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Chapter 1

Preliminaries

These are the lecture notes for a course on Poisson geometry and deformation quantization which is
taught during winter term 2022/2023. There is no original work inside these notes and the material
is taken, if not stated differently, from the following literature list:

e M. Crainic, R.L. Fernandes, I. Marcut: Lectures on Poisson Geometry, American Mathematical
Society (2021).

e C. Esposito: Formality theory: from Poisson structures to deformation quantization, Springer-
Verlag Heidelberg, Berlin, New York (2015)

e B. Fedosov: Deformation Quantization and Index Theory, Akademie Verlag (1996)

e C. Laurent-Gengoux, A. Pichereau, P. Vanhecke: Poisson Structures, Springer-Verlag Heidel-
berg, Berlin, New York (2013)

e S. Waldmann: Poisson-Geometrie und Deformationsquantisierung, Springer-Verlag Heidelberg,
Berlin, New York (2007)

The additional literature is neither exhaustive for the field nor necessary for this course, for a better
historical overview we refer to the book of Waldmann from the list above. The requirement for this
course is, besides linear algebra and analysis, differential geometry, so we assume the reader is familiar
with the notion of smooth manifolds. The manifolds we are considering are (if not stated differently)
Hausdorff and second countable. Moreover, we assume that the reader knows the following basic facts
about manifolds/vector bundles:

e The tangent bundle TM of a manifold M is a smooth vector bundle.

e The smooth sections of the tangent bundle are exactly derivations of the algebra of smooth
functions.

e Given two vector bundles over the same manifold one can take their direct product, their
tensor/exterior /symmetric powers, dualize, etc and the result is still a smooth vector bundle.

Nevertheless, we introduce some less basic facts in the next sections which will be needed throughout
the lecture. Note that this does not replace a lecture in differential geometry and is more intended
to fix notation.
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1.1 Vector fields and all that

We denote be X(M) the Lie algebra of vector fields. For X € X(M) we denote by ®;° its flow, i.e.
for every p € M the unique solution to

{‘I’o idps
40X (p) = X(&F (p))

which is a smooth map defined on a maximal open subset U D M x {0}. Moreover, we have that
% (p) = DX (®F (p)), whenever both of the sides are defined. For a function f € 6°°(M) it follows
that

d
dt

For a smooth map ¢: M — N, we denote by T'¢: TM — TN the tangent map defined by

(@) f = (7)) X(f)-

Tpp: TyM > Xp = (f = Xp(0"f)) € Ty N
Two vector fields X € X(M) and Y € X(NV) are called ¢-related, if for all p € M, we have

T, X (p) = Y(o(p))-

We write X ~y Y. If ¢ is a diffeomorphism, then we can define a push-forward of vector fields

$u: X(M) 3 X v [p = Tyo1 )0 X (671 (p))] € X(N),
and we denote by ¢* = ¢;'. Note that X and ¢,X are ¢-related.
Theorem 1.1.1 Let M be a smooth manifold.
(a) Let X,Y € X(M) be vector fields, then %}tzo(q)ff)*Y =[X,Y]
(b) Let ¢: M — N be a smooth map and let X; ~y Y; fori=1,2, then [ X1, Xo] ~y [Y1,Y2].

We are not only interested in the Lie algebra of vector fields on M, but instead in their exterior
algebra:

dim (M)
X (M) := T°(ATM) = Ao )T (T'M) @ Ao iy T(TM).

Theorem 1.1.2 Let M be a manifold, then there is a unique bracket [-, -]s: X*(M) x X*(M) —
X*(M), such that

[X,Y]s = [X,Y] for all X,Y € X}(M).

[X, fls = X(f) for all X € X}(M) and f € €>°(M) = X°(M).

[X,Y A Z]s = [X,Y]s A Z + (=) DY A [X, Z]s for all X € XF(M), Y € X4(M) and
Z e X*(M).

[X,Y]s = —(—=1)EDEDY, X for all X € X¥(M) and Y € XE(M).

[X,[Y, Z]s]s = [[X,Y]s, Z]s + (—1)E=DED[Y, [X, Z]s]s for all X € X*F(M), Yinxt(M) and
Z e X (M).
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PROOF (SKETCH): The idea is the following: one uses properties one, two and three to extend the
usual Lie bracket for vector fields to X*(M) and proves the remaining properties. O

Remark 1.1.3 Theorem show that the triple (X, A, [+, - ]s) carries the structure of a Gersten-
haber algebra.

Now one can see that on factorizing multivector fields X1 A--- A X and Y1 A--- A Y for X;,Y; €
X(M) one has

k£ . .
[Xi A AXGYIA - AY]s =3 Y (D)X YA XL A AXGAYIA LA A Y
i=1 j=1
(1.1.1)

Moreover, in local coordinates (U, ) every multivector field X € X¥(M) is of the form

1oy 0
Xy =X g N N g

for unique X% € 6€°°(U) and hence we have for X € ¥*(M) and Y € X!(M) the formula

1 . gy ir-de 0 0 0
L6V Tsly =g (B i g A A s A i A A
_ J1e-Je 2
X Oxit  Oxir Ox'k " Oxi2 4 835”)

The compuation is an exercise.
Note that for a smooth map ¢: M — N we say that X € X*(M) and Y € X*(N) are ¢-related,
ifforallpe M

T,0%* X (p) = Y (¢(p)),
and write X ~4 Y.

Lemma 1.1.4 Let ¢: M — N be a smooth map and let X; € X*(M) and Y; € XF(N) be multivector
fields for i = 1,2, such that X; ~4 Y;. Then

[[X17 XQ]]S N¢ [[}/17 YQ]]S'
PRrROOF: The proof is an easy consequence of Theorem in combination with Formula (1.1.1). O

The property of the Schouten bracket from Lemma is called naturality and it implies more-
over, that the Schouten bracket is diffeomorphism invariant, i.e. for a diffeomorphism ¢: M — N,
we have

¢* [[X7 Y]]s = [[¢*X7 ¢*Y]]s

for all X,Y € X*(N).
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1.2 Cartan Calculus

The dual picture is now the de Rham complex. We denote by T*M — M the cotangent bundle of a
manifold M, i.e. the dual of the tangent bundle TM — M, and consider its exterior algebra

dim (M)
Q°(M) :=T>(AT*M) = Ao 1y I°(T*M @ Moo (ayT(T* M),

Definition 1.2.1 Let M be a manifold, then we define the R-linear map d*: QF(M) — QFFL(M) by

k+1 )
dw(X1,. .., Xpp1) _Z<* VX (w( Xy, Ay X))

: j
+ 3 WX, X1, Xy A A Xig)

i<j
for allw € QF(M) and X1,..., X1 € T°(TM) and k > 1. For k =0 we define
QO (M) =€>°(M) > f— (X — X(f)) € Q' (M).

d=>Y,d": Q*(M) — Q*TY(M) is called de Rham differential.
Lemma 1.2.2 The de Rham differential d has the following properties

(a) d(a A B) =da B+ (=1)FaAdB for all « € QF(M) and Q°(M).

(b) d% = 0.
PrOOF: Exercise. O

In a local coordinate chart (U, z) we have that a differential form a € Q¥(M) is of the form

1

a‘U = Hailmik dz™ A - A da*

and with Lemma [1.2.2] we see that

1 da, 4 i i
da}U kl#d”/\dxl/\ - Adz'k

For a manifold M, we can now introduce the quotient

ker d*
imdk—1’

which is called the kth de Rham cohomology of M. The remarkable fact about this quotient is that
even though its definition involves is the solution space of a partial differential equation (d*a = 0)
modulo trivial solutions, the information it contains is purely topological. Nevertheless, for this course
we are only interested in the the de Rham complex itself and also very superficial.

It is not surprising that, since the bundles TM and T*M are dual to each other, there are
operations wich include both X*(M) and Q°*(M). We define for a factorizing X = X; A--- A X, €
XF(M) and a € QY(M):

Hip(M) =

LXQ = LX) . LX O (1.2.1)
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where tx,a is the usual contraction of a vectorfield and a differential form. Additionally we set
v = fafor f € 6€°°(M). Moreover, we define the Lie derivative along a multivector field X € X*(M)
by Cartan’s magic formula

Lx =[ix,d] = txd— (—=1D)Fdoy: Q*(M) = Q*~*=D(r).
Note that for a vector field X and a k-form o € Q¥(M), we have
%}tzo(@ff)*a =%xa.

Proposition 1.2.3 (Cartan calculus) Let M be a smooth manifold. Then

(a) txpy = txty

(b) [x.y] = txty — (—1)*yix =0

(c) Lxny = xLy + (—1) Lxiy

(d) [d,%x] =d2Lx — (-1)*VLxd=0

(e) [Lx,y] =Lxty — (—1)(]“*1)%3/.%)( = [x,Y]s

(f) [£x.Ly] = LxLy — (- VEDLy Ly = Ly vy
for X € X*(M) and Y € X'(M).

PRrROOF: Note that the every point, except for (e) and (f), follow directly from skew-symmetry and
d? = 0. (e) follows from Cartan’s magic formula for two vector fields: one can inductively show the
identity on factorizing tensors. (f) follows from (e), since

[Lx,%y] = [Lx, [y, d]] = [Lx,ev],d] + (—1)"F D]y, [Lx, d]

= [1%x v, d] € [gxype, d]
= ﬁgﬂx,y]]s- J






Chapter 2

Poisson Geometry

Poisson geometry is the study of Poisson brackets, which were developed by Siméon Denis Poisson
in 1809 order to study integrals of motion in mechanics. After that it was Carl Gustav Jacob Jacobi
and Sophus Lie who studied Poisson brackets from different angles, which lead for example to the
discovery of Lie algebras and Lie groups. The modern formulation of Poisson brackets is due to André
Lichnerowicz in the 1970s and his work is arguably the starting of the geometric point of view. As
a last historical remark we want to mention the fundamental work of Alan Weinstein in [12], who
discovered many aspects of Poisson geometry which are up to now subjects of research.

In order to understand roughly the physical background, we consider a particle moving in the
configuration space R3 with coordinates (¢'(t), ¢%(t), ¢*(t)). In order to describe its motion, we need
to fix a Hamiltonian H € €>°(T*R3) = €>°(R? x R?) or as it is called in in physics: an Energy.
Usually, H is of the form

RS
H=>Y" 5o+ V(o) (*)
=1

for the standard coordinates (gq,p) of R x R3, where the first summand is the kinetic energy and
the second summand is the potential energy. In the Hamiltonian formalism of classical mechanics the
motion (¢'(t),q(t),¢3(t)) of the particle is a solution to the ordinary differential equations

a o

dt N Op;

(q(t)7p(t)) and 7(t) - (‘3qi

: (a(t), p(1)). ()

If we define the binary operation {—, —}: 6>°(R3 x R3) x 6€°(R3 x R3) — €>°(R3 x R3) by
3

_N~9f 99 _ 99 Of
V9= 2 5 o5~ o oy

1=
then we can write the Equations in the form

ST (1) = {a', H}a(0),p(1)) and P2 (4) = {pi, H} (1), p(1)).

Note that {—, —} is a Lie bracket which is a derivation in both slots, and this is basically the starting
point of Poisson geometry. In fact, to do mechanics, we need to fix three things:

(a) a phase space, which has sufficiently nice properties, i.e. is a smooth manifold M,

(b) a Poisson bracket, i.e. aLie bracket {—,—}: €°°(M)x€>°(M) — 6€°°(M), which is a derivation
in both slots,

11
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(c) a Poisson subalgebra . C €°°(M) of classical Observables and

(d) an energy function H € o (the Hamiltonian).

From the geometric point, we forget the chosen energy function and call the pair (M,{—,—}) a
Poisson manifold. The study of these brackets is what is called Poisson geometry.

2.1 Poisson Brackets, Poisson Tensors and Poisson maps

Before we define Poisson manifolds, we define algebraic structure behind the geometric version:

Definition 2.1.1 Let o be a commutative algebra over k. A Poisson bracket is a bilinear map
{, }:d xd—d, such that

(@) {a,b} = —{b,a} (shew symmeiry)
(b) {a,{b,c}} = {{a,b},c} + {b,{a,c}} (Jacobi identity)
(c) {a,bc} = {a,b}c+ b{a,c} (biderivation)

for all a,b,c € .

Remark 2.1.2 The first two properties of the Poisson bracket in Definition 2.1.1] are exactly the
axioms for («,{-, - }) being a Lie algebra.

The next section is full of examples, but let us, before entering the realm of Poisson manifolds,
get rid of a triviality:

Example 2.1.3 We can endow every commutative algebra o with the trivial Poisson bracket, i.e.
the bracket sending every two elements to 0. This bracket fulills axioms (a)-(c) for trivial reasons.

