approximation. Some nice ideas suggested in (Lewis and
Olver).
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Some problems of current interest

• Lie group integrators can be designed to preserve invariants by
forcing the orbits of the group action to be contained in level
sets of the invariant, but can freedom in coefficients further
enhance the preservation of first integrals?

• Currently no non-trivial symplectic or volume-preserving Lie
group integrators are known, but some progress recently by
Munthe-Kaas.

• The problem of dealing with isotropy is still wide open, some
recent progress indicates that by understanding how to deal
with isotropy, we can also understand how to find non-trivial
symplectic/volume preserving LGIs

• Many applications involve the orthogonal group, what about
other Lie groups. We know that there is a very rich selection
of group actions, we all seem to be a bit too attached to
matrix×matrix or matrix×vector actions.

• Applying LGIs to PDEs is relatively new, exponential
integrators constitute one example. Difficulty: Discretization
of infinite-dimensional Lie algebras. 29 / 30



Thank you for listening!
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