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Abstract In this paper, we consider a model describing evolution of damage in elastic materials, in which
stiffness completely degenerates once the material is fully damaged. The model is written by using a phase
transition approach, with respect to the damage parameter. In particular, a source of damage is represented by
a quadratic form involving deformations, which vanishes in the case of complete damage. Hence, an internal
constraint is ensured by a maximal monotone operator. The evolution of damage is considered “reversible”, in
the sense that the material may repair itself. We can prove an existence result for a suitable weak formulation of
the problem, rewritten in terms of a new variable (an internal stress). Some numerical simulations are presented
in agreement with the mathematical analysis of the system.

Keywords Complete damage · Phase transition · Non-smooth PDE system ·
Existence result for weak solutions

1 Introduction

Damage models may be introduced as an inelastic response in materials due to breaking of cohesive bonds in
the microscopic structure (see e.g. [21]). Among different approaches, in this paper we are interested in finding
some macroscopic description of the phenomenon, the ultimate goal being the possibility of introducing an
effective predictive model for computational engineering tools.

The literature dealing with the phenomenon of damage is very rich and covers different research fields.
Indeed, the study of damage offers a non-trivial interplay between non-smooth mechanics, analysis of nonlinear
partial differential equations (PDE), calculus of variations and computational mechanics.

In this paper, we mainly focus on (volume) damage process in continuum materials. However, let us briefly
recall that this kind of phenomenon is related (from both the physical and analytical points of view) to other
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problems arising in the mechanics of materials, as fractures in brittle materials (see e.g. [8,12]), the contact
with adhesion [4], surface damage and delamination [22], inelastic and plastic behaviour [9,13].

Our approach is based on a macroscopic model, proposed by Frémond (see e.g. [14,15] for a first local
existence result in 1D) in the spirit of phase transition models. Hence, we refer to [5,6,16,17,23], and references
therein, for some analytical results on this type of model.

In the last years, the formulation has been extended to the case of glued materials in [11] and successfully
applied to the problem of debonding of reinforced structural element [3,25]. A similar approach, even if it
is derived via variational techniques can be found in [8]. In fact, the energy formulation leads to equation of
motion similar to the one adopted here. Different material behaviours can be obtained by specific choice of
the energy functional [12,18].

In particular, we are restricting ourselves to isotropic damage, in the small-strain regime, and we do not
account for thermal effects. The main idea is that the PDE system describing the evolution of the phenomenon
may be recovered using a variational principle, which is mainly based on a generalized version of the principle
of virtual powers. Indeed, it is assumed that both the thermomechanical equilibrium of the mechanical system
and its evolution are deduced from a balance between dissipative and non-dissipative (internal and external)
forces. By our specific choice of energy and dissipations functionals, the problem results of rate-dependent type.
We recall that different approaches are used in the literature concerning a static description of the phenomenon
(mainly by use of minimizing technique), rate-independent evolution (by introducing a suitable notion of
solutions, as the energetic solutions, and solving the problem in terms of a stability inequality and energy
balance), see e.g. [7,20,21].

Since the complete derivation of the model proposed by Frémond is well known, we do not detail its
derivation here, but rather give the main steps. The state variables (in terms of which the equilibrium is
defined) are deformations, in a small-strain regime, represented by ∇u. We are assuming that the displacement
u is a scalar quantity to simplify some technicalities in the proofs of the analytical results. a phase damage
parameter χ , as well as its gradient ∇χ . The damage parameter represents a macroscopic measure of the state
of damage of the material, as it can be interpreted as a local proportion of unbroken microscopic bonds in
the material for volume unit. Indeed, χ = 0 means that the material is completely damaged, χ = 1 that it
is undamaged, and χ ∈ (0, 1) that the intermediate situation is present. The choice (see [14]) of considering
the gradient ∇χ a state variable can be justified by the assumption that there is some local interaction at a
microscopic level between damage and non-damaged zones. Besides it physical justification, we point out that
this term plays a crucial role in the mathematical treatment of the resulting nonlinear system as it provides
sufficient spatial regularity for χ allowing us to apply some useful compactness results.

From a mathematic point of view, the resulting PDE system presents interesting features. As far as we
known, an existence result for the complete original Frémond model (global in time) is not known in a three-
dimensional setting. This is mainly due to the fact that the system degenerates once the material is completely
damaged, so that the validity of the equations is no longer assured. The main difficulties come from the
coexistence of degenerating terms, higher-order nonlinearities and the presence of non-/smooth multivalued
operators. More precisely (see the discussion in the next section), the modelling approach proposed by Fremond
proposes a system of the type

− div (χ2∇u) = 0 (1.1)

∂tχ − �χ + ∂ I[0,1](χ) � w − χ |∇u|2 (1.2)

thus implying that the elastic properties of the material degenerate when χ ↘ 0, i.e. when complete damage
appears. Consequently, the above model ceases to describe the behaviour of the material when the sample
experiences a complete damage. The main mathematical problem consists then in finding a proper notion of
weak solution capable of describing the complete damage. In this paper, we propose a notion of solution able
to describe the complete damage phenomenon. This type of weak solution originates from an approximation
scheme. Thus, as a side effect, we also prove an existence result. The main feature of the new notion of solution
consists in the use of a new internal variable, which we call internal stress, in place of the deformation strain (see
also [21] for some related result). As anticipated, this new variable originates from a (standard) approximation
procedure that consists in removing the degeneracy of the momentum balance equation. More precisely, we
replace the momentum equation (1.1) with

−div ((χ2
ε + ε)∇uε) = 0.

Then, the main problems are related to the analysis of the limit when ε ↘ 0. Let us point out that this
approximation and the following passage to the limit procedure has been already used to deal with this kind of
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damage systems, e.g. in [7]. In particular, since the deformation gradient (at the approximation level) is always
weighted by powers of the damage variable χ , it comes out that the possibility of identifying the weak limit
of χ2

ε ∇uε is related to the occurrence of regions of � × (0, T ) where the sample is completely damaged. The

analysis suggests that a good descriptor of the behaviour of the material should be ζ := χ1/2∇u, namely the
weak limit in L2(� × (0, T )) of χ

1/2
ε ∇uε. We call ζ internal stress. Moreover, since the right-hand side of

(1.2) (at the approximated level) contains the term (χ
1/2
ε ∇uε)

2 it turns to be bounded only in L1(� × (0, T )).
Consequently, we deduce from properties of weak limits that there exists a bounded non-negative measure μ
on � × (0, T ) such that

(χ1/2
ε |∇uε|)2 ε↘0−−→ ζ 2 + μ in D′(� × (0, T )).