Given a smooth manifold there is obviously a commutative algebra canonically attached to it:
6°°(M). The definition of a Poisson manifold is now straight forward:

Definition 2.1.4 A Poisson manifold is a smooth manifold M together with a Poisson bracket { -, -}
on 6€°°(M).

Lemma 2.1.5 For every open subset U of a Poisson manifold (M,{-, -}) there exists a Poisson
bracket { -, - }u on U, such that.

{f?g}‘U = {f‘U?g}U}U'
for all f,g € €°°(M).
PRrROOF: Let f,g € €°°(U) be given. We define

{fag}U<$0> = {fﬂg}('xO)

where f,g € 6°°(M) are chosen such that there is an open neighbourhood xy € U’ C U and
flgr = f}U, and g|,;, = g|,,- To prove that this bracket is well defined, we just have to check that
{f,g} vanishes at a point xg € M, if there is an open neighbourhood xzy € O with g‘o =0. We
therefore choose a function p € €°°(M), such that p(xg) = 0 and p(z) = 1 for all x ¢ O. We have

therefore g = pg and hence
{f,9}(@0) = {f, pg}(z0) = {f, p}(w0)g(x0) + p(x0){f, g}(x0) = 0.

This bracket is indeed Poisson, since the other properties can be checked using small enough neigh-
bourhoods in which all the involved functions can be extended to M. O
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Proposition 2.1.6 Let (€°°(M),{-, -}) be a Poisson manifold, then

(a) {-, -} is local, i.e. supp{f, g} C supp f Nsuppg and in local coordinates (U,z) of M we have

L Of Of

oty = L0 @.1.1)
for local functions w7 € 6€°°(U) defined by

7 = {a' 2} = —7".

(b) there exists a bivector field © € X2(M) with [r,7]s = 0 such that
{f,9} = df @ dg(m) = =[[f,7s, gls

The local functions in (2.1.1) are exactly the coefficient function of the bivector field from (b), i.e.

1,0 0
20 9xt Qad’

PrOOF: We start proving (a). Let f,g € €°°(M) and let U := M \ supp g, by Lemma we know
that there is a Poisson bracket {-, - }¢7, such that

{f;g}‘U ::{f}U>9|U}U’::{f‘UaO}U'ZZO

Hence supp{f, g} C suppg and with {f,g} = —{g, f} we also get {f, g} C supp f. To proceed with
the proof, we notice that for all functions f € €°°(M), we have {f,1} = {1, f} =0, since

{f71}:{f711}:{fa1}1+1{fa1}:2{f71}

and 0 = {f,1} = —{1, f}. By bilinearity this holds even for all constant functions. Let us now pick
a coordinate chart (U, z) and let f,g € €°°(U), then we find functions E;, E;;, T;, T;; € 6€°°(U), such

that EZ(J}()) = g; (1'0)7 Ti($0) = @851 (.1‘0)

f(z) = f(zo) + ZEZ(.%')(ZEZ — b))+ Z Eyj(z)(z' — 2} (2 — xf))
i=1 i,j=1
and

n

9(@) = glwo) + S Ti(@) (@ — ah) + 3 3 Ty(a) (' — ab) (2 — af)

i=1 i,j=1

close to zp. We work now with the Poisson bracket {-, -}y from Lemma We have, using that
{-, - }uv vanishes on constants and its Leibniz rule, that

U, au(ao) = {a', 9o (n0) o2 (o) 22 (a)

and the claim is proven.
To prove (b) it is now enough to prove that W{U = %{mz,aﬂ}% A % glues together to a global

object. Let therefore be given two coordinate charts (U, z) and (V,y), such that U NV # (), then

ot oy

W@,y @) = o} S5
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and hence
1 0 0
71-[yJﬁV = §{yk’y£}ayk A oy’
1. ooyt o 0
= {2} N —
2 Oxt 0xI Oyk Oyt

1 . .. 0 0
e N __
2{56 - }8xi A oI

_ T
= Tyunv-

In every chart (U,z) we can see that {f,g}‘U = —[lf, W]]S,g]]S’U and thus it is valid globally. Let us
denote Xy = —[f, 7]ls, then we see

{f{g.h}} = [Xs,{g,h}]s
= [[Xfa Hngh]]S]]s
= [[Xy, Xgls, hls + [ Xg, [ Xy, Als]s-

Moreover, we have

[[Xf>Xg]]s = —[[Xfa [g9,7]s]s = [[[[vahﬂ&ﬂ]s + [g, [[Xf,ﬂﬂs]]s
= ~X(sy + 310, 1f, I 7lelels

This implies that

{40} — U5 0h 1) — {0, 7)) = —2 [0 Lo 17, [ mleDellsls

and since differentials span the cotangent space at every point we get {f,{g,h}} — {{f, 9}, h} —
{ga{fah}}zo — [[W’W]]S:(l U

Remark 2.1.7 Note that, if there is a bivector field 7 € X2(M), such that [r, 7]s = 0, we can induce
a Poisson bracket { -, -} via the formula in (b) of Proposition We will in the following switch
freely between the two equivalent descriptions. A bivector field 7 € X2(M) with [r,7]s = 0 is from
now on called Poisson bivector field.

The Schouten bracket is a local operator itself, so it is enough to check the condition [7,7]s =0
locally. In a chart (U, x), we have

s P Otk Ol
[[W,w]]s}U:() = 7 (;rj + 7t aﬂj + ki (;rj =0 for all 4,k,1.
x x x

The proof is an exercise. We note that m being Poisson is the same as its coefficients are a solution
to a certain quadratic PDE and one can study Poisson geometry from this point of view. But this is
not part of these lecture notes.

Let us now focus on the Poisson tensor itself: even though it might very singular, we can still
define one direction of the musical isomorphism from Riemannian geometry, but instead we “just” get
a homomorphism:

Definition 2.1.8 Let (M, 7) be a Poisson manifold.

(a) The musical homomorphism ©t: T*M — TM is the vector bundle map defined by

™ T*M 3 ap — n(-,0p) € TM.
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(b) The rank of ™ at p € M is defined by
rank(r), = rank(7*(p)).

Lemma 2.1.9 The rank map M > p — rank(m), € IN takes only values in 2IN and is lower semicon-
tinuous, i.e. for all points x € M there exists an open neighbourhood U C M, such that

rank(m), < rank(m),
forallyeU.
ProOF: Exercise. O

As a next step, we want to compare Poisson manifolds and therefore we need to define Poisson
maps.

Definition 2.1.10 Let (M,{-, - }n) and (N,{-, - }n) be two Poisson manifolds. A smooth map
¢: M — N is called Poisson map, if

for all f,g € €°°(M).

Note that it is obvious, that one can concatenate two Poisson maps and the result is still a Poisson
map, which ensures that Poisson manifolds together with Poisson maps form a category, the category
PoissMNFd. Note that, however it is sometimes preferable to define the category of Poisson manifolds
with different morphisms, but this goes beyond the scope of this lecture notes.

Let us now investigate the relation of a Poisson map with the Poisson bivector field.

Proposition 2.1.11 Let ¢: M — N a smooth map between the Poisson manifolds (M, my) and
(N, 7n). The following are equivalent:

(a) ¢ is a Poisson map.
(b) wrr and wN are ¢-related.

(¢) For all p € M, we have
Ty o mar(p)f o (Tp6)" = iy (4(p))-
In particular, if ¢ is a (local) diffeomorphism , then ¢*nn = 7.
PRrROOF: Let us assume (a). Let f,g € 6€°°(N) and p € M, then we have

dfpp) ® dggp) (Tpe @ Tpd(mar(p))) = dfpp) © Tpd @ dggp) © Tpp(ma(p))
=d¢™ fp ® A" gp(maa(p)) = {¢" f, o} (p)
= o™ {f.9tn(p) = {f. g}n(0(p))
= dfsp) ® dgep) (T (o(p)).

Since the differentials on functions span the whole cotangent space, we get T,¢ @ T,¢(7) = mn(P(p)
and hence my ~¢ . Let us now assume (b)and let Ag(p)> Bs, € T;(p)N be arbitrary, then

) (T o T (p)F o (Tpd)* (Botp) = o) Tpdmar(p)(+, Bap) © Tpd)
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= a¢(p) (9] B(ﬁ(p) (Tp¢ X Tp¢(7rM(p>))
= Qy(p) @ B, (mn (6(p))
= Qy(p) (7TN(¢(P)ﬁ5¢(p))-

And again, since agp), B¢, € T35 N were chosen arbitrary, we get Typomn (p)to (Tpe)* = mn(p(p))F.
Let us finally assume (c) and let f,g € €°°(N), then for all p € M we have

o {1, 9¥n () = {f,9}(3(p)) = dfs) (dn ()" dgs(p))
= dfy(p) (T 0 T (p)F © (Tp0)" g (p)
=d¢" f, ® do* gp(mar(p)) = {&* f, "9} m (p)- 0

2.2 Hamiltonian and Poisson Vector fields

After the first properties and definitions of Poisson manifolds we want to study their symmetries.
Recall that in Riemannian geometry the isometries are always a Lie group, and to hope for such a
strong statement is beyond any reason in Poisson geometry. This is why we only deal with infinitesimal
symmetries, i.e. vector fields which preserve the Poisson structure in a reasonable way:

Definition 2.2.1 Let (M, 7) be a Poisson manifold.
(a) A vector field X € X' (M) is called Poisson vector field, if

Lxm=[X,r]s =0.

(b) The vector field
Xy = n*(dH) = [H, 7]s
is called Hamiltonian vector field of the function H € €°°(M).
We collect in the following theorem the first properties of Hamiltonian and Poisson vector fields.
Theorem 2.2.2 Let (M, ) be a Poisson manifold.

(a) Each Hamiltonian vector field is also a Poisson vector field.

(b) For all f,g € €°°(M) the following identities hold:
{f,9} = X4(f)  and  [Xy, Xg] = —Xyp).

(¢c) The Poisson vector fields are a Lie subalgebra of X(M), moreover for a function f € €°°(M)
and a Poisson vector field X, we have

so the Hamiltonian vector fields are a Lie ideal in the Poisson vector fields.

(d) A wvector field X is a Poisson vector field, iff for all functions f,g € €°°(M) the equality

X({fr9)) ={X(f), 9} +{f, X(9)}
holds.
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(e) A wvector field X is a Poisson vectorfield, iff its (local) flow is a Poisson map.

PRrROOF: In the first four points we will see the strength of the Schouten calculus:
(a) Let f € €°°(M) be arbitrary, then
[X¢,7]s = [Ifs 7], w]s = [f, [m, 7lsls = ([, 7]s, 7]s
= —[[f,7s, 7ls = _[[XfﬂTﬂs
and hence [ X, 7]s = 0.
(b) Let f,g € €°°(M), then by using Proposition [2.1.6]

{f.9} =g, 1} =g, 7ls, fls = [ Xy, fls = X ().

Moreover, we have

(X1, Xgl = [If, 7]s, [, 7lsls = [I1f, 7]s, gls, 7]s + [ILf, 7]s, 7]s, g
= —[{f g}, 7]s + [£Lx,m, gls

= —X{.9}
(c) Let X,Y be two Poisson vector fields, then

'%[X,Y]ﬂ— = [[X,Y]s, 7]s = [X, [V, 7]s]s — [V, [X, 7]s]s = 0.
(d) Let f,g € €°°(M) and let X be a vector field, then

X({f,9}) =X, Af, g}s = = [X, [[f 7]s, 9s]s
= —[IX(f),7]s, gls — [[f, Lx7]s, 9ls — [Lf> 7]s, X (9)]s
={X(f), 9t +{f, X (9)} = [[f- Lx7]s, g]s-

Hence, we see that if X is Poisson the equality holds. If now the equality holds, then we know
that

0= [H[fa-%X’]r]]Svg]]S = df® dg(gxﬂ')

Since the differentials of functions span the cotangent space at every point and we get the claim.
(e) Let X be a vector field, then we have for its flow

d *_ *
@) T = (@) (£xm).

If X is a Poisson vector field, we have that %((I)%X)*W = 0 and hence 7 = (®F)*m = (®F)*n

for all t. If ® is a Poisson map, we have that %(@f{)*ﬂ = %w = 0 and and the equivalence

follows. u

The quotient

HL (M) = {Poisson vector fields}
T {Hamiltonian vector fields}

measures how many Poisson vector fields are not Hamiltonian vector fields and is called the first
Poisson cohomology. Moreover, as a direct consequence of Theorem we have:
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Corollary 2.2.3 Let (M, ) be a Poisson manifold. The vector space HL(M) carries the structure
of a Lie algebra induced by the usual Lie bracket from X(M).

