B1. [6 punti] Sia $f: \mathbb{R}^2 \to \mathbb{R}$ differenziabile tale che $\nabla f(2,1) = (3,2)$. Allora, posto $\nu = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$, si ha $\boxed{\mathbf{A}} \frac{\partial f}{\partial \nu}(2,1) = 0 \quad \boxed{\mathbf{B}} \frac{\partial f}{\partial \nu}(2,1) = (2\frac{\sqrt{2}}{2}, 3\frac{\sqrt{2}}{2}) \quad \boxed{\mathbf{C}} \frac{\partial f}{\partial \nu}(2,1) = (3\frac{\sqrt{2}}{2}, 2\frac{\sqrt{2}}{2}) \quad \boxed{\mathbf{X}} \frac{\partial f}{\partial \nu}(2,1) = \frac{5}{2}\sqrt{2}$.

B2. [6 punti] Dati $f \in C^1(\mathbb{R}^2)$ e $v = (v_1, v_2)$ versore di \mathbb{R}^2 , quale affermazione è corretta? A $\frac{\partial f}{\partial v}(2,4) = g'(0)$, dove $g(t) = f(tv_1, tv_2)$ B $\frac{\partial f}{\partial v}(2,4) = \lim_{t \to 0} \frac{f(2+tv_1, 4+tv_2)}{v}$ A $\frac{\partial f}{\partial v}(2,4) = g'(0)$, dove $g(t) = f(2+tv_1, 4+tv_2)$ D nessuna delle precedenti.

B3. [6 punti] Data la serie di potenze $\sum_{n=1}^{+\infty} a_n (x-x_0)^n$ si denoti con R il suo raggio di convergenza.

Si assuma che $R \in (0, +\infty]$ e si denoti con $f(x) = \sum_{n=1}^{+\infty} a_n (x - x_0)^n$ la somma di tale serie, allora

A la serie diverge in $x = x_0 + R$ ed in $x = x_0 - R$ B la serie converge $\forall x : |x - x_0| \ge R$ si ha che f è derivabile in $(x_0 - R, x_0 + R)$ D si ha che f è continua su $[x_0 - R, x_0 + R]$.

B4. [6 punti] Sia $A = \left\{ (x,y) \in \mathbb{R}^2 : -\frac{1}{x^2} \le y \le \frac{1}{x^4} \right\}$. Allora: $A \in \text{sempl. connesso}$ B $A \in \text{limitato}$ C $\mathbb{R}^2 \setminus A \in \text{chiuso}$ D $A \in \text{aperto.}$

B5. [8 punti] Data $\phi: \mathbb{R}^2 \to \mathbb{R}$ di classe C^1 , si consideri la funzione

$$f(x,y) = \phi(x,y)e^{-\phi(x,y)},$$

Allora:

A f non è continua B f non è di classe C^1 C $\nabla f = \nabla \phi e^{-\phi}$ $\nabla f = e^{-\phi} \nabla \phi (1 - \phi)$.