The measure μ is called defect measure, and it is related to the lack of strong convergence of χ
1/2
ε ∇uε. It is

important to note that the emergence of the measure μ is not only a mathematical issue, but rather its presence
is justified from the physical point of view. In fact, the lack of strong convergence for the sequence of internal
stress is related to the presence of regions where complete damage manifests, i.e. χ = 0. Consequently, we
propose that the occurrence of the measure μ and its positivity should be an indicator of the emergence of
damage. For a slightly modified system, we are able to rigorously justify this conjecture and prove that if there
exists some (x̄, t̄) for which χ(x̄, t̄) > 0, then there should be an open neighbour B of (x̄, t̄) with μ(B) = 0.
It remains an open problem to obtain the same result for our original system. In the last part of the paper, we
present some numerical simulations which suggest the validity of this proposal for our system. Let us finally
point out that we are able to deal with a reversible evolution of χ , i.e. we do not impose any constraint on
the sign of χt . This is mainly due to technical mathematical reasons. Indeed, adding a constraint on χt would
lead to a doubly nonlinear character of the damage evolution equation, which we are not able to tackle to the
lack of regularity of the left-hand side when passing to the limit in the equation. Actually, it should be pointed
out that there are technologically relevant materials (for instance rubbers and polymers) which display such a
healing property.

1.1 The model

Let us consider an elastic body, located in a smooth bounded domain in R
3, and look for its damage evolution

during a finite time interval (0, T ).
The balance equations of the system are the classical momentum balance and a new balance equation of

micro-forces responsible for damage phenomenon. They are written in � as follows

− div σ = f, (1.3)

B − div H = 0, (1.4)

where σ is the Cauchy stress and B, H are new interior stresses related to the damage of the material. Indeed,
the equations are recovered by a generalization of the principle of virtual powers proposed by M. Frémond,
in which internal micro-forces and micro-velocities are included (see [14] for a detailed derivation of these
balance equations).They are combined with suitable boundary conditions. In particular, assuming that no
exterior surface forces are applied at a microscopic level, we have

H · n = 0 on ∂�, (1.5)

while we restrict ourselves to experiments with some fixed Dirichlet value for the displacement on the boundary,
say

u = u	 on ∂�. (1.6)

The involved physical quantities σ, B,H are recovered in terms of the free energy functional (for non-dissipative
parts) and the pseudo-potential of dissipation (for dissipative contributions). We first introduce the free energy
functional


(∇u, χ, ∇, χ) = 1

2
K (χ)|∇u|2 + 1

2
|∇χ |2 + w(1 − χ) + I[0,1](χ), (1.7)

where K (χ) ≥ 0 is the stiffness of the material, the term w(1−χ) represents the cohesion of the material where
w > 0, and I[0,1](χ) is the indicator function of the interval [0, 1] (forcing χ to assume physical admissible
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values in the range [0, 1]). The choice of the stiffness provides stress–strain relation. In particular, as during
the damage evolution a material loses its stiffness, it is required that K (χ) vanishes as χ ↘ 0. In this paper,
we let (see following remark for a justification of this choice)

K (χ) = χ2.

Hence, we introduce the pseudo-potential of dissipation �, which is a non-negative convex function w.r.t.
dissipative variables, vanishing for zero dissipation. In particular, we assume that it depends just on the
dissipative variable χt and let

�(χt ) = 1

2
|χt |2. (1.8)

In this paper, in the pseudo-potential we have not introduced any constraint on the “direction” of the evolution
of χ , i.e. we are not forcing any sign of χt as we are considering a reversible damage process. Even if this
assumption can be a limitation in the analysis of classical structural materials characterized by irreversible
damage process, bio-materials and smart polymers that exhibit healing properties can be modelled with the
proposed model.

Now, the state quantities in (1.3) and (1.4) are specified by constitutive relations in terms of 
 and �

σ = ∂


∂∇u

B = ∂


∂χ
+ ∂�

∂χt

H = ∂


∂∇χ
. (1.9)

Thus, combining (1.9) in (1.3), (1.4), (1.5) and (1.6), we get the PDE system in �

− div (χ2∇u) = f, (1.10)

χt − �χ + ∂ I[0,1](χ) � w − χ |∇u|2, (1.11)

∂nχ = 0, u = u	 on ∂�. (1.12)

Hence, we assume suitable initial conditions (for χ ). The notation ∂ I[0,1] stands for the sub-differential (in the
sense of convex analysis, cf. [2]) of the indicator function of the interval [0, 1]. It is defined for χ ∈ [0, 1] and
∂ I[0,1](χ) = 0 if χ ∈ (0, 1), ∂ I[0,1](0) = (−∞, 0] and ∂ I[0,1](1) = [0,+∞). In the following, we will use
the notation β = ∂ I[0,1] and by ̂β = I[0,1].

Let us briefly comment on the above system (1.10)–(1.11). Note that, as χ may reach the value 0, equation
(1.10) may degenerate and ∇u is not controlled. This is a problem, in particular because the gradient ∇u gives
a (quadratic) contribution as source of damage in (1.11). In addition, note that on the right-hand side of (1.11)
the quadratic mechanical contribution |∇u|2 is multiplied by χ , so that one could expect that it vanishes once
the material is damaged, i.e. χ = 0. However, this is not a priori true, due to the fact that we cannot make an
identification, separately, of χ and ∇u. In addition, once a possible L2 estimate could be proved for ∇u, the
right-hand side of (1.4) is characterized by the presence of a L1 source. Thus, to solve the PDE system, we
have to introduce a suitable notion of solution given in terms of a new internal variable (corresponding to an
internal stress) ζ and the damage variable χ . In particular, we do not recover at the end information on the
function u and its boundary condition. However, the system is rewritten in a consistent formulation, for which
we are able to prove some energy stability estimate.

The paper is organized as follows. In Sect. 2, we introduce the notation, the assumptions and the weak
formulation of the problem. Hence, after making precise the notion of solution we refer to, we state the main
existence result theorem. In Sect. 3, we write an approximation of our model, letting the stiffness coercive, i.e.
bounded from below by some ε > 0. After proving some a priori estimates on the approximated solutions, not
depending on ε, by compactness and semicontinuity arguments, we pass to the limit as ε ↘ 0. In Sect. 5, we
show some computational results, which are in accordance with the analytical result.



An existence result for a model of complete damage in elastic materials 35

2 The existence result: statement and results

In this section, we make precise of the notation we use. We are considering a smooth bounded domain � ⊂ R
3.