In general, this quotient can be rather wild and hard to compute. In some special cases one can
compute it as for the trivial Poisson structure.

Example 2.2.4 Let M be a manifold and 7 = 0 the trivial Poisson bivector field, then we have
Xy =0forall fe€°(M), but it is clear that for all vector fields X, we have £Lx7 = 0 and hence
every vector field is a Poisson vector field.

In Example we could see that sometimes two functions have the same Hamiltonian vector
field even though they do not coincide (even if there difference is not constant). This motivates the
following definition

Definition 2.2.5 Let (M,m) be a Poisson manifold. A function f € €°°(M) is called Casimir
Junction, if Xy = 0. The vector space of all Casimir functions is also called zeroth Poisson cohomology
and is denoted by HO(M).

Remark 2.2.6 (*) The notation H?(M) and HL(M) suggests that both vector spaces are part of
a cohomology theory for Poisson manifolds and this is in fact true, but the exact formulation goes
beyond the scope of this lecture notes.

Let us close this section with a lemma connecting Hamiltonian vector fields and Poisson maps:

Lemma 2.2.7 Let ¢: (M,7p) — (N,7mn) be a Poisson map. For every function f € €°(N), we
have

Xof ~o Xy
PrOOF: We have for g € €°°(N)
(TppXgrr(P))(9) = Xorp(p)(079) = —{0"f, "9} (p) = —{f, 9} n(0(p)) = X;(o(p))(9)

and the claim is proven. ([

2.3 Examples

2.3.1 Constant and linear Poisson Structures

We consider M =V, where V is a finite dimensional real vector space, with a given basis {e;}1<i<n
and its dual {e’}1<i<p. For a skew symmetric matrix {7" }1<; j<,, we define

1 ,.0 0

T= -7 A —,
2 Ox*  Oxd
where the coordinate 2’ is defined by V' 2 v + €f(v) € R. One can see by using the local formula for
[, m]s, that 7 is indeed a Poisson bivector. In this case we call 7 constant. Note that the definition
of being a constant Poisson structure is independent of the chosen basis, i.e. if a Poisson structure
on V is constant for one basis, it is constant for all.

Proposition 2.3.1 (linear Weinstein Splitting Theorem) For a constant Poisson bivector m of
rank 2d on V' there is a basis (f1,..., fa,91---+9ds P1s- -+, hn_24), such that

d
0 0
"= 55 " oy

where the q'’s (resp. the p'’s) correspond to the basis elements f; (resp. g;).
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ProoF: Exercise. O

From Proposition [2.3.I] one can see that in this case the Casimir functions are exactly the functions
which are constant in ¢ and p directions.
Let us now define what a linear Poisson structure is. Let therefore V be again a real vector space

Wlth a glven basis {e;}i1<i<n. A Poisson bivector field 7 is called linear, if there are ck] € R with

¢l = —67 , such that
= - C - - .
T %k i " B
Note that the definition of 7 being linear is also independent of the choice of the basis. Moreover, the
constants ¢; cannot be chosen arbitrary:

Proposition 2.3.2 A bivector field 7 = kaczj 8‘; A 8IJ for ¢y € R is Poisson, iff
c]_i_ckf’lj_i_cjf/ﬂ_o
fir alle i,j,k,m € {1,...,n}.

PRrROOF: A tiny computation shows that

o 9 .9 0
ozt Oxi  OxF

[[Waﬂ]s — ( zécjk +Ck£ ij c]é )

Corollary 2.3.3 A bivector field 7 = zxkcz,] 821 A amJ for ¢y '€R is Poisson, iff the map
V*xV*3(a,8) — azﬂjcge eV
s a Lie bracket.

Note that this corollary shows that linear Poisson structures and finite dimensional real Lie alge-
bras are in one-to-one correspondence given by Corollary

{ linear Poisson structures on V} I { Lie algebra structures on V*}.

For a real finitie dimensional Lie algebra g, we call the associated Poisson structure the KKS-Poisson
structure (Kostant-Kirillov-Souriau).

2.3.2 Symplectic Manifolds

Definition 2.3.4 A symplectic manifold (M,w) is a manifold endowed with a 2-form w € Q?(M),
such that

(a) dw =0 and
b) w is non-degenerate, i.e. W TM > v, — w(p)(vy, - ) € T*M is bijective.
p P

Even though symplectic manifolds play an important role in many branches in math, we will only
consider them as particularly nice Poisson manifolds. So let us show that we can define a canonical
Poisson bracket: First we define a vector field Hy for each function f € €°°(M) which is uniquely
determined by the equation

vyw = df, (2.3.1)
the we set

{f,9}w = Hy(f) (2.3.2)
for all f,g € €°°(M).
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Proposition 2.3.5 Let (M,w) be a symplectic manifold and let {-, -}, be defined as in Equation
(2.3.2), then {-, -} is a Poisson bracket. Moreover, the vector fields defined in Equation (2.3.1)) are
exactly the Hamiltonian vector fields of {-, - },, and we have that

alow’ = idrys  as well as W ont = idps s
for the Poisson bivector field m of {-, - }o .

Proor: We begin showing that { -, - },, is a Poisson bracket. So let f,g,h € €°°(M)
o {f,9}w=Hy(f) =df(Hy) = tn,w(Hy) =w(Hy, Hy) = —w(Hg, Hy) = —{g, [ }w-

o {f,gh}tw = —Hy(gh) = —Hs(9)h — gHy(h) = {f, g}wh + 9{f, h}w.

e We first proof that [Hy, Hy] = —Hy

UH, HyW = [.%Hf,LHg]w =Lyn,w — tn,Ly,w
= fo dg — LHyUH dw —tp, dLHfoJ
=d%u,;9—0— 1y, d*f
=—d{f. g}w,

where we used that [£x,ty] = t[x,y] holds for all vector fields X,Y € X(M) and Cartan’s
magic formula. Now we have

{F {9, h}otw = Higny, (f) = —[Hg, Hy](f) = —Hg(Hn(f)) + Hn(Hy(f))
= _{{fa h}wag}w + {{f7g}wa h}w = {ga {f7 h}w}w + {{f>g}wv h}w-

It follows now immediately, that Hy = Xy for all f € €°°(M), since X¢(g) = {9, f}o = Hf(9)
for all g € 6°°(M). Moreocer, we have that

df = W' (Xy) = &' (7*(df))
and since the differentials of functions span the cotangent space, we have the claim. O

Moreover, if we define non-degenerate Poisson bivector field by requiring that the map 7#: T*M —
TM is bijective, then we have

{non—degenerate Poisson bivector fields on M } JEEN { symplectic 2-forms on M }

We can see now Poisson brackets as a generalization of symplectic structures allowing them to be
singular.

Let us check in this case how the Casimir functions and the Poisson vector fields behave. In fact,
there are very few Casimir functions:

Lemma 2.3.6 Let (M,w) be a symplectic manifold. Then
Xy=0 <= [ islocally constant

PRrROOF: We have

w is sympl.
<~

X;=0 df =0 <= fislocally constant. O
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Note that however the converse statement is not true: we consider

as a Poisson structure on R2. For ‘€¢>°(IR?), we have

x, o000  9f0
= "9y ox Ox Oy’

and so Xy = 0 is equivalent to %5 = g—ﬁ = 0 and so f has to be constant. On the other hand 7 is

clearly not symplectic.
We also have a nice interpretation of the Poisson vector fields:

Lemma 2.3.7 Let (M,w) be a symplectic manifold with Poisson bivector field w. Then
(a) Lxw =0 iff X is a Poisson vector field
(b) the form w’(X) is closed iff X is a Poisson vector field.

(c) the vector field w(a) is Poisson iff o is closed.
Proor: Exercise. U

Now we want to find examples for symplectic manifolds, which are by the above discussion also
Poisson manifolds. Luckily enough there are a lot examples ranging from rather abstract constructions
to concrete examples.

Example 2.3.8 We consider S2 C R? and view the tangent bundle 7'S? as a subbundle of the trivial
bundle TsR3 = S x R3. We define w € Q2(S?) pointwise by

w(p)(v,w) = (p,v X w)

This form is closed by dimensional arguments and non-degenerate which can be shown by a tiny
computation.

In fact there are two possible generalizations of this example: The first one comes from the
observation that S? ~ CP! and in fact every complex projective space CP" admits a symplectic
structure, the so-called Fubini-Study form (Exercise!). The other possble way of generalizng is to go
to arbitrary orientable 2-dimensional manifolds:

Lemma 2.3.9 Every orientable two dimensional manifold admits a symplectic structure.

PROOF: Let M be an orientable 2-dimensional manifolds, then there exists a volume form w € Q%(M).
This form is closed by dimensional reasons (i.e. dw € Q3(M) = 0) and since it is a volume form it is
also symplectic. O

But also beyond two dimension there are plenty of examples. Let us consider an arbitrary manifold
M and its cotangent bundle 7: T*M — M and let us define the canonical 1-form 0 € QY (T*M) by

Oa, (Va,) = az(Ta,m(vVa,))

Lemma 2.3.10 Let (U, q) be a chart of M and (T*U, q,p) the induced chart of of T*M, then

0

T =Di dql
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PROOF: In general, we know that there exist functions «a;, 87 € €°°(T*U), such that 0

oy = @i dg' +

B dp;. In the induced chart the projection 7 is particualrly easy: m(¢,p) = ¢ and hence Tﬂ(a?f;) = aaqi
and T’/T(%) = 0 for all ¢,j. This implies that
0 0
e(q,p)(aiqz*) =pi and e(q,p)(@) =0.
If we now compare the coefficients, we see that o; = p; and 8; = 0 for all 4, j. U

Proposition 2.3.11 Let M be a manifold. The two form wy € Q2(T*M) defined by wy = — df is
symplectic. wq is called the canonical symplectic structure on T M.

PROOF: wy is obviously closed, since d? = 0. Using the the local formula from Lemma [2.3.10] we see
that wo| ., = dg’ A dp; and hence it is non-degenerate. O

Remark 2.3.12 Note that symplectic manifolds are by themselves interesting objects to study not
only from the geometric, but also from the topological point of view, since the existence of a symplectic
structure on a (compact) manifold induces topological constraints on the manifold itself (not only the
dimension). There are “easy” arguments that S? is the only even dimesnional sphere that admits a
symplectic structure.

2.4 Poisson Submanifolds, the Weinstein Splitting Theorem and Sym-
plectic foliations

In this section we will see that symplectic manifolds can be seen as the smallest building blocks of
Poisson manifolds, i.e. every Poisson manifold is made up of symplectic manifolds which nicely glued
together (we will give this sentence sense throughout this section). In order to show this, we first
have to improve Proposition to a more fundamental local structure theorem:

Theorem 2.4.1 (Weinstein Splitting theorem) Let (M, n) be a Poisson manifold and let x € M,
then there exist local coordinates (q*,...,q",p1,...,pr,y"...,y°) centered around x, such that

o0 1
U™ 9q¢t " Op; 27

0 0

ab YooY
(y) 955 " b

|
where k = rank(7), and " (y) are functions only depending on y with ©*(0) = 0.

In order to proof that theorem, we need a standard lemma about commuting vector fields.

Lemma 2.4.2 Let M be a manifold, and let V...,V € X(M) be pairwise commuting vector fields,
such that Vi(p),...,Vn(p) are linear independent for a point p € M, then there exist local coordinates
(U, x) around p, such that

forie{l,...,N}.

ProOF: Exercise. O
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PrOOF (OF THEOREM [2.4.1)): Let z € M and let k = rank(m), > 0, since otherwise there is nothing
to show. We can assume that we have shown the statement for all Poisson structures with rank(m) < k.
Since the rank is bigger than 0, we can find a Function p € 6°°(M), such that X,(x) # 0. With
Lemma we can find local coordinates (U, x) such that

Xpl, = %.
We set ¢ = 2! and see that

Xp(p) =0, X4(q) =0, Xp(g)=1 and Xy(p)=-1,
which means in particular that X,andX, are linearly independent. Moreover, we see that

[Xp, Xq] = ~Xipgp = —X-1=0

and we can find, by Lemma new coordinates (yi,...,yn), such that

0
Xq:aiyl and Xp:aiyz
Since
dq Op  Op Oq . , 4
dghdp AdiP A Ady"? = (== —= — —— 2 Vdy" A - Ady™
gNdpAdy Y (ay18y2 aylayQ)y Y
=dyt A-- A dy",

we see that (q,p,%>,...,y") is also a coordinate chart. Moreover, we have {¢,p} = 1 and {p,v'} =
{q,9y'} = 0 for all 3 <i < n, which means in particular:

0 0 1S~ o 0
”‘U_(%Aap+2m;:3” (paq,y)ayim/\aiyn-

Since ™" = {y™, y"}, we have that

ag;m ={¢,{v"v"}} ={{g,v"},v"} +{v" . {q,y"}} =0

And hence the functions 7" do not depend on the coordinate p. With a similar computation, one
sees that they also do not depend on ¢. One sees that 7 := %Efnn:d 7~rm”(y)8yLm A % is a Poisson

structure as well and having rank strictly smaller than k at x. So inductively we can proceed to get
the claim. 0

Corollary 2.4.3 (Darboux Theorem) Let (M,w) by a symplectic manifold of dimension 2n, then
around every point x € M there ezists coordinates (U,{q",...,q" p1,...,pn}), such that

w’U = d¢’ A dp;.

