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In this talk, the well-posedness for parabolic variational inequalities with weakly time-dependent
constraints is discussed.

Let us consider the parabolic variational inequalities of the form:

u′(t) + ∂ϕt(u(t)) 3 f(t) in H for a.a. t ∈ (0, T ), (1)

in the framework of abstract evolution equations governed by the subdifferentials ∂ϕt of time-dependent
convex functionals ϕt on a Hilbert space H. The case of ϕt = ϕ + IK(t) is mainly treated, where ϕ is
a time-independent convex functional and IK(t) is the indicator function of time-dependent convex sets
K(t). We can see the many results, with respect to (1), for example, [1, 2, 5, 6, 7, 9, 11] from various
points of view. It seems that some time-regularity assumption on the mapping t 7→ ϕt is necessary in
order for problem (1) to possess strong solutions in H. However, this type of regularity assumption
is sometimes too strong, for instance, when we apply the result on (1) to a quasi-variational evolution
problem of the form:

u′(t) + ∂ϕt
(
u;u(t)

)
3 f(t) in H for a.a. t ∈ (0, T ), (2)

which arises often in various free boundary problems, see the abstract results [3, 10]; in this formulation
(2) we are given a family {ϕt(v; ·)}t∈[0,T ] of convex functionals z 7→ ϕt(v; z) with parameters t ∈ [0, T ]
and v in a subset of C([0, T ];H). We mean by (2) to find such a function u : [0, T ] → H that u is the
parameter to determine the convex functional ϕt(u; ·) and at the same time u is a solution of (2) (see [4]
for the detail formulation). In most of interesting applications arising in free boundary problems, it is not
easy to verify the time regularity of t 7→ ϕt(u; ·) which ensures the strong solvability of (2). Therefore,
it is worthwhile to discuss the well-posedness of (1) generated by ∂ϕt with a weaker time-dependence
t 7→ ϕt.

This is a joint work with Nobuyuki Kenmochi, Bukkyo University, Japan.
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