We fix a final time T > 0 of the evolution of our phenomenon. Hence, we let

H := L2(�), V := H1(�), V0 := H1
0 (�)

so that (V, H, V ′) forms an Hilbert triplet, where H and V are endowed with their usual scalar products and
norms (and H identified with its dual). For the sake of simplicity, the same symbol will be used both for a
space and for any power of it. We note that the norms ‖v‖V0 and ‖∇v‖H are equivalent for v ∈ V0, thanks to
the Poincaré inequality. Hence, we use the notation 〈·, ·〉 for the duality pairing between V ′ and V and 〈·, ·〉0
for the duality in V0, V ′

0 (the same notations are used for powers of functional spaces). Note in particular that,
in the following, we will intend the operators −� and −div in some duality pairings. More precisely, we have

〈−�u, v〉 =
∫

�

∇u · ∇v, 〈−div a, w〉0 =
∫

�

a · ∇w,

for any u, v ∈ V , w ∈ V0, a ∈ L2(�)N (here N = 3). We prescribe

χ0 ∈ V, χ0 ∈ [0, 1] a.e. (2.1)

and
u	 ∈ H1(0, T ; H1/2(	)). (2.2)

We introduce the harmonic extension ũ	 of u	 . It gives, by well-known elliptic results that (cf. (2.2))

ũ	 ∈ H1(0, T ; V ). (2.3)

Then, we introduce the (closed) convex subset of H1(�)

V	 := {

v ∈ H1(�) : v − ũ	 ∈ V0
}

. (2.4)

Note that V	 is actually independent of the choice of the particular extension ũ	 (here we used the harmonic
extension) and depends only on the boundary condition u	 .

To introduce the notion of solution for our problem, we first make precise an approximated version,
depending on a regularizing parameter ε > 0. Once it is proved that there exists a corresponding solution, we
will show that it converges in suitable way to the solution of the limit problem, so that the final solution is
defined through an approximation procedure.

Definition 2.1 A triplet of functions (uε, χε, ξε) is solution for the approximated damage problem, for ε > 0
fixed, if

uε ∈ L∞(0, T ; V	), (2.5)

χε ∈ H1(0, T ; H) ∩ L∞(0, T ; V ), χ ∈ [0, 1] a.e. in Q, (2.6)

ξε ∈ L2(0, T ; H) (2.7)

with
∂nχε, = 0 on ∂� (2.8)

and solving, a.e. in (0, T ), the system

−div
(

(ε + χ2
ε )∇uε

) = 0 in V ′
	 (2.9)

∂tχε − �χε + ξε = w − χε|∇uε|2 a.e. in Q. (2.10)

ξε ∈ β(χε) a.e. in � (2.11)

with
χε(0) = χ0. (2.12)

Now, we are in the position of introducing the notion of solution for our problem
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Definition 2.2 A couple of functions (χ, ζ ) with

χ ∈ H1(0, T ; H) ∩ L∞(0, T ; V ) (2.13)

ζ ∈ L2(0, T ; H) (2.14)

is a solution to the complete damage system if there exist a subsequence εn and a triplet of solutions for the
approximated damage problem in the sense by Definition 2.1 (uε, χε, ξε) such that for n ↗ +∞

χεn ⇀ χ in H1(0, T ; H) ∩ L2(0, T ; V ), (2.15)

χ1/2
εn

∇uεn ⇀ ζ in L2(0, T ; H) (2.16)

with χ(0) = χ0 a.e. in � and the following equations are satisfied in the sense of distributions

− div (χ3/2ζ ) = 0, (2.17)

χt − �χ + ξ = w − (ζ 2 + μ) (2.18)

with μ a positive Radon measure and ξ ∈ L2(0, T ; H) with ξ ∈ β(χ) a.e. in Q. Moreover, (χ, ζ ) should
verify the following energy inequality

1

2

∫

�

χ(t)ζ 2(t) + 1

2

∫

�

|∇χ(t)|2 +
∫

�

̂β(χ(t)) −
∫

�

wχ(t)

≤ 1

2

∫

�

χ(s)ζ 2(s) + 1

2

∫

�

|∇χ(s)|2 +
∫

�

̂β(χ(s)) −
∫

�

wχ(s) +
∫ t

s

∫

�

χ3/2ζ∇∂t ũ	 (2.19)

for a.e. (s, t).

Note that in order to simplify the notation, in the rest of the paper we will not relabel the subsequences.

Remark 2.1 Due to (2.13)–(2.14), equation (2.17) is actually solved in L2(0, T ; V ′). So, we will show that
we can obtain it in L2(0, T ; V ′

	) due to (2.16) and passing to the limit in (2.9).

Remark 2.2 The energy inequality (2.19) means that the energy of the system, written in terms of the new
internal stress ζ decreases along the evolution. Note that in the case that also the applied volume external forces
are not zero in (2.17), the energy inequality (2.19) has to be modified by adding on the right-hand side the
actual power of the external forces in the interval (s, t), i.e.

∫ t
s

∫

�
f ∂t (u − ũ	). This type of inequality provide

a notion of “energetic solution” which is comparable to the notion introduced for rate-independent evolutions
(see [7]). Finally, let us point out that the variable ζ plays the role of an internal stress and it accounts for the
product of the (possibly degenerating) phase parameter and the deformations.

For this notion of solution, we are able to prove the following existence result

Theorem 2.3 Under the assumptions (2.1)–(2.3), there exists a solution for the complete damage system in
the sense of Definition 2.2.

The proof of the theorem is presented in Sects. 3 and 4.

3 The approximated problem

In this section, we detail the solution of the approximated problem using the notion of solutions introduced by
Definition 2.1. To this aim, we make use of the Schaefer fixed point theorem. In the following, for the sake of
simplicity we make use of the same symbol c for possibly different positive constants depending just on �, T ,
and the data of the problem, but not on ε.

The following theorem holds true.
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Theorem 3.1 Let (2.1), (2.2) hold. Then, there exists a solution (uε, χε, ξε) to (2.9)–(2.11), (2.8), (2.12),
fulfilling (2.5)–(2.7)

uε ∈ L∞(0, T ; W 1,p(�)), p > 2, (3.1)

χε ∈ L∞(Q) ∩ L2(0, T ; W 2,p/2(�)). (3.2)

In addition, it is proved the following energy inequality (for a.e. s, t , including s = 0)

1

2

∫

�

(ε + χ2
ε (t))|∇uε(t)|2 +

∫ t

s
‖∂tχε‖2

H + 1

2
‖∇χε(t)‖2

H −
∫

�

wχε(t) +
∫

�

̂β(χε(t))

≤
∫

�

wχε(s) + 1

2

∫

�

(ε + χ2
ε (s))|∇uε(s)|2

+ 1

2
‖∇χ(s)‖2

H +
∫

�

̂β(χε(s)) +
∫ t

s

∫

�

(ε + χ2
ε )∇uε∇∂t ũ	. (3.3)

Remark 3.2 Note that Theorem 3.1 provides an existence result for a damage system in which stiffness does
not completely degenerates once the material is completely damaged.

Remark 3.3 As far as the energy inequality (3.3), we point out that it implies (see (1.7) and (1.8))

∫

�


ε(t) ≤
∫

�


ε(s) +
∫ t

s

∫

�

(ε + χ2
ε )∇uε∇∂t ũ	, (3.4)

where (cf. (1.7))


ε(∇u, χ, ∇ χ) = 1

2
(ε + χ2)|∇u|2 + 1

2
|∇χ |2 + w(1 − χ) + ̂β(χ). (3.5)

Note that in (3.3) the term
∫ t

s ‖∂tχε‖2
H ≥ 0 is a dissipative one.