In this section we are dealing with submanifolds, which means for us always immersed submanifolds.
If the manifold happens to be embedded, we will always refer to it as embedded submanifold.

Definition 2.4.4 Let (M, 7) be a submanifold. A Poisson submanifold is a is a submaniold v: C' —
M together with a Poisson bivector field 7c € X2(C), such that v is a Poisson map.

One special case of Poisson submanifold are level sets of Casimir functions:
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Lemma 2.4.5 Let (M, 7) be a Poisson manifold and let f; € HO(M) be Casimir functions for i €
{1,...,N} such that F = (f1,..., fn): M — R" has regular value 0. Then there is a unique Poisson
structure ¢ on C = F~Y({0}), such that (C,7¢c) is a(n embedded) Poisson submanifold of (M, ).

PrOOF: First of all, it is clear that C' is an embedded submanifold, since 0 € R is a regular value of
F. Let g,h € €°°(M) be two functions, then we define

{97 h}C = L*{gv ;L},

where §,h € €°°(M), such that *f = f,1*§ = g. Let us now check that {-, - }¢ is well-defined,
therefore it is enough to show that for a function § € €°°(M) with 1*§ = 0, we also have 1*{§,h} =0
for all h € €°°(M). Since 1*g = 0 we can always find a smooth functions h' € €°°(M) for i €
{1,...,N}, such that § = f;h?, then we see X5 = fi X} + h'Xy, = fiX}: which is a vector field
vanishing at every point ¢ € C C M, and moreover it follows by definition, that +: C — M is a
Poisson map. The Jacobi identity and that {-, - }¢ is a biderivation follows trivially from the one
from {-, - }. O

In the following we will try to divide a Poisson manifolds into special submanifolds. In the previous
Lemma we could see that regular level sets of Casimir functions are indeed a first approximation to
that, but we can improve this division drastically. To do so, we introduce so-called distributions.

Definition 2.4.6 Let M be a manifold. A smooth distribution on M is a subset D C T M, such that
(a) for each p € M, the set Dy, := D NT,M is a subvector space, in particular D, # (.

(b) for T°(D) = {X € X(M) | X(p) € D,}, we have that for each point there exists a open
neighbourhood U and X; ..., X} € FOO(D’U), such that that Dy, = span{X;(y) h<i<k for all
yeU.

Moreover, a smooth distribution D C T M is called,
e regular, if dim(D)) = const.

e involutive, if there exists a set of local sections D C I'}S (D), such that

D,={X(p) €Ty,M | X € D} and [D,D]CD
whenever defined.
Corollary 2.4.7 A smooth distribution D C T M s regular if and only if it is o subbundle.

ProoOF: Exercise. O

Note that not every distribution is regular, in fact the distributions which are induced by Poisson
manifolds are usually not. If a distribution is not regular, one can divide it into two disjoint sets:

Definition 2.4.8 Let & C T M be a smooth distribution. A point p € M is called

(a) regular, if there exists an open neighbourhood U of p, such that dim(D,) = dim(D,) for all
yeU.

(b) singular, if it is not regular.

Proposition 2.4.9 Let D CTM be a smooth distribution. Then
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(a) the map p — dim(D,) is lower semi-continuous.

(b) the set of reqular points is open and dense.

PrOOF: Let p € M, then we find an open neighbourhood U of p and Xi,..., X € FOO(D‘U), such
that D, = span{Xi(y),..., Xx(y)}. Moreover, we can find a subset {X;,,...,X;} of {X1,..., X},
such that {X;, (p), ..., Xi,(p)} is a basis of D). Since {X;,(p),..., X, (p)} is linearly independent at
p, there is an open neighbourhood V' C U of p, where they are still linear independent, because of
continuity. In particular, at very point y in V' they span a subspace of D, of dimension dim(D,).

For point (b) it is enough to show that every open neighbourhood U of a point p contains a regular
point. We define

R = {dim(D,) | y € U},

then clearly we have that R < dim(M) hand hence there is a maximum m of R and let x € U be
chosen such that dim(D,) = m. The fact that = is a regular point follows now with (a), since we can
find an open neighbourhood V' C U of z, such that dim(D,) < dim(D,) for all y € V, but

m = dim(D;) < dim(Dy) <m
for all y € V' and the claim is proven. O

Before going on with distributions, let us interrupt this with some Poisson geometry:

Theorem 2.4.10 Let (M, 7) be a Poisson manifold. Then imn# C TM is an involutive distribution.

PrROOF: As the image of a vector bundle map, we clearly have that im 715 C T, M is a vector subspace.
Moreover, we can choose D = {X; € I'®°(im7*) | f € 6°°(M)}. This is a set of sections for which
we have

im(7%), = {X(p) € T,M | X € D} and [D,D]CD

since for all f, g, we have [ Xy, X;] = X_r5 1 € D and Hamiltonian vector fields span im(7) at every
point and hence im(7#) is involutive. O

In fact, among involutive distributions there are even nicer ones, namely integrable ones.

Definition 2.4.11 A distribution D C T M is called integrable, if for each point p € M there exists
a submanifold 1: N — M, such that p € «(N) and

T, (TyN) = Dy

for all ¢ € N. A submanifold fulfilling this property is called integral submanifold.

Note that it clear, that every integrable distribution is involutive. In fact, we can choose all the
sections as & (from Definition [2.4.6). The converse is however not true in general: one has to impose
another condition on the distribution in order to get an equivalence. This is what is called Sefan-
Sussmann-Distributions. This additional condition is always fulfilled, if the distribution is regular.

What follows now are some rather technical facts about integral submanifolds, in fact we want to
discuss the global nature of integral submanifolds inside M. One of the difficulties is, that in general
integral submanifolds are only injectively immersed, but in fact they behave slightly nicer than just
that.
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Lemma 2.4.12 Let D CTM be a smooth distribution and let v;: Nj — M be integral submanifolds
for 3 =1,2 of D. Then L;l(Ll(Nl) N 12(N2)) is open and if 11(N1) Nwa(N2) is non-empty, then

1

Ly © L‘Ll(Nl)mLQ(NQ) : Ll_l(bl(Nl) N LQ(NQ)) — L2_1(L1(N1> N LQ(NQ))

1s a diffeomorphism.
PrOOF: We assume from the beginning that ¢1(N1) N 2(N2) # 0, since otherwise the statement is

trivial. Thus, let p € ¢1(N1) N w2(N2), then there exists an open neighbourhood U of p and vector
fields Xi,..., Xy € FOO(D‘U), such that they are pointwise linear independent and k = dim(D,).

Since the N; are integral submanifolds, we find X{, . ,X,Z € %(L}l(U)) such that

X~ X

T J
Let us now define the map ®;: V; — N; for 0 € V; C R* by

Xj Xj
q)(tl, e 7tk) = (I)tll O---0 (I)tkk(p])’

j .
where we denote by p; € N; the unique points, such that ¢;(p;) = p and by (IJf(i the flows of X7.
Moreover, V; is a small enough neighbourhood, such that ®; is defined. We have that

0 d
T(pj(aitlh)) = &‘tZO%(O, 51,0, 70)
d X7
T 0@t " (pj)
= X/ (py)

and hence ®; is a local diffeomorphism around 0. Using now that Xg ~,; Xi, we know that we have

j
for the flows ¢; o @f(i = @f{i o ¢j whenever defined. It follows that

X1 X}
(Pt tk)) = (Pt o0 @y F(p1))
=P} 0.0 )k (p)
= 19(Pa(t1,. .., 1)),

and hence on V = V; N V5 we have that t; o &1 = 19 0 $5 is an embedding. This means in particular,
that ®;(V') is an open neighbourhood of p; € Nj, such that ®;(V) C L;l(Ll(Nl) N 12(N2)) and since

p was arbitrary, we have that the subsets Lj_l(Ll(Nl) N t2(N2)) are open.

Moreover it follows that L2_1 ot10®P; = P9 and hence L2_10L1 is a diffeomorphism around p; = /,1_1 (p).

A bijective local diffeoemorphism is a always a diffeomorphism and the claim is proven. O

The preceding lemma is the key to see that we can define a mazimal integral submanifold through
a point.

Theorem 2.4.13 Let D CTM be a smooth distribution, such that there exists an integral submani-
fold through p € M. Then there is a unique mazximal connected integral submanifold v: N — M, i.e.
for all integral submanifolds j: S — M through p, there exists an open embedding ¢: S — N, such
that

Ne——— M

NS

S
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commutes.

PRrROOF: First we define N C M to be the subset of points which are contained in a connected integral
submanifold through p. We define now a topology on N by declaring t(U,) € N for U, C N, to
be a basis for this topology. Note that this is in general finer than the subspace topology and N is
by definition connected and Hausdorff. Moreover, using charts for N, we obtain charts for N which
are indeed an atlas by Lemma [2.4.12] Furthermore, ¢:: N — M is smooth and an immersion by
construction. The last, but most subtle point is the second countability of N. This follows from a
theorem which states that if the codomain of an immersion is second countable, then the domain as
well, if it is connected. As a last point we notice that by the very definition of the topology of IV,
that every 1o: Ny — N is an open embedding. U

Using this we can apply our new knowledge to Poisson geometry:
Theorem 2.4.14 Let (M.7) be a Poisson manifold.
(a) The distribution im ¥ is integrable.

(b) Each mazimal integral submanifold v: L — M has a unique symplectic structure wy, such that
t 18 Poisson map.

PRrROOF: Let p € M be arbitrary such that rank(r), using Theorem we can find a local chart
U with coordinates (¢,...,¢",p1...,px) such that

U™ 9q¢t " Op; 27

)i A i
y 8ya’ 8yb7

71" ab(

where ¥ (y) are functions only depending on y with ¢*(0) = 0. We use the embedding «(q,p) =
(q,p,0) (restricted to opens). It is now clear that ¢ defines an integral submanifold and hence im 7
is integrable.

Let now ¢: L — M be a maximal integral submanifold. And let f,g € €°°(L) and let = € L, then
there exist open neighbourhoods U C L and V C M, such that L‘U: U — V is an embedding and

hence there there exist f,§ € €°°(V), such that (L‘U)*f = f‘U and (L\U)*g = g}U. We define

{f.9}e(@) = {f, 3}v (@)

To check that this is well defined we have to check that if for a function f, such that ¢*f = 0 we have
{f,g}v = 0. This follows from the fact that Xz € I'*°(im Fﬁ‘v) and hence there exists a vector field
Y € X(U) such that Y ~, X5, which implies that

{f,3hv (@) = H(X5() (@) = Y (" f)(@) = 0,

and hence { -, - } 1 is well defined. It is now an easy exercise to see the Jacobi identity, skew symmetry
and the derivation property. Moreover we can check the non-degeneracy of {-, -} in a chart from
Theorem [2.4.1] easily. O

So in some sense, we can understand a Poisson manifold as a collection of symplectic submanifolds,
such that the symplectic structures glue smoothly in a sense. A maximal integral submanifold is
called symplectic leaf and the collection of all symplectic leaves is called the symplectic foliation of
the Poisson manifold.

Let us discuss some examples. We start with the easiest:

Example 2.4.15 Let (M,w) be a symplectic manifold then the corresponding symplectic leaves are
the connected components of M.
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A bit more involved are linear Poisson structures: let us pick a connected Lie group G with Lie
algebra g and let 7 the Poisson structure on g* from Section [2.3.1] We denote by Ad*: G x g* — g*
the coadjoint action, then the symplectic leaves are exactly the coadjoint orbits. We are going to use
the following lemma

Lemma 2.4.16 Let ®: M x G — M be a Lie group action of a connected Lie group G with Lie
algebra g on a manifold M. The distribution D given by D,, = {&u(m) | € € g} is a smooth
integrable distribution. Moreover, the mazimal integral submanifolds are exactly the orbits.

PROOF: Let us fix a point m € M and edfine the map ®,,: G — M by

P (g) = ©(m, g).

By definition we have that the orbit through m is the image of ®,,. We want to show first that
we can find a manifold and an injective immersion, such that the orbit is an immersed submanifold.
Let us define G, = {g € G | ®(m,g) = m}, which is a closed Lie subgroup and hence G/G,, is
a manifold, such that p: G — G, \G is a surjective submersion. Thus, there exists a smooth map
Om: G\G — M, such that

G—>M

[
GG

commutes. Let [g],[h] € G/G,, be such that ¢,,([g]) = ém([h]), which means that ®(m,g) =
®(m,h) <= @(h~'g,m) = m. This in turn means that gh~! € G,, and hence [h] = [gh~h] = [g]
Let v € Tj)G\G then there exists a curve v: I — G, such that v(0) = g and %|t20[’y(t)] = 0. Let
us denote £ = %‘t:(ﬂ(t)v(())_l € g, then

= e m) = ] @00 2(1(0).m) = €4 ((g.m)) = Ear (D [a).

which means in particular that T'¢,, (TG, \G) = D. The last thing to show is that ¢,, is immersive,
so let v € kerTjj¢n. As above we choose a path such that v: I — G, such that v(0) = g and

Tig)pm (v)

% ’tzo['y(t)] = v. Without loss of generality we may assume that v(¢) = exp(t§)g with £ € g. We have

0 = Tig¢(v) m, exp(t&)g) (®(m, exp(t€)), g) = Tm®( -, 9)(Ear(m))

= &‘t:o dt’f 0

Since ®(-,g) is diffeomorphism, we have that £y/(m) = 0. We claim now that this implies that
exp(t€) € Gy, and in fact this follwos from the exsitence and uniqueness theorem for flows of vector
fields. Therefore we have (t) = [exp(t§)g] = [g] and is therefore constant and hence v = 0. O

So we are left to show that the distribution induced by the Poisson structure 7 is the same as the
distribution spanned by the fundemantal vector fields. Let us choose a basis {e;};c (1,.,N}, then we

have 7 = kaCk

D j and £y« = xjgkc,{la% and hence we have &+ = m#(—¢% d;) and we get the

claim.

2.5 Regular Poisson Structures

There is a big class of Poisson manifolds which behave very nicely in many ways: regular Poisson
manifolds. We are mainly interested in them, since they provide a nice enough structure to quantize
them rather easily, which we will see in the the next chapter.



2.5. REGULAR POISSON STRUCTURES 29

Definition 2.5.1 A Poisson manifold (M, ) is called regular, if rank(m) is constant or equivalently
if its distribution is regular. Moreover, all the symplectic leaves of a reqular Poisson manifold have
the same dimension.

Let us start with motivating examples:

Example 2.5.2 Every symplectic manifold is a regular Poisson manifold.

Example 2.5.3 Let 50(3)* be the dual of the Lie algebra of infinitesimal rotations together with the
KKS-Poisson structure. If we restrict to so(3)* \ {0}, we get a regular Poisson manifold.

Recall from Corollary that regularity of the Poisson tensor implies that F := im(n*) C TM
is a subbundle.

Remark 2.5.4 Note that since I'*°(F;) C X(M), we can take the commutator of two sections in
I'*°(F) and the involutivity implies that we get back a section of F.

Moreover, we have a short exact sequence of vector bundles and thus we can choose a splitting

0 —— kern! —— T*M s Fr 0,
K
¢

i.e. a vector bundle map ¢: F, — T*M, such that ¥ o ¢ = id and hence T*M = ker 7! @ im ¢. With
this map we define w, € I°(A%F%) by

for all e, f € Fr. wy is called the foliated symplectic form associated to w. Moreover, one can show
that w is independent of ¢ (Check!).

Lemma 2.5.5 The tensor wy € [°(A2F%) is non-degenerate.

PrOOF: Let e € F; such that wr(e, f) = 0 for all f, then we have ¢(f)(e) = 0. Moreover, let
o € ker ¥, then we have a(e) = a(nf¢(e)) = —¢(e)(r*(a) = 0 and hence e = 0. O

Since F is involutive, the sections I'*°(F;) possess a Lie bracket, which is just the Lie bracket of
the vector fields. Therefore, we can define the R-linear map d’;ﬂ : TO(AFTE) — T(AMLTFE) by

k+1 .
Ay, we(X1, .o, Xps1) = D (1 X (@(X1, o, Ay, Xig1)
i=1
S (X X Xy A A Xe)

i<j

for all w € T°(A*F%) and X71,..., Xpr1 € I°(F,) and k > 1. For k = 0 we define
P (A7) = 6(M) 5 f 5 (X s X(f)) € T%(T7).

d=73Y,d*: T®(A*F:) — IT°(A*T1F?) is called foliated de Rham differential. And we obtain
Lemma 2.5.6 The de Rham differential dg, has the following properties

(a) d(a A B) =da B+ (—1)Fa AdB for all « € T®(A*TE) and T°(ATE).
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(b) d®> =0.
Lemma 2.5.7 The two form w, € T°(A2F%) is closed, i.e. dg_w, = 0 and we have

{f’g} = Wﬂ(Xfa Xg)'

Moreover, the inverse w™ € T°(A2F,) is given by m under the canonical inclusion v: Fp — TM.
PrOOF: Let f,g € 6°°(M), then we have Xy, X, € I'*°(F;) and hence

w(Xp, Xg) = ¢(X))(Xy) = m((X). dg) = — dg(n*(6(X))) = — dg(Xy) = {/. g}

It follows for f,g,h € €°°(M) that

g, wr(Xy, Xg, Xn) = 2({f:{g, h}} = {9, {f, h}} + {h. {f, 9}}) = O,

because of the Jacobi identity. Since Hamiltonian vector fields span JF; at every point, the claim is
proven. Let us now denote by wy! € T°(A%F,) denote the tensor, such that (w; ") ow? = idg_, then
we have for f € 6°°(M) that df|,Jr = w’(X;) this means

df ® dg(wy") = df ((wr')(dg)) = df (Xg) = {f, 9}
and by the definition of the Poisson bivector field. O

Corollary 2.5.8 Let F C TM be a regular foliation. There is a one-to-one correspondence between
foliated symplectic 2-forms w € I'°(A%2F?) and regular Poisson structures with T = F.

The associated foliated symplectic form has a very nice connection to the symplectic forms on the
symplectic leaves:

Lemma 2.5.9 Let (M, ) be a reqular Poisson manifold, let w, € T°°(A2F%) the associated foliated
symplectic form and let 12 S — M be a symplectic leaf. The symplectic structure wg € Q%(S) is given

by
ws(Xp, Yp) = wr (T Xy, TptYp)

PRrOOF: We use Theorem [2.4.14F Let f,g € €°°(M) and let { -, - }s be the Poisson structure associ-
ated to wg. Then we know that

[’*{fv g} = {L*fv L*Q}S
and thus
ws(Xoep, Xiwg)|, = {1 f. " g}s(p) = {9} (p) = " (wr(Xp, X)),
= wr(Xy(u(p)), Xg(t(p))) = wr(Tpe Xy g, Tpt Xyxg).
Since the Hamiltonian vector fields span the tangent spaces 7},S point-wise, the claim is proven. [

This means, to some extend, we can use symplectic techniques for regular Poisson manifolds in
the sense that we can just replace the tangent bundle with F;. Our last aim is to show that there is
a partial connection for which the symplectic form is parallel.

Definition 2.5.10 Let (M, ) be a regular Poisson manifold. A partial connection on Fr is a bilinear
map V7™ : T°(Fr) x I®(F;) = I (F), such that
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() VixY = fVLY
(b) Vify=X()Y +fVkY
(¢) VRY = VX - [X,Y] =0
for all X, Y € T'°(F;) and f € 6€°°(M).
Lemma 2.5.11 There exists a partial connection on F .

PROOF: Let us choose a fibre metric g on F;. We define implictely
1
9(VRY 2) = 5 (X(9(Y, 2)) + Y(9(X, 2))) = Z(9(X,¥)) + g(IX. Y], Z) — 9([Y: 7], X) — g([X. Z),))

for X,Y,Z € T'°°(F,). To prove that this operator is well-defined and has peroperties (a)-(c) is an
exercise. (]

Having a partial connection V7, we can immediatly extend it to I'*°(A*JF;) by demanding a
Leibniz rule on A-product:

V(Y AZ)= (VERY)AZ+Y A(VLZ)

for X,Y,Z € T'°°(F;). Moreover, it induces always a dual connection by demanding a Leibniz rule
on insertions:

xa(Y) = X(a(Y)) - a(VXY)
for X, Y € I'*°(F,) and o € I'>°(F%). We also can extend it by
Vi(anpB) = (Vxa) AN +an(Vip)

for X € I'°(F,) and o, B € T™(F%) to I'°(A*F*). For a foliated k-form y € T'°(A¥F*), we have
then

VNX’y(Xl, .. ,Xk> = X(’y(Xl, . ,Xk)> — ’y(V}Xl,XQ, e ,Xk) — e — "y(Xl, e ,kal,v&Xk).

Lemma 2.5.12 Let (M, ) be a reqular Poisson manifold and w, € T°°(A2F%) the associated foliated
symplectic form. Then there exists a partial connection V™, such that

Swr=0 and Vim=0
for all X € T°(F;).
PROOF: Let us choose any partial connection V7, then we define implicitly
wn(VLY, Z) = wr(VTY, Z) + %v&wﬂ(y, 2) + évgww(x, 2)

for X,Y,Z € I'>°(F,). We first have to check that it is in fact a partial connection: let f € €°°(M)
and XY, Z € T'*°(F,), then

- 1. 1.
wr(V%fY, Z) = w (VX fY, Z) + §V}wﬂ(fY7 Z)+ gv}rywﬁ(X, Z)

=Wl XY + JVRY, 2) + F(595wn(,2) + 5 ¥Fywn(X, 2))
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= wn (X ()Y, 2) + J@n(VEY. 2) + 5V5wn(Y, 2) + 5 ¥Tyen (X, 2)

= wr(X()Y, 2) + fwr(VXY, Z)
= wr(X(N)Y + VXY, Z).

Since theis equality holds for all Z and w is non-degenerate, it follows that V% fY = X (f)Y + VLY,
similarly we can see that V7Y = fVXY. Let again be X,Y, Z € I'°°(J;) given, then

wr (VLY = VX, Z) = wr(VXY, Z) — we(VPX, Z) = wr (VXY — VI X, Z)
=w,([X,Y],2)

and henceforth also VY — VI X = [X,Y]. The most important property is that V5w, = 0, which
follows since

Ywr(X,Y) = X(wr(Y,2)) —wr(VXY, Z) —wr (Y, VX Z)
= X(wr(Y,2)) = wr(V5Y, 2) — 3 ¥%wn(¥: 2) ~ 2VFwrn(X, 2) + we(V5 2, V)
+ %@&wﬂ(z,y) + %@}wﬂ(x,y)
= Viwn(Y,2) ~ 1 9%wn(Y, 2)  SVfwn(X, 2)
+ %mwﬁ(z, Y) + %@gwﬁ(x, Y)

1 N R
= - (Viw:(Y, Z) — Viwr(X, Z) + VZwr(X,Y))

3
1
= g(dgﬂwﬂ(X, Y, 7))
=0.
The last claim, V57 = 0, follows directly from Viw; =0 and 7 = wrl. O

2.6 Lie group actions, moment maps and phase space reduction

Throughout the whole section we assume that all Lie group actions are free and proper, which means
that a reasonable quotient space (as a manifold) exists.

Definition 2.6.1 Let (M, ) be a Poisson manifold and let ®: M x G — M be a Lie group action.
The action is called Poisson, if the map ®g: M > m +— ®(m, g) is a Poisson map for all g € G.

Lemma 2.6.2 Let &: M x G — M be a Poisson action on (M,w). Then there exists a unique
Poisson structure mg on M /G such that the canonical projection is p: M — M /G is a Poisson map.

PROOF: We can identify ‘6°°(M/G) = €>°(M)¢ := {f € €°(M) | ®;f = f for all g € G} and thus
we get that for f,h € €>°(M)%

Ou{f, b} = {®yf, ®1h} = {f, h}.

This we get a Poisson bracket on €*°(M/G). Note that p*: €*°(M/G) — 6€°°(M) conicides with
with the identification €>°(M/G) = €>(M)%. O
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Note that one can say very few about the structure of g even having a full knowledge of 7, which
is illustrated by the following example

R:GxG>(h,g)—~hgeqG

is a Lie group action. By exercise 4.3 we see that for all ¢ € G the map TV R,: TG — T*G is a
symplectic map and hence a Poisson map (since it is a diffeomorphism). Moreover, we have

TyR. = T,idg = id7+¢
and
TRy o TuRp (o) = Th Ry () © TrngRy—1 = g, 0 Ty Rpy—1 0 Tipg Ry
= ag 0 TyngRipg)-1 = Ty Rpg(arg;).
and hence T, R defines a Lie group action (which is free and proper). One can show (Exercise!), that
p: TG - T*G/G = g*

is a Poisson map with respect to the KKS-Poisson structure on g*. This means in turn that even
starting with a symplectic structure, one can arrive by taking quotients to a Poisson structure with
non-constant rank. Also from the physical point of view this does not make too much sense, since if
we start with symmetry of the configuration space and our phase space is the cotangent of the latter,
we want to arrive the cotangent bundle of a new configuration space.