To prove Theorem 3.1, we apply the Schaefer fixed point theorem to a suitable operator whose fixed points
will provide a solution to our original problem. We introduce the correct space in which we are looking for
the fixed point

Y := {z ∈ L2(0, T ; H), z ∈ [0, 1] a.e. in Q}. (3.6)

The operator T : Y → Y will be constructed as a composition of the two operators T1 and T2 giving,
respectively, the solution of (2.9) once χε is fixed and the solution of (2.10) once uε is fixed. The construction
of T and the proof of the existence result are as follows.

Step 1: construction of T1

First of all, we deal with (2.9). Let χ̄ ∈ Y fixed in place of χ in (2.9) and look for a (unique) solution
uε = T1(χε) to (2.8) and

∫

�

(ε + χ̄2)∇uε · ∇v = 0, ∀v ∈ V0. (3.7)

Applying the Lax–Milgram theorem, it is a standard matter to obtain for a.a. t ∈ [0, T ] the existence and
uniqueness of a solution to (3.7) u(t) ∈ V , with (u − ũ	)(t) ∈ V0.

Hence, we can take as test function in (3.7) v = u − ũ	 and use the Poincaré inequality (cf. also (3.6)) to
infer that

∫

�

(ε + χ̄2)|∇(uε − ũ	)|2 = −
∫

�

(ε + χ̄2)∇ũ	∇(uε − ũ	) ≤ δ‖uε − ũ	‖2
V0

+ cδ

∫

�

|∇ũ	|2, (3.8)

where δ has to be taken sufficiently small and cδ (coming by the Young inequality) does not depend on ε. It
results (once more using Poincaré inequality)

‖uε − ũ	‖L∞(0,T ;V0) ≤ c, (3.9)
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and consequently (due to the regularity of ũ	)

‖uε‖L∞(0,T ;V ) ≤ c. (3.10)

Note, in particular, that the constant c in (3.10) does not depend on the choice of χ̄ (as χ̄ ∈ [0, 1] a.e.). Hence,
using results introduced, for example, in [27] leads to improve regularity of uε (exploiting the fact that now
ε > 0), i.e. for a.e. t ,

∇uε(t) ∈ L p(�), for some p > 2. (3.11)

Note that p in (3.11) is actually less than 4.
The next step is studying the continuity of T1. To this aim, let us take χ̄n, χ̄ ∈ Y such that the following

strong convergence holds.

χ̄n → χ̄ in Y

(where Y is endowed with the topology norm induced by L2(0, T ; H)). Setting un = T1(χ̄n) and u = T1(χ̄)
we show that un → u in L2(0, T ; V ) (from now on, in this part of the section, we do not specify the dependence
on ε which is fixed). First, we aim to pass to the limit in (3.7) written for χ̄n . Note that (3.10) holds for un
independently of n. Thus, by weak star compactness results, we extract a subsequence such that

un ⇀∗ u in L∞(0, T ; V ). (3.12)

Then due to the fact that χ̄n is uniformly bounded (see (3.6)) and (3.10) holds, we can easily deduce that

‖(ε + χ̄2
n )∇un‖L∞(0,T ;H) ≤ c,

and thus (for some subsequence), the following convergence holds

(ε + χ̄2
n )∇un ⇀∗ ζ in L∞(0, T ; H). (3.13)

To identify ζ , we argue as follows. First, we observe that χ̄n converges a.e., and the same holds for χ̄2
n . Thus,

it is clear that thanks to the Lebesgue-dominated convergence theorem, up to a subsequence,

χ̄2
n → χ̄2 in Ls(Q), for any s < +∞, (3.14)

so that (cf. (3.12)) ζ in (3.13) can be identified with ζ = (ε + χ̄2)∇u.
At this point, we are in the position to pass to the limit in (3.7) and, by uniqueness of the solution for the

limit equation, identify u = T1(χ̄). This allows us to extend the above convergence to the whole sequences.
Now, it remains to prove that un strongly converges. To this aim, let us use a contracting argument: we

take the difference of (3.7) written for (un, χ̄n) and (u, χ̄) and fix v = un − u (now v ∈ V0). We have

∫

�

(ε + χ̄2
n )|∇(un − u)|2 = −

∫

�

(χ̄2
n − χ̄2)∇u∇(un − u). (3.15)

Thus, owing to (3.14) and (3.11) (note that |∇u|2 belongs to L p/2(�), p/2 > 1), exploiting the Young
inequality, we can deduce

∫

�

(
ε

2
+ χ̄2

n )|∇(un − u)|2 ≤ 2

ε

∫

�

|χ̄2
n − χ̄2|2|∇u|2 → 0. (3.16)

Thus, at the end (once more using Poincaré’s inequality)

un → u in L∞(0, T ; V ). (3.17)



An existence result for a model of complete damage in elastic materials 39

Step 2: construction of T2

The second step consists in fixing uε = T1(χ̄) on the right-hand side of (2.10). We denote with T2 the
operator that assign to uε the solution of (2.10), namely we set

χε = T2(T1(χ̄))

Once uε is fixed with regularity above (3.10)–(3.11), the operator is well-defined thanks to standard results
in the theory of parabolic equations with maximal monotone operators. More precisely, the existence of χε

follows by parabolic theory combined with a fixed point argument; namely, one first solves (2.10) for a fixed χε

(and uε) on the right-hand side, and subsequently, one uses a fixed point theorem. We will skip this argument
and refer, for example, to [2]. In particular, let us point out that, once we have solved (2.10), we observe that the
right-hand side belongs to L∞(0, T ; L p/2(�)). Thus, the corresponding equation makes sense, for example,
in the dual of L2(0, T ; L p∗

(�)) ∩ L2(0, T ; V ), where 1
p∗ + 2

p = 1 and the corresponding solution χ belongs
to Y . Uniqueness of the solution mainly follows from monotonicity and contracting arguments.

Now, let us test (2.10) (where uε is fixed) by χε and integrate over (0, t). We obtain, integrating by parts
in time and exploiting the positivity of the solution χε,

1

2
‖χε(t)‖2

H − 1

2
‖χ0‖2

H +
∫ t

0
‖∇χε‖2

H +
∫ t

0

∫

�

χ2
ε |∇uε|2 ≤

∫ t

0

∫

�

wχε. (3.18)

Here, we have used the monotonicity of β and (2.1), so that
∫ t

0

∫

�

ξεχε ≥ 0.