Definition 2.6.3 Let (M, n) be a Poisson manifold and let ®: M x G — M be a Poisson action. A
map J: M — g* is called moment map, if

(a) Jo®y=AdjoJ forallgeG.

(b) En = X, for all x € g where J(&) € 6€°(M) is given by J(€)(p) = J(p)(€).

An Poisson action admitting a moment map is called Hamiltonian.

Lemma 2.6.4 Let (M, ) be a Poisson manifold and let ®: M x G — M be a Hamiltonian action
with moment map J: M — g*.

(a) {J(€), T(m)} = J([& )
(b) J: (M, ) — (", "kKs) is a Poisson map.
Example 2.6.5

(a) Let (M, ) be a Poisson manifold and let H € 6°°(M), such that Xz has complete flow <I>§(H.
Then ®: M x R — M with ®(m,t) = ®;(m) is a Poisson action with moment map H.

(b) Let G be a Lie group with Lie algebra g. The coadjoint action Ad*: g* x G — g* is a Poisson
action with respect to the KKS Poisson srtucture. Moreover, it is Hamiltonian with moment
map id: g* — g*.

(c) Let ®: M x G — M be a Lie group action, then the cotangent lift T, ®: T*M x G — T*M is
a Poisson action. Moreover, the map

J: T*M 3 o — ap((e)mr(p))e’ € g*

turns 7,® into a Hamiltonian action.
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A Hamiltonian action is compatible with the foliation of a Poisson manifold.

Proposition 2.6.6 Let (M, ) be a Poisson manifold, let ®: M x G — M be a Hamiltonian action
of a connected Lie group with moment map J: M — g* and let v: S — M be a symplectic leaf.

(a) The action ® restricts to an action ®g: S x G — S, i.e. Pg is a Lie group action, such that
L(q)S(Sa g)) = (I)(L(S)a g)
(b) The map Jg: S — g* given by Js(s) = J((s)) turns ®g into a Hamiltonian action.

PrOOF: We consider the fundamental vector fields £ps. Since J: M — g* is a moment map, we have
Ev = Xj(g). We define

g == st(g) firalle { € g

an thus we have &g ~, &)y for all € € g. This means in particular, that the distribution which is
spanned by the fundamental vector fields through ¢(s) is contained in T«(7'S). Due to Lemma[2.4.16

this means that the orbits are contained in ¢(S). The restriction of the action is also smooth since
smoothness is a local property and locally S is embedded. U

Remark 2.6.7 Note that even if we can restrict a Hamiltonian action to a symplectic leaf due to
Propostion [2.6.6] the restricted action might not by proper anymore. Nevertheless, it will still be free.

The existence of a moment map to a given action is not always clear, but it is clear that a necessary
condition is that the fundamental vector fields have to be tangent to all the symplectic leaves.

Proposition 2.6.8 Let (M, ) be a symplectic manifold with Poisson action ®: M x G — M of a
connected Lie group. If HcliR(M) = 0, then there exists a moment map. Moreover, the difference J',
of two moment maps J and J' is locally constant taking values in (g*)©.

PRrROOF: Since the fundamental vector fields are in particular Poisson vectorfields, there are, using
Lemma unique closed 1-Forms o, such that &y = ﬁﬁ(ag). Moreover, since

w(aad,e) = (Adg &)n = Ppénr = Py (ag) = 7 (Dhae),

we get ®rag = aaq,¢. Moreover, the map g 3 § — a¢ € QY(M) is linear. We choose a basis
{e;}icr of g and since H}iR(M) = 0 we can find J; € €°°(M), such that dJ; = a.,. We define
J: M >mw— Ji(m)e' € g*. Note that this map is not equivariant so far, but with standard averaging
techniques for proper actions, we can find a J being equivariant having the same derivative.

Let now J and J’ be two moment maps, then

m(d(Jg — Je) =&m —Eu =0

and since 7 is non-degenerate, we get that d(.Je — Jé) = 0 and hence it is locally constant. In particular
we have on a connected component of M we define J — J' = « for a € g*. Therefore,

a=J(m)—J'(m) = J(®g(m)) — J(Dg(m)) = Ady(J(m) — J'(m)) = Adj a,
since G is connected, we have that ®,(m) and m are always in the same connected component. [

Remark 2.6.9 It is clear from the proof Propisition that for general Poisson manifolds it is a
non-trivial task to decide if a given Poisson action is Hamiltonian or not.
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Theorem 2.6.10 (Noether) Let (M, ) be a Poisson manifold, let ®: M x G — M be a Hamilto-
nian action with moment map J: M — g* and let H € €>°(M). The functions J(€) are constant
along the flow lines of Xp.

PRrROOF: We have
Xu(J(€) = =X (H) = ém(H) =0

and thus
d A d

PG

T O (X (J(€)) = 0. O

A moment map does not only provide conserved quantities, but also allows us to get rid of
unnecessary “un-physical” variables. In the geometric setting this was obtained by Marsden and
Weinstein in the symplectic case and by Ortega Ratiu in the Poisson case. Both cases are more
general than the one presented here.

Theorem 2.6.11 (phase space reduction) Let (M, ) be a Poisson manifold, let ®: M x G — M
be a Hamiltonian action with moment map J: M — g*. If 0 € g* is a regular value of J, then

Myea == J71({0})/G
s manifold which admits a unique Poisson structure m..q, such that

{1 gy =S, Ghrea,
for M & J=1({0}) L Myeq and frg € €°(M) and f,§ € €°(Myeq), such that *f = p*f and
Vg =g

PrOOF: Let m € J~1({0}), then J(®4(m)) = Ad’ J(m) = 0 and hence G restricts to an action
on C. G acts free and proper on M and since J_f({()}) — M is embedded, it also acts free and
proper on J~1({0}) and there is a unique smooth structure on M,eq = J1({0})/G turning the
canonical projection p: J~1({0}) — M,eq into a surjective submersion. Let f,g € 6°°(Myeq) then
p*f,p*g € €°(J1({0}))E morover let f,§ € 6°°(M) such that o*f = p*f 1*§ = p*g. We define

(0" 1,0 g} rea = { . 3}
and note that for *h = 0, we find h? € €°°(M), such that h = h'J(e;) and hence
Hh, g} = (R g3 () + W' {J (e0), 3}) = R T (e:), 3} = =P (e (§) = R (ei)o ().

Since 1*§ = p*g € €>°(J1({0})), we get that t*{h,§} = 0 and the bracket { -, - };oq is well defined.
Moreover, we have for all h € G

() (P f, 0" Ghrea = (®F) " {[, 5} = @4 {f. 9} = {®}, ], 949}

But L*q);;f = (@g)*ﬁf’ = (fbg)*p*f = p* f and hence we get that {p* f, p*g}req is G-invariant for every
f,9 € 6€>°(M,eq), which means in particular that using the ismorphism 6>°(J~1({0})% = 6°°(Myeq)
we get a bracket { -, - }1eq 0n Mieq. One can chek, that using the definition that it is indeed a Poisson
bracket and is also the only possible choice by construction. ([

Lemma 2.6.12 Let (M, x) be a regular Poisson manifold, let ®: M x G — M be a Hamiltonian
action with moment map J: M — g*. Then the Poisson structure meq on Mieq s also reqular and
moreover, we have that rank(ker ﬂ-rﬁed) = rank(ker 7). In particular, if 7 is symplectic then so is Tyeq.



36 CHAPTER 2. P0I1SSON GEOMETRY

Proor: Let ¢ € J~1({0}), then we can choose a splitting T*M = E @ Ann(TC), such that ker 7* . C
E, since Ann(7T.C) = <dj(§)‘c> and nﬁ(j(g){c) = &u(e) and since @ is a free action we get that

Wﬂ‘A is injective. Moreover, we have that £ = T*C Let « € ker ’/Tﬁ‘ C E, then we have that
nn(7.C) ¢ c

a(éu(e)) = a(r*(dJ(€)) = — dJ(E)(r*(a)) = 0.

This means in particular that there exists a unique 8 € T;(C) Meq, such that o« = 8o T.p. We choose
an f € 6°°(Meq) such that df‘p(c) = (3, and moreover we can find f € €°°(M), such that .*f = p*f,

moreover we can choose [ in such a way that df’c = a. Now we find that for g € 6°°(Myeq), we have
—dg| o) (TFea (A | ) = £, Ghealp(e) = *{F,3}(e) = —dgl (x*(df],)) = 0

for an arbitrary g € €°°(M) with +*§ = p*g. Since df‘p(c) = 3, we get that g € ker wrﬁed. Moreover,

we have shown that the map x: ker ﬂ-ged}p(c) 3 B+ Bolp € TFXC = FE is injective with image ker Wﬂ{c.
And the claim is proven. O

Remark 2.6.13 There is a slightly more involved proof of Lemma [2.6.12] which roughly speaking
goes as follows: one considers the subbundle ¥ = im 7! and defines

Fo =TCNF|, CTC,

where C := J~1({0}) This is a regular involutive distribution on C together with morphism

Fo —L 4 7

|

C ‘L5 M

such that I*: I'°(A*F*) — I'*°(A*J}) is a cochain map. The one shows that there is a regular
involutive distribution F.eq € T'M;oq and a morphism

7L 7.4

I

C L> Mred

such that P*: T'°°(A*JF¢) — I'°(A®T7,,) ic a cochain map. The foliated symplectic structure on Meq
is now a non-degenerate closed foliated 2-Form wyeq € I'°(A®TF7,), such that P*wyeq = [*w, where w
is the foliated symplectic 2-Form induced by .



Chapter 3

Formal Deformation Quantization

After having discussed the basics of Poisson geometry, we want to understand deformation quanti-
zation. But before we want to motivate the idea behind and to do so we have to clarify what a
quantization is. Quantum mechanics describes the world on a very small scale very well, but in
daily life we do not see quantum effects directly and it is for the motion hardly of importance of
macroscopic objects. This is what is called a classical limit, i.e. the quantum mechanical description
of a macroscopic system should be close to its classical description. The physical parameter which
“measures” the ratio of the difference of classical and quantum description is the Planck constant A.
To summarize, admittedly over-simplified, we have

Quantum theory "0, Classical theory.

A quantization @ is now a right inverse to the classical limit # — 0. We argued already in Chapter
that classical theories are linked with Poisson geometry and this will be our starting point:

Poisson geometry 9 997,

To understand what we should expect, we list now the important issues of classical and quantum
mechanical despription (we choose the Heisenberg picture):

Classical Quantum
Poisson subalgebra sfy; C €°°(M) | subalgebra @gy C Operators on a
Observables on a Poisson manifold (M, ) Hilbert space H
E;r;le evolu- Hamiltonian function H € #: Hamilton operator He Agm:
Sr@) ={ft), H} FA@) = AW, H)

With this in mind we can formulate what we expect from a quantization, which is summarized in
a wishlist:

e () should be a linear map from ¢/ (usually we have to take €°°(M ), sicnce there is no distin-
guished Poisson subalgebra on a general Poisson manifold) to dgs.

o lim; 0 Q(f) = f
e Q(H) = H
e [Q(),Q(9)] =irQ({f,g}) +0(1?)

37
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Where we added the term O(A?), since one can show that in easy examples this map can otherwise
not exist (Exercise!).

Formal deformation quantization was developed by Bayen, Flato, Fronsdal, Lichnerowicz and
Sternheimer in their seminal work |1]. The idea is following the motto:

“We suggest that quantization be understood as a deformation of the structure of the algebra of
classical observables,rather than as a radical change in the nature of the observables.”

— Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer

We will discuss their ideas in this chapter and make precise what this quote means.

3.1 Differential Operators on manifolds

Differential operators are actually algebraic objects definable for any (commutative) algebra over a
field k. We define them in full generality and show afterwards, that in our setting they look exactly how
one thinks of differential operators. To do so let us start with an obvious operation on a commutative
algebra #: let a € o, then we define

lo: 4 2b—abe 4.