Hence, just applying the Gronwall lemma we get

‖χε‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c, (3.19)

and the constant c actually does not depend on uε.
Then, we can (formally) test (2.10) by ξε ∈ β(χε) and integrate over (0, t)

∫ t

0

∫

�

|ξε|2 +
∫ t

0

∫

�

χεξε|∇uε|2 ≤
∫ t

0

∫

�

wξε. (3.20)

In particular, here we have used the fact that a chain rule for maximal monotone graphs and the definition of
β (see also (2.1)) lead to

∫ t

0

∫

�

ξε∂tχε =
∫

�

̂β(χε(t)) − ̂β(χ0) ≥ 0.

and analogously, by monotonicity of β and the chain rule, we have also
∫ t

0

∫

�

(−�χε)ξε ≥ 0.

Hence, by definition of β (as ξε ∈ β(χε) a.e.) we can deduce that,
∫ t

0

∫

�

χεξε|∇uε|2 ≥ 0. (3.21)

Eventually, due to the Young inequality applied to (3.20), it follows

‖ξε‖2
L2(0,T ;H)

≤ c. (3.22)

Now, we have deduced that the equation may be rewritten (weakly) as

∂tχε − �χε = −ξε + w − χε|∇uε|2, (3.23)

and the right-hand side is bounded, at least, in L2(0, T ; L p/2(�)). Thus, by parabolic arguments, we have in
addition that

‖χ‖W 1,p/2(0,T ;L p/2(�))∩L p/2(0,T ;W 2,p/2(�)) ≤ c. (3.24)
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Remark 3.4 Note that in the case of a double nonlinear structure of the equation, e.g. in the case of an
irreversible constraint for the evolution of the damage parameter (i.e. for the sign of its time derivative), we
could not perform the above estimate, and thus, we could not pass to the limit in the equation. Here we are
actually able to identify a.e. the internal reaction ξ ensuring the physical constraint on the damage parameter.
Some weak results for irreversible evolution can be found, for example, in [20,24].

Step 3: construction of T

Now, we have constructed the operator T : Y → Y , defined by

T (χ̄) := T2(T1(χ̄))

which turns out to be well-defined and compact thanks to (3.19) and (3.22) and the compactness results in [26].
To prove that it is continuous (with respect to the norm of Y induced by L2(0, T ; H)), we take a sequence in
Y χ̄n → χ̄ in L2(0, T ; H) and show that χn = T (χ̄n) → χ = T (χ̄) with respect to the same norm. Here, we
do not explicitly write the dependence on ε of the solutions. Owing to the continuity of T1 (we have proved
before), we have that

T1(χ̄n) → T1(χ̄)

in L∞(0, T ; V ). Hence, thanks to (3.19) and (3.22) and weak–strong compactness, we deduce (at least for
subsequence)

χn ⇀∗ χ in W 1,p/2(0, T ; L p/2(�)) ∩ L p/2(0, T ; W 2,p/2(�)) ∩ L2(0, T ; V ) ∩ L∞(Q), (3.25)

χn → χ in L2(0, T ; H). (3.26)

Actually, due to (3.25)–(3.26) and the Lebesgue theorem we also have that

χn → χ in Ls(Q), s < +∞. (3.27)

Finally (see (3.22))
ξn ⇀ ξ in L2(0, T ; H). (3.28)

Note that, combining (3.28) with (3.26), we can identify ξ ∈ β(χ).Thus, we are in the position of passing to
the limit in (2.10) written for n as n → +∞), exploiting in particular (3.25). Note that the term χn|∇un|2 is
bounded in L∞(0, T ; L p/2(�)) and that it converges a.e. to χ |∇u|2 due to the strong convergence of χn and
un , so that we can identify its weak limit

χn|∇un|2 ⇀∗ χ |∇u|2 in L∞(0, T ; L p/2(�)). (3.29)

By uniqueness of the solution (once u is fixed), we can identify χ = T (χ̄), which concludes our proof.

Step 4: conclusion of the proof

Now, we can conclude the proof of the theorem. We use the Schaefer’s fixed point theorem [10, Ch. 9,The-
orem 4]. Since ε is fixed, also in this part of the section, we remove the ε-dependence from uε and χε. Thus,
assume that for some λ ∈ [0, 1] we have χλ ∈ Y such that χλ = λT (χλ). Let uλ = T1(χλ). By construction,
χλ, uλ solve

{

∂tχλ − �χλ + ξλ + χλ|∇uλ|2 = λw, in (L2(0, T ; L p∗
(�)) ∩ L2(0, T ; V ))′

ξλ ∈ β(χλ) in L2(0, T ; H).
(3.30)

First of all note that χλ ∈ L∞(Q) (actually much more is true). Thus, testing the equation with χλ and using
the monotonicity of β (see Step 2 above, namely estimate (3.19)), we have the following estimate which turns
to be independent of λ

‖χλ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c
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with c > 0 independent of λ (and of uλ). The estimate above gives that the set

X :=
⋃

λ∈[0,1]
{χλ : χλ = λT (χλ)}

is bounded in Y . Thus, the Schaefer’s theorem gives the existence of a fixed point χ for T and thus the existence
of a solution to the approximate problem (2.9)–(2.10) (T1(χ), χ).

4 A priori estimates and passage to the limit

In this section, we aim to pass to the limit in (2.9)–(2.10) as ε ↘ 0. To this aim, we perform some further
estimates on the solutions, which do not depend on the parameter ε. As a result, we will prove the existence
Theorem 2.3. Let us point out that some of the estimates below are formally performed. Indeed, we should pro-
ceed by a further regularization of the equations to get sufficient regularity for the test functions, approximated
the maximal monotone graph by its Moreau–Yosida approximation, and then passing to the limit. However,
the procedure is analogous of that we are going to detail, and thus for the sake of clarity, we directly deal with
the limit system and proceed formally.

4.1 First a priori estimate

We prove inequality (3.3). To this aim, we test (2.9) by ∂t (uε − ũ	), (2.10) by ∂tχε, add the resulting equations
and integrate over (0, t). Note that we are allowed to use these test functions by virtue of (2.5), (2.6), (2.8).
Combining some terms and integrating by parts in time, we get (recall that in our model w is a constant)

ε

∫ t

0

∫

�

|∇∂t uε|2 +
∫ t

0

∫

�

d

dt

1

2
((ε + χ2

ε )|∇uε|2) +
∫ t

0

∫

�

(ε + χ2
ε )∇uε∇∂t ũ	 +

∫ t

0

∫

�

‖∂tχε‖2
H

+
∫

�

d

dt

1

2
‖∇χε‖2

H −
∫ t

0

∫

�

w∂tχε ≤ 0, (4.1)

as, by applying the chain rule for sub-differentials, it follows

∫ t

0

∫

�

β(χε)∂tχε =
∫

�

I[0,1](χε(t)) −
∫

�

I[0,1](χ0) = 0, (4.2)

as χ0 ∈ [0, 1] a.e. Thus, (3.3) easily follows. Now, exploiting the Hölder and the Young inequalities, we can
get from (4.1) the following bound