Definition 3.1.1 Let o be a commutative algebra. Then the vector space DiffOp™*) (s1) C Endy(s4)
is recursively defined for k > —1 by DiffOp(~Y(«¢) = {0} and

DiffOp**Y(ef) := {D € Endy(A) | [la, D] = l,D — DI, € DiffOp® (s4)}.
We have DiffOp* Y (o) D DiffOp™ (s4) for all k > —1 and hence we set
DiffOp(s4) = | ) DiffOp™ («4).
k=0

We know now from this definition, that for D € DiffOp(#/), there is a k € N, such that D €
DiffOp™*) (s1). We call
o(D) = min{k € N | D e DiffOp*¥)(#)}

the order of k.
Corollary 3.1.2 Let o be a commutative unital algebra, then
(a) s 3 a1, € DiffOp°(sd) is surjective.

(b) for Di, Dy € DiffOp(o) their concatenation Dy o Dy € DiffOp(o). Moreover, o(Dy o Dy) <
O(Dl) + O(Dg).

ProoF: Exercise. O

For a later use we introduce

Definition 3.1.3 Let o be a commutative of. A bilinear map B: o x o — o is called bidifferential
operator of order (r,s), if for every a € A, we have that

o the map Ly: A b+ B(a,b) € o is a differential operator of order s, and

e the map R, : A b+ B(b,a) € A is a differential operator of order r.
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We denote the set of bidifferential operators of order (r,s) on ¢ by BiDiffop"™*) («4).

We are mainly interested in the algebra of smooth functions on a manifold, so let us prove a local
structure theorem for differential operators, which justifies the nomenclature:

Theorem 3.1.4 Let M be a manifold. For D € DiffOp*(M) := DiffOp* (€>°(M)), we have

(a) supp D(f) C supp f and for every open subset U C M there exists Dy € DiffOp*(U), such that
for all f € €°°(M) we have

(b) that for a coordinate chart (U, x), we have for f € €°°(U)

T inin o f
DU(f)ZZﬁDUlm 9z - - - Oir
r=0

for local functions D&;"’i" e 6>=().

Proor: We proof (a) with induction: for k = 0 the statement is clear, since DiffOp®(6°°(M)) are
exactly the left multiplications with functions. So let us assume that the statement is true for all
k < N and let f € 6€°°(M) and let z9 € M \ supp f, then there is a function p € €°°(M) with
p(zp) = 0 and p‘suppf =1 and it follows pf = f. We have for D € DiffOp” (M)

D(f)(x0) = D(pf)(z0) = p(x0)D(f)(x0) — [p, DI(f)(x0) = =[p, DI(f)(x0) = 0,

where the last equality follows from the fact that [p, D] is a differential operator of order N — 1 and
the first statement fromn (a) follows. The proof of the second statement follows the same lines as the
proof of Proposition [2.1.6] The proof of part (b) is an exercise. O

Example 3.1.5 (a) One first immediate example are the vector fields on a manifold. In fact, the
Leibniz rule shows that they are differential operators of order one.

(b) The Laplace operator A, induced by a Riemannian metric g is a differential Operator of order
2.

Theorem showed that differential operators are local operators, which is not very surprising
concerning how one would imagine a differential operator. There is also a remarkable theorem by
Peetre, which states that every local operator looks locally like a differential operator (Note that this
does not imply it is a differential operator.)

Theorem 3.1.6 (Peetre) Let D: 6€°°(M) — 6€°°(M) be a linear local operator. Then for each point
p € M there exists an open neighbourhood U, such that D‘U 15 a differential operator.

We are not going to show this theorem in this course, it is just helpful to justify late choices.
As a last part of this section and a first application of Theorem [3.1.4] we prove a local structure
result for Bidifferential operatorsd on a manifold.

Theorem 3.1.7 Let M be a manifold. For B € BiDiffop™*) (€>°(M)), we have

(a) supp B(f,g) C supp fNsupp g and for every open subset U C M there exists By € BiDiFfop(r’s)(U),
such that for all f,g € 6€°°(M) we have

B(fvg)‘U = BU(f‘Uag‘U)'
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(b) that for a coordinate chart (U,x), we have for f,g € €>°(U)

r S
L im0 omg
By(f,g9) = Z Z MB&;W’; HERTR

n=0m=0
for local functions By 70 7m € €°°(U).

ProoF: Let f,g € 6°°(M), then we have that B(f,g) = Ls(g), which is a differential operator and
thus we get by Theorem that supp B(f, g) C supp f. Since we also have that B(f,g) = Ry(f),
we get also supp B(f,g) C suppg. We can now use the same arguments as in Theorem in order
to show the existence of By for open subsets U.

We work now in a chart (U,x), we denote by Ly and Ry the corresponding operators of the
restricted bidifferential operator By;. Using again Theorem we see that for f € €°°(U) we have
that Ly is a differential operator of order s and hence

1 o
— J— j1,...jm
Ly = Z m!(Lf)m dxIr ... Qxim
m=0
in a chart (U,z). With an induction one can see that

k
L 7 1 E § (. L plo(m [ o(m+1)s-to(k)
f(:rlmxk)_ m'(ki —m)!x © atrm( f)k—m

m=0c€S}

k
01 ,...7 1 ) 3 io m 7-'-ia
= (Lyg)™ + g E mmlm) o ghom) (L) om0 o)

m=10c€Sk

which means, that we can write all (Lf)?"”i’“ as €°°(U)-linear combinations of Lg(z" ---z%), such
that the coefficient functions are independent of f. We have that the map

C°(U) > frs Lp(a"---2") = Riy._i, (f) € €(U)

is a differential operator of order r and hence we get the claim. (]

3.2 Formal Deformations and Star Products on Poisson Manifolds

The idea of deformations goes back to Gerstenhaber in a series of papers [5-7] where he discusses
deformations of algebraic structures. For an algebra the precise definition of a deformation is the
following:

Definition 3.2.1 Let o°® be a unital (graded *) commutative algebra over a field k. A formal defor-
mation is a formal power series >, W¥uy of k[[R]]-bilinear maps py: A[[R]] x A[[h]] — [[Rh]], such
that

(a) axb:=>", B¥ui(a,b) is an associative product on «[[h]].
(b) axb=ab (mod h) for all a,b € A

(¢c) 1xa=a%1=a forac A[[h]]

(d) axbe A [[h]] for all a € A*[[h]] and b € A*[[R]] ()
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Remark 3.2.2 For the moment we can ignore the graded version of Definition and consider
only trivially graded commutative algebras. This graded version is not much more difficult than the
trivially graded version and it will be needed in a later stage of this lecture.

Let us, before we go towards the differential geometric picture, give a first important example:

Example 3.2.3 (Commuting derivations) Let o/ be a commutative algebra over k, let {D; }icq1,.. v}
be a finite set of commuting derivations and let 7 ek for 1 < 1,7 < N. We define:

M:d @d >a®br 79D;(a) ® D;(b) € @4 @ o

and finally
. Sl T o
axb= M(erTH(a ® b)) = Z 2Tk'7['“]1 .. .WzkjkDil .. le(a)Dj R Djk(b)
k=0 '

This is a formal deformation of the algebra «. (The proof is an Exercise!)

Let us show the significance of formal deformations with respect to Chapter
Lemma 3.2.4 Let o be a commutative algebra and let x be a formal deformation, then

axb—>bxa
fo,b} = R

for a,b € o is a Poisson bracket on sd. We call {-, - }« the classical limit of x.

PRrROOF: {-, -} is obviously skew-symmetric. Let us denote by [, -]. the commutator with respect
to x. Since % is an associative product, we know that

[a,b*cl, = [a,b]x xc+bx[a,c].

for a,b,c € 9. Evaluating this in order 1 (of &), we get that {a,bc}, = {a,b}.c+ b{a,c},. Moreover,
again since * is associative, we see that

[aa [b’ C]*]* = Haa b]*a C]* + [ba [CL, C]*]*a

for a,b,c € 9. evaluating this in order 2, we obtain the Jacobi identity for { -, - }, and the claim is
proven. ([

If one has a formal deformation ), I*py, of an associative algebra o, the associativity of the
product is encoded in order i*F by

k k

Z pi(pk—i(a, b), c) = Z pi(@a, pr—i(b, c)).

=0 =0

for all a,b,c € o. If this equation is fulfilled for all & < N, we say that >, ¥y, is a formal
deformation up to order V.

So one can try to make the following Ansatz: starting with a Poisson algebra (#,{-, -}), we
define

h
axb=ab+ §{a,b}.
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this is a formal deformation up to order 1, because of the fact that { -, - } is a biderivation. so we can
try to find po in order to make it a formal deformation up to order 2, which means that

pa(ab, c) + i{{a, b}, ¢} + pa(a,b)e = pa(a, be) + %{a, {b,c}} + apa(b, c)

has to hold for all a,b,c € o and already in order 2, we see that this might be a highly non-trivial
task. Note that a necessary condition for such a ug to exist, is the Jacobi identity of {-, -}, see
the proof of Lemma but this condition is not for every algebra sufficient and in fact, it is not
sufficient for the algebras we are interested in this course: we already argued that the algebra we want
to deform for quantization is €°°(M) for a manifold M. In fact, this step-by-step procedure works
here only if dim(M) < 2.

We do not only want arbitrary deformations, we want to make the structure of our specific algebra
visible, i.e. we impose differentiability and hence also locality:

Definition 3.2.5 A star product x on a manifold is a is a formal deformation Y, F¥ g of €°°(M),
such that py, is a bidifferential operator for all k.

Remark 3.2.6 The products defined in are sometimes called differential star products to em-
phasise that they are series of bidifferential operators. In fact, the only known general constructions
produce differential star products. Since we are only dealing with these kinds of star products we
omit the additonal term “differential”. Note that a star product induces now a Poisson bracket on a
manifold and this does not depend on the differentiability of the star product anyway.

As a first example of a star product, we can use Example : let p" be an n x n-matrix, we define
P:6°(R")@6°(R") - 6°(R") @ 6>°(R")

by

af dg

P = p¥ = :
(feg) =358 55

then we go on to define the product x,

np gk . ok f kg
— > — 21J1 k]
Trog=ple(f29)= kZOQkk!p SRt kaxil...aajik Oxir ... 0xik’

(3.2.1)

where p is just the point-wise product of €°°(IR™). Additionally, it is immediate that the induced
Poisson structure is given by

{f. 9}e, = %(p” —p’")

or 09
ozt OzJ’

which is the Poisson structure associated to a constant skew-symmetric matrix from Obviously
we used a lot of properties of the flat R", for example the exisence of non-trivial global derivations,
in order to define this product which are not available in the general geometric picture on a manifold,
so there is no hope to just globalize this product for smooth manifolds, since Poisson structures can
have rather wild local behaviour.

Inducing a Poisson structure via a formal deformation of the smooth functions on a manifold can
be understood as the classical limit of a quantum system, as we already discussed in the introduction
of this chapter. Starting from a classical system, i.e. a Poisson manifold, we want to make precise
what we mean by quantization:
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Definition 3.2.7 Let (M,{-, -}) be a Poisson manifold. A star product x is called formal deforma-
tion quantization of (M, {-,-}), if {-, -}« =1{",  }.

Remark 3.2.8 Assume that x is a formal deformation quantization of (M,{-, -}), then we have
trivially that the canonical map

Q: 6>(M) > f— fe€™(M)[[h]
is a quantization map in the sense of the wish-list in the introduction.

The question which arises now is: Does every Poisson manifold admit a deformation quantization?
In fact, the answer is yes and was fully answered by Kontsevich in his seminal paper [9]. His methods
use a lot of different techniques from various areas of math and is not easy to understand. A more
conceptual proof followed by Tamarkin in [11], but this proof uses even more techniques and is harder
to understand.

Nevertheless, there are constructions of star products which are formal quantizations of certain
non-trivial Poisson brackets which do not use a lot of machinery, which we will see in the next two
sections.

3.3 Lie algebras and the Gutt Product

The Gutt product is a quantization of the KIKS-Poisson structure associated to a real finite dimensional
Lie algebra. It was one of the first star products ever to be constructed in 8], besides the star product
for constant Poisson structures.

Its construction is rather algebraic, so we need beforehand some construction from algebra. Note
that to every associative algebra o, we can associate a Lie algebra by taking commutators, i.e.

[a,b] := ab — ba
for a,b € o defines a Lie bracket on «f. Let us denote this Lie algebra by /..

Definition 3.3.1 Let g be a Lie algebra. A universal enveloping algebra for g is a pair (U, 1) consisting
of an associative algebra U and a Lie algebra morphism map v: g — Ur with the property that for
every associative algebra o with o Lie algebra morphism ¢: g — o there exists a unique algebra
morphism ®: U — o, such that

U—2- o
LT /
¢
g
commutes. This property is called the universal property of the universal enveloping Lie algebra.