ε
∫ t

0 ‖∇∂t uε‖2
H + ε

2‖∇uε(t)‖2
H + 1

2‖χε(t)∇uε(t)‖2
H + ∫ t

0 ‖∂tχε‖2
H + 1

2‖∇χε(t)‖2
H

≤ c0 + 1
2

∫ t
0 ‖∂tχε‖2

H + c
∫ t

0 (ε1/2‖∇uε‖H + ‖χε∇uε‖H )‖∇∂t ũ	‖H (4.3)

where c0 depends in particular on the initial data and on w.
Thus, using Gronwall’s lemma (and Poincaré’s inequality), by virtue of (2.3), we may conclude that (see

for a comparison (3.24))

‖χε‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c (4.4)

ε1/2‖uε‖H1(0,T ;V ) ≤ c, (4.5)

‖χε∇uε‖L∞(0,T ;H) ≤ c. (4.6)

Note that here the constant c does not depend on ε.
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4.2 Second a priori estimate

We can proceed testing (2.10) by ξε ∈ β(χε) (cf. (2.7)) and integrating in time. We first observe that by
monotonicity of β we get

∫ t

0
〈−�χε, ξε〉 ≥ 0. (4.7)

Thus, also recalling (4.2), we have
∫ t

0

∫

�

|ξε|2 ≤
∫ t

0

∫

�

w|ξε| −
∫ t

0

∫

�

χε|∇uε|2ξε, (4.8)

so that we can eventually deduce
‖ξε‖L2(0,T ;H) ≤ c, (4.9)

applying the Young inequality and observing that (cf. (3.21))

−
∫ t

0

∫

�

χε|∇uε|2ξε ≤ 0. (4.10)

4.3 Third a priori estimate

Finally, if we test (2.10) by the constant function 1 and integrate in time, we get
∫ t

0

∫

�

χε|∇uε|2 = −
∫

�

χε(t) +
∫

�

χε(0) −
∫ t

0

∫

�

ξε +
∫ t

0

∫

�

w ≤ c, (4.11)

where the boundedness of the right-hand side follows from (4.4) and (4.9). Thus, we can deduce

‖χ1/2
ε ∇uε‖L2(0,T ;H) ≤ c. (4.12)

4.4 Passage to the limit

Using compactness arguments, by virtue of (4.4) we infer that there exists χ ∈ H1(0, T ; H) ∩ L∞(0, T ; V )
and a subsequence of ε (not relabelled) such that

χε ⇀ ∗χ in H1(0, T ; H) ∩ L∞(0, T ; V ), (4.13)

and by strong compactness (see [26])

χε → χ in C0([0, T ]; H1−σ (�)), σ > 0. (4.14)

As a consequence, after recalling that ‖χε‖L∞(q) ≤ c (as χε ∈ [0, 1] a.e.), applying the generalized Lebesgue
theorem, one may deduce

χε
ε↘0−−→ χ in L p(Q) for any p < +∞. (4.15)

Hence, due to (4.9), we have
ξε ⇀ ξ in L2(0, T ; H), (4.16)

for some ξ , which we are able to identify as an element of the sub-differential. Indeed, combining (4.15) and
(4.16), it follows that ξ ∈ β(χ). Then, by (4.12) there exists some ζ ∈ L2(0, T ; H) such that

χ1/2
ε ∇uε ⇀ ζ in L2(0, T ; H). (4.17)

Now, we are in the position of passing to the limit (weakly) in (2.9), after observing that (4.15) and (4.17) lead
to

χ2
ε ∇uε ⇀ χ3/2ζ in L2(0, T ; H). (4.18)

In particular, after observing that
ε∇uε → 0 in L∞(0, T ; H), (4.19)
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due to (4.5), we get the weak formulation (actually in V0) of (2.17). Now, we deal with the passage to the limit
(in V ′) for (2.10). First, we note that on the left-hand side, we just get the weak limit exploiting (4.13) and
(4.16). As far as the quadratic term on the right-hand side, due to the fact that we have just a weak convergence
in L2(0, T ; H) of χ

1/2
ε ∇uε (see (4.17)), we can deduce that there exists some positive measure μ such that,

in the sense of measures
χε|∇uε|2 → ζ 2 + μ. (4.20)

Thus, passing to the limit as ε ↘ 0, we get equation (2.18) verified in the sense of distributions. Indeed, we
recall that if fε weakly converges to f in L2(Q), then there exists a positive Radon measure μ (named the
defect measure) such that

f 2
ε → f 2 + μ in the sense of Radon measures. (4.21)

This amounts to say that

〈 f 2
ε , φ〉 = 〈 f 2, φ〉 + 〈μ, φ〉, ∀φ ∈ Cc(Q).

Now, to prove (4.21) recall that being the sequence gε := | fε − f |2 (here fε = χ
1/2
ε ∇uε) bounded in L1(Q),

we have that there exists a positive Radon measure μ with finite mass for which

lim
ε↘0

∫

Q
| fε(x, t) − f (x, t)|2φ(x, t)dx dt = 〈μ, φ〉, ∀φ ∈ Cc(Q).

Thus, expanding the square in the left, we have

lim
ε↘0

∫

Q

(

| fε(x, t)|2φ(x, t) − 2 fε(x, t) f (x, t)φ(x, t)
)

dx dt = −
∫

Q
| f (x, t)|2φ(x, t)dx dt + 〈μ, φ〉,

which, recalling that fε weakly converges to f in L2(Q), gives (4.21). We can observe that μ is a positive
defect measure which expresses the lack of strong convergence in L2(Q) of the sequence vε = χ

1/2
ε ∇uε. In

particular, there holds that μ(A) = 0 if and only if vε strongly converges to ζ in L2(A) for A ⊆ Q. We will
discuss in the next section some properties of this measure μ.

4.5 Energy inequality

We apply weak semicontinuity of norms to deduce from (4.13), (4.15), (4.16), (4.17) that for almost all s, t

‖χ1/2(t)ζ(t)‖H ≤ lim inf
ε↘0

‖χε(t)∇uε(t)‖H , (4.22)

‖∇χ(t)‖H ≤ lim inf
ε↘0

‖∇χε(t)‖H , (4.23)

‖∂tχ‖L2(s,t;H) ≤ lim inf
ε↘0

‖∂tχε‖L2(s,t;H). (4.24)

Hence, we apply weak–strong convergence result (see (4.14) and (4.17)) to deal with the limit of (4.1) as
ε ↘ 0, where the integration is taken on (s, t). Applying (4.22)–(4.24) to (3.3), it is a standard matter to get
that (2.19) follows. We are thus in the position of concluding the proof of Theorem 2.3.

5 The defect measure

It is a challenging and interesting open problem to locate the regions where the measure μ possibly concentrates
and, moreover, to characterize them, in a rigorous way, in terms of regions where complete damage appears,
i.e. χ = 0. Indeed, in the numerical simulations we are going to present in the following section, it seems that
the measure μ is concentrated exactly in those regions where the material experience a complete damage.

In the following Proposition, we try to highlight some relationships between the regions in whichχ vanishes,
i.e. the damage points, and regions with positive measure μ. However, this Proposition requires some extra
assumptions on the momentum u, on the damage function χ and for their approximating sequences. It is not

clear whether these (extra) properties are guaranteed or not by the model. Essentially. we need that χε
ε↘0−−→ χ

strongly in C0(Q) and some equicontinuity with respect to time for the sequence uε. Thus, we prove the
Proposition for a slightly modified system for which the above requirements are satisfied. It is a an open
problem to prove the same result for the original system.
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5.1 The modified system

To ensure equicontinuity for the sequence uε, we add a viscosity term to the momentum balance equation.
Thus, it will turn out that that the sequence uε verifies

‖∂t uε‖L2(0,T ;H) ≤ C, (5.1)

for some constant C independent of ε.
Moreover, we require the further assumption for the approximating sequence χε

‖χε‖L∞(0,T ;W 1,p(�)) ≤ c, p > 3, (5.2)

so that
χε → χ in C0(Q), (5.3)

and χ ∈ L∞(0, T ; W 1,p(�)).
The requirement that χε (and hence χ ) satisfies (5.2) (and (5.3)) can be accomplished by replacing the

Laplacian in (1.11) with a p-laplacian with p sufficiently large, i.e. p > 3 in three dimensions. For definitive-
ness, we replace the original system (2.9)–(2.11) with

∂t uε − div
(

(ε + χ2
ε )∇uε

) = 0 (5.4)

∂tχε − �pχε + ξε = w − χε|∇uε|2, (5.5)

ξε ∈ β(χε) a.e. in � (5.6)

coupled with initial conditions for uε and for χε and with the same boundary conditions of the original system.
The existence of a weak solution for the system above follows from a standard argument (see, for instance, the
proof of Theorem 3.1 and [5]). Moreover, the sequences uε and χε satisfy the same estimates as in (4.4)–(4.6),
(4.9), (4.12) and (5.1). Thus, the analogous of Theorem 2.3 holds with the sole exception that in the notion of
solution we have to include the function u ∈ H1(0, T ; H) and that we add ∂t u in (2.17).

Proposition 5.1 Suppose that (5.2) (and thus (5.3)) holds and that there exists t̄ > 0 and x̄ such that χ(x̄, t̄) >
0, then there exists some δ1, δ2 > 0 and open neighbours of x̄ and of t̄ such that μ(Bδ1(x̄) × Iδ2(t̄)) = 0.

Proof By the assumptions of theorem, there exist c > 0 and δ̃1, δ̃2 > 0 such that

min {χε, χ} ≥ c in B̄δ̃1
(x̄) × Iδ̃2

(t̄). (5.7)

As a consequence, there holds that (recall (4.6)) uniformly for t ∈ Iδ̃2
(t̄)

∫

B
δ̃1

(x̄)

|∇uε(x, t)|2d x =
∫

B
δ̃1

(x̄)

1

χε(x, t)
χε(x, t)|∇uε(x, t)|2d x ≤ 1

c

∫

B
δ̃1

χε(x, t)|∇uε(x, t)|2d x . (5.8)

Thus, we get ∇uε ∈ L∞(Iδ̃2
(t̄); L2(Bδ̃1

)) (see (4.12)). Now we show that actually uε∈L2(Iδ̃1
(t̄); W 2,q(Bδ̃1/2)),

for some suitable q we will chose later on. To this end, consider the equation

∂t uε − div
(

(ε + χ2
ε )∇uε

) = 0 in Bδ̃1
× Iδ̃2

(t̄). (5.9)

Let ψ denote a positive, smooth cut-off function (independent of time) such that ψ ≡ 1 in Bδ̃1/2(x̄) and ψ = 0
on � \ Bδ̃1

(x̄).
Then, set wε := ψuε. We have that

div
(

(ε + χ2
ε )∇wε

) = div
(

(ε + χ2
ε )ψ∇uε

) + div
(

(ε + χ2
ε )uε∇ψ

)

Hence, simple computations show that wε solves
{

div
(

(ε + χ2
ε )∇wε

) = Fε, in Bδ

wε = 0 on ∂ Bδ,
(5.10)
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where

Fε := −ψ∂t uε + 2(ε + χ2
ε )∇uε · ∇ψ + 2uεχε∇χε · ∇ψ + 2ψχε∇uε · ∇χε + (ε + χ2

ε )uε�ψ.

Now, recall that χε is bounded (uniformly w.r.t. ε) in L∞(0, T ; W 1,p) ∩ L∞(Q) (p > 3) and it is bounded
from below in Bδ̃1

× Iδ̃2
(t̄). Moreover, we have that ∂t uε is uniformly bounded in L2(0, T ; H). Thus, by the

Hölder inequality, we have that Fε is bounded in L2(Iδ̃2
(t̄); Lq(Bδ)), where q > 1. Note that the value of q

exclusively depends on p. In particular, we can choose p so large in such a way that q = 2 − ρ for any ρ > 0.
Therefore, we have that the standard elliptic regularity (recall that wε solves a linear strongly elliptic problem)
gives that the function wε is bounded in L2(Iδ̃2

(t̄); W 2,q(Bδ̃1
)), which means that, since wε ≡ uε in Bδ̃1/2, uε

is bounded, uniformly w.r.t ε in L2(Iδ̃2
(t̄); W 2,q(Bδ̃1/2)). Now, choosing, e.g. q > 6/5, by Sobolev’s injection

and by the Aubin–Lions compactness Lemma, we have that the estimate above implies, up to the extraction of

a not relabelled subsequence of ε, ∇uε
ε↘0−−→ ∇u strongly in L2(Iδ̃2

(t̄); L2(Bδ̃1/2)), at least. Consequently, we

obtain that χ
1/2
ε ∇uε

ε↘0−−→ ζ = χ1/2∇u strongly in L2(Iδ̃2
(t̄); L2(Bδ̃1/2)) and hence μt̄ (Iδ̃2

(t̄); Bδ̃1/2) = 0.

Thus, the result follows with the choice δ1 = δ̃1/2 and δ2 = δ̃2.

6 Numerical simulations

Now, we present numerical simulations based on the damage models presented in Sect. 3. In particular, two finite
element evolutive tests will be illustrated underlying the obtained analytic evidences. Firstly, the paradigmatic
case of a one- dimensional bar subjected to traction is proposed, and secondly, a bi-dimensional problem with
non-homogenous solution is investigated.

In the numerical simulations, a time discretization of the quasi-static evolution has been considered: we
introduce a discrete set of loading parameters 0 = t0 ≤≤ tN = tmax. The solution of system of equations
of motion for each time step is consolidated for this kind of problem [8,11,12,19]. The coupled damage-
mechanics model is solved in a semi-coupled fashion. At each time step, it is achieved by alternating solution
of the equations of system until convergence. Moreover, the constraint ∂ I[0,1](χ) is solved numerically by
projection within the iterative process. In this algorithm, the spatial discretization is obtained using the Galerkin
finite element method. The model has been implemented in a program based upon the Open Source package
deal.II [1].

In order to limit spurious behaviour due to space and time discretization, specific choices have been adopted.
First of all, a simplified version of the model is investigated. In particular, the term ∂tχ has been neglected;
this assumption avoids the spurious effect of the time discretization of the evolution of the damage variable χ .
The effect of this viscous term is to give finite velocity of the damage evolution and does not introduce relevant
information to our analysis. Its physical effect is studied at length in [14]. Moreover, the material has been
assumed homogenous and with isotropic behaviour. At the beginning of the loading process at time t = 0, the
material is completely undamaged so χ = χ0 = 1. The adopted mesh for the domain is quasi-uniform, and
linear shape functions have been chosen to approximate the displacement and the damage fields.

The applied loads are always monotonic and do not change in sign. In particular, all the analyses have
been carried out under displacement control. An explicit linear relationship between the time and the imposed
displacement is introduced. In the simulations, this avoids local snap-back at the material level.

Finally, the parameter ε has been set equal to 10−16 in such a way it only prevents from singularity at the
solution stage without introducing any appreciable residual stiffness within the material. Anyway, up to value
ε = 10−6 the solution is unaffected by the choice of ε. Higher values of ε as adopted in [8] do not influence
the damage path but introduce non-negligible residual stiffness in the material that may lead to unrealistic
equilibrium path.

6.1 1D bar in tension

The solution of the evolution problem for the traction of a one- dimensional bar made of homogeneous material
of length L , so that x ∈ [0, L], is described.

The left extremity of the bar x = 0 is kept fixed by imposing u = 0, while at x = L an incremental
displacement u = t is applied. The condition χ = 1 is imposed at the constrained borders. This condition
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Fig. 1 1D example: maps of the field χ and value of ∇u along the bar after rupture
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Fig. 2 1D example: a maps of source of damage χ (∇u)2 along the bar and b evolution of elastic energy and source of damage
as a function of the imposed displacement

forbids the development of fractures exactly at the boundary, although they are free to appear at a small distance.
This effect may well interpret the confining effects offered in a real experimental set-up by fractional contactor
gluing of the supports. This aspect is debated at length in [12].

Figure 1 reports the value of χ and of the displacement gradient ∇u along the bar in stress-free condition
once that rupture has occurred. Three zones can be distinguished: an unbroken zones where χ = 1 and the
gradient of the displacement is zero, two transition zones where χ varies between 1 and 0 and the displacement
gradually increases and a central core where the material is disaggregated χ ≈ 0 and characterized by high
deformation value. Moreover, in Fig. 2a is plotted the value of the source of damage χ (∇u)2 along the bar
after rupture that is not null only in the central core. Figure 2b plots the elastic energy and the source of damage
integrated along the bar as a function of the imposed displacement that are

1

2

∫

�

χ2 (∇u)2 dx ,

∫

�

χ (∇u)2 dx, (6.1)
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Fig. 3 1D example: a stress along the bar as a function of the imposed displacement and b evolution of damage variable χ
calculated at x = 0.5L as a function of the imposed displacement
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Fig. 4 2D example: geometry and boundary conditions

being � = [0, L]. The elastic energy starts growing quadratically. Once that the damaging mechanism begins
the elastic energy decreases and assumes null value at rupture. Differently, the source of damage remains
constant at rupture, thus revealing a conservation of the energy.

Moreover, the global response of the bar in term of stress–displacement is plotted in Fig. 3a. The bar reveals
linear elastic behaviour since the source of damage is smaller than the damage threshold w. After, the response
is typical of quasi-brittle material characterized by softening of mechanical properties.

Finally, in Fig. 3b the evolution of damage χ at a point in the middle of the bar x = 0.5L is plotted as a
function of the imposed displacement. The material moves from an undamaged to a nearly completed damage
state rather rapidly. After the damage variable asymptotically tends to zero as the displacement grows; for
example, at u/L = 8 ∗ 10−5 the damage is χ ≈ 5 ∗ 10−3. At this stage, the constraint ∂ I[0,1](χ) does not act.

6.2 2D square plate with a hole

Figure 4 depicts the second case that we considered. It represents a two-dimensional problem of a body in
plane strain condition. This is composed of a squared linear elastic matrix of side L with a central circu-
lar hole of radius R. The solid is homogeneous, and the material is characterized by isotropic constitutive
behaviour.
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Fig. 5 2D example: maps of the field χ for uy(−L/2) = 0.175 mm and (−L/2) = 0.4 mm

Fig. 6 2D example: maps of the source of damage χ (∇u)2 for uy(−L/2) = 0.175 mm and uy(−L/2) = 0.4 mm

The lower portion of the boundary is keep fixed by imposing null values to the displacement components
ux = 0, uy = 0, whereas the upper side of the square presents an assigned vertical displacement uy which
varies linearly along the border that reads

uy(x) = t

(

1 − 2x

L

)

, (6.2)

while the horizontal displacement is left free to vary. The two vertical sides are traction free.
Figure 5 plots the evolution of the damage field χ predicted by the model for different values of the

displacement field uy . It clearly appears that, due to the non-homogeneous state of stress within the body, two
damage zones initiate near the hole as a consequence of the stress concentration and subsequently propagate
up to the vertical borders for different values of the imposed displacement: firstly in the left portion of the body
Fig. 5a and then at the right side Fig. 5b.

As for the previous example, in Fig. 6 the values of the source of damage χ (∇u)2 in the domain is
reported for the two damage states previously illustrated revealing non-null values only in the zones of almost
totally damaged materials. This occurs also in the variational approach [8]. Locally, these zones have a width
equivalent to the finite element size. It should be underlined the fact that once rupture has occurred in the
left portion of the square, here the value of the source of damage remains constant, while it increases in the
undamaged right side. Figure 7 plots the elastic energy and the source of damage as reported in (6.1) but
now integrated in the square domain as a function of the imposed displacement. The source of damage is an
increasing function of the displacement field that reaches an asymptotic value as the damage zones separates
into two distinct portions the solid. Contextually, the elastic energy tends to a null value after two softening
paths representative of the propagation of the damage inside the domain along the cracked zones.



An existence result for a model of complete damage in elastic materials 49

0 0.1 0.2 0.3 0.4 0.5
u

0

0.1

0.2

0.3

0.4

0.5

Source of damage
Elastic energy

Fig. 7 2D example: evolution of elastic energy and source of damage as a function of the imposed displacement
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