Note that it is not clear that this object exists, but with the definition we can already prove its
uniqueness:

Proposition 3.3.2 Let g be a Lie algebra and let (U,1) and (U, £) be two universal enveloping algebras,
then U ~ U as algebras.

PROOF: We see from the universal properties of U and U , that we get the commutative diagram

2 I

g
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Bu this means, that we have an algebra morphism I o I, such that c = I o Io ¢, which is clearly also
fulfilled by id: U — U and by the uniqueness of the morphism from Definition we get [ol =id.
Exchanging the roles of U and U, we also get [ o [ =id. (|

This proposition shows that the universal enveloping algebra is unique and we can speak of the
universal enveloping algebra. Nevertheless, we still have to show that it exists

Theorem 3.3.3 Let g be a Lie algebra, then

T(g)

O = oy res -l

together with the canonical map v: g — T'g — U(g) is a universal enveloping algebra.

PROOF: By definition % (g) is an associative algebra and ¢(x) = T (here =~ means taking the equiva-
lence class) and hence

Wz, y]) =[xyl =2@y —y®@x =775 — T = 1(x)(y) — t(y)u(x).

Let now & be an associative algebra and ¢: g — o be a Lie algebra morphism, then we define
d:Tg— A

(1 ® -+ @ ap) = P(1) ... P(w)

which is clearly an algebra morphism. Moreover, since ¢: g — Ay is a Lie algebra morphism, we get
that (t® y—y® x — [x,y])2,yeg C ker & and hence we get an algebra morphism ®: U(g) — o/, such
that

Tg —* 5 o

l/

commutes and hence also

U(g) —2 o
e
g

Let us now prove that ® is unique: we assume that there is @' fulfilling the same property than @,
then we have

1@ @ap) = (@7 =V (T -V (@TF) =@ O(TH) =P © - @ )
and since elements of the form 71 ® - -+ ® xy generate U (g) as a vector space, we have that ® = &'.0J

We can use from now on %(g) as a model for the universal enveloping algebra, i.e. if we write
AU (g) we refer to the quotient construction above and not just its isomorphism class. This precise
model has a canonical filtration: we define

%(9)(k):span{$1®---®$é |xi€g, 0<{<k}CUA(g).

We clearly have that % (g)*) C U (g)(™), whenever k < m and moreover U(g) = |J, U (g)*¥). Note
that this is even compatible with the algebra structure, i.e. U(g)®) - A (g)™) C q(g)k+m). Let us
now prove the so-called Poincaré-Birkoff-Witt theorem which relates the universal enveloping algebra
to an algebra we know already
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Theorem 3.3.4 (Poincaré-Birkoff-Witt) Let g be a Lie algebra. The map

qk:SkQle\/ \/wk'_)klzx To(k) EGU( )()
€Sk

sums up to an isomorphism q =Y ;- qi: Sg — U(g) of vector spaces. Note that we set qo to be the
identity.

ProOOF: The key point in the proof is to see that for

$1®"'®$k*$1®"-®Ii71®$i+1®$i®$i+2®...®:L‘k66”(9)(k_1)

for all i € {1,...,k — 1}. This implies that qz(z1 V- -V ap) — 21 ® --- @ 2 € U(g)*~1). We show
now by induction that

> a: P Sta— u(e)™
k=0 k=0

is an isomorphism for all n. For n = 0 the claim is true by definition. Let u € U%(g)"*Y, then we
can find :L‘; egforie{l,...,N} for some N and and j € {1,...,n + 1}, such that

=Y @i @@l € U™
and thus

X=u— Z%H(fﬁi Ve V)

=u—Y @@+ PO @k — qar(a] V-Vl ) €U
i :

By Induction hypothesis we can find V € @} _,S*g such that > }_;qx(V) = X and ZZ+(1) qr is
u(g)™)

surjective. To show that the map is injective, one shows that S"g ~ ) =D

(Exercise!).

Let us now denote the canonical projections py: Sg — S¥g.
Theorem 3.3.5 The k|[[t]]-bilinear extension of

k+0—1
xq: S*g x S'g3 (f,9) Z W pre—ng” ' (a(f) - a(9)) € So[[t]]

is a formal deformation of Sg with the symmetric product. We call xg the Gutt product.

PrOOF: We have 1x¢ f = fxg1 = f for all f € Sg by definition. Moreover, with the same arguments
from the proof of Theorem one see that q(f)-q(g) — q(f Vg) € U(g)* =1 and hence we have
f*xcg=fVg+O(h). Let us now show associativity: we choose f; € SFig for i = 1,2, 3, then

ko+ks—1

fixa (foxa fa) =D B fixc (Pryrka—i 0@ )(a(f2) - a(f3))
k2jrkg*1 ki+kat+ks—i—1

S0 Wbk 00 (a(f) - a(prerre—i 0 a ) al(f2) - a(f3))
i= =0
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ko+ks—1k1+ko+ks—i—1
= Z S A pkerkeeicg 04 (@) - APrarre—i 0 ) (a(f2) - a(f3)))
j=—1
ko+ks—1 k1+ko+ksz—1

= 3 Y otttk 0d (@) - aPrprne—i 0 ) (a(f2) - a(f3))
i=0 =0

ki+ko+ksz—1 ' ko+k3—1
= > Wpktkerksi 00 (@) a(C D Pratks—i o Na(f2) - a(f3))))
i=0 =0
k1+152+k3*1 ‘
= > Wpakerke—j o q Ha(f) a(f2) - a(fs))
=0

where we used in * that pyo ¢ ': %(g)(k) — S’g vanishes whenever £ > k. We get the same result

when we compute (f1 *¢ f2) *¢ f3 - O

Note that by construction of xq, it is clear that
TV Tl Z To(1) %G """ *G Lo (k)
€Sk

for all x1,...,2 € g.
Let us denote the series expansion of the Gutt product by

*G = Z hkcm

k>0

where the C,s are bilinear maps. The Gutt product has some remarkable properties with respect to
the adjoint action. Let us first extend the adjoint action ad g x g — g as a derivation of the symmetric
product to Sg, i.e.

ad: g x Sg — Sg
ba declaring ad¢(P V Q) = ad¢(P) V Q + PV ade(Q).
Lemma 3.3.6 Let & € g and let g € Sg, then

(€, 9lee = Nrade(g)-

PROOF: Let ¢ € gand 1V ---V xy € Stg, then we have

q(&)q(z1 V-V xy) = Z E® 2, - ® To(p)
065@

i Z To(1) ® § @ Ta2) @ @Ta(p) + (€, To(1)] ® To2) @ -+ ® To(p))
o€ESy

1
:ﬁzxcr(l)@---@%m@f

’ oc€ESy

¢
1
T ZSZ%U)@“ o(i-1) ® [§:Zo()] @ To(j41) @ - @ To(r)
ceSy j=1
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= Q(wl Ve Vag)q(€)

7 Z Zx 1 ®.. ® £, To(j)] ® To(j41) ® - .- ® Ty(p)
oSy j=1
=q(z1 V- Vx)g()
AN
] Z : Y o) ® - Bo(ion) © (6 To()] ® To(i4n) © . ® To(

l
1
+Z@Z Z ‘.730(1)@...1' [§7 ]®$o-(]+1)® .®JZU(£)

¢
+ZQ($1\/-~,\/$F1\/[fvilfi]\/xiﬂ\/"'\/l‘é)

and the claim is proven by the eplicit formula of the Gutt product. O

Lemma 3.3.7 The Guitt product is a series out of bidifferential operators. Moreover, we have that
Cy is of order (r,r).

PROOF: One can show (see [10] for a detailed proof), that the Gutt product has the formula

k

h
nxg (& V- V&) = Zk( ) 5 Y oy Lo oGyl TV &g VoV o
7=0 oc€SK
where B are the Taylor coefficients of 25 = > "7, k, Lk (or equivalently the Bernoulli numbers).

This means in particular, that
1 /k
Cr(nv ) Sg 26V Vg Kl ( > r Z [50(1)7 [ "7[50(7“)777} - ] vfa(r—i—l) Vo v&a(k) S Sg
oc€Sk

which is a differential operator of order r (Exercise!). We can now use that

(G1V---V&)ragn=nx*ag (& V- V&) —hady(& V- V)

in order to show that C,(-,n): Sg — g is a differential operator of order r for n € g. Let now
mV---Vin €
Sym¥g, then we have

1
(771\/-~-V77k)*GP=E Zﬁa(l)*G---*Gng(k)*P
.O'ESk-

1 - i1t
:E Z Z hﬁ_ +kCil(nU(l)’Ch(nUQ):"'Cz'k<770(k),P)---)
) €Sy 11,...,0,=0

and the claim is proven for general elements in Sg and hence C, is a bidifferential operator of order
(r,r). O
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We are not yet at the point where we have obtain a star product. We can see Sg as the polynomial
functions on g* (Exercise!) so the next aim is to extend the product to €>°(g*).
Apparently, this has nothing to do with the actual shape of the Gutt product:

Lemma 3.3.8 Let V be a finite dimensional real vector space and let D be a differential operator on
SV = Pol(V*) of order k, then we can extend it to a differential operator of €°°(V*) of order k.

PrOOF: Let us choose a basis {€;}ic1,.., vy of V. With the same idea of the proof of Theorem
(we only have one chart!), we can show that

k
1 Uyenyir o
D=3 b
r=0

axil e axir

where we see that all D2 have to be polynomial functions. Now, we are able to extend it trivially
by letting the partial derivatives act on every smmoth function, i.e. for f € €°°(V*) we set

D(f) =Y pin 0

r! dxh - .- Ot
which is clearly a differential operator. U

Using this Lemma, we get immediately

Theorem 3.3.9 Let g be a finite dimensional real Lie algebra and let xg be the Gutt product extended
to 6€°°(g*), then it is a quantization of the KKS Poisson structure associated to g.

PROOF: Let us choose a basis {€;}icq1,., N} With corresponding coordinates (z = x1,...,7x). We
have

{2, 25} = 3(p1a™ (ales)ale;) — ales)aled)) = d(pra™ (alles, e5])) = d([ei e5)) = 2T

where we denote by ij the structure constants of the Lie algebra g and J: Sg — €°°(g*) and hence

8f dg
= ko 2L 2T
{f’g}*c = C@j a,’L‘Z a,f[jj

and the claim is proven. O

The Gutt product shows already that it is non trivial to find star product even in the easy situation
of a vector space with a linear Poisson structure. For quadratic and/or higher polynomial Poisson
structures there is no general way of quantizing them (without using the results of Kontsevich or
Tamarkin), but however recently it was discovered that at least some star products can be obtained
combinatorially in a similar way as the Gutt product.

3.4 Fedosov’s Construction

The original construction of Fedosov included the construction of star products only for symplectic
manifolds (see [3]), but his techniques are so flexible that one can use it for regular Poisson manifolds
as well. It was not the first proof of the existence of star products on symplectic manifolds, this
was given in [2] by de Wilde and Lecomte, but Fedosov’s proof is very constructive, allows even to
classify all symplectic star products and in fact, his techniques where used to globalize the existence of
star products for the case of R? with an arbitrary Poisson structure from Kontsevich to an arbitrary
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Poisson manifold. It is very much inspired by Gel’fand and Fuks’s formal geometry from [4], which
has many applications in differential geometry.

Let us discuss the basic idea behind his construction for M = R?" with coordiantes {xi}ie{l,...,Zn} =

(¢',...,¢",p1,...,pn) together with the standard Poisson structure

1 ,.0 0 0 0

=" = —

-\ — = A .
2" o " Awi oq¢*  Op;

This is clearly a Poisson structure with constant coefficients and thus can be quantized with Equation
(3.2.1)). This idea has no hope to be globalized to manifolds, but there is a way out: let us introduce
formal variables y!,...,4?" and consider €°>°(M)[[y?,...,y*"]], i.e. formal power series in 2n. In
particular, elements of €°°(M)][[y!,...,y*"]] are of the form

0 . .
Z @iy ()Y .yt
k=0

We define now a product o by

aob:zzi”iljl---ﬂi”’“ A —
! z o
k:02 k! Oyl ... Qyix Oyt ... Oyik

Note that this product is 6€°°(M)-linear since the derivatives are only in y-directions and hence far
away from what we want. But we have a canonical map €°°(M) — €°°(M)[[y},...,y*"]] given by
the Taylor expansion:

i_o_ > 10Ff
T(f)=e"27(f) = Z Z ﬁ@yl-
k=0 1eN2" |I|=k =

We can now define

fxg=p(T(f)oT(g)), (3.4.1)

but in order to show that this product is associative, we have to make sure that T'(f) o T'(g) € im T
for all f,g € €°°(M). Taylor series can by characterized by the following equation

g 0
ort Oyt

a=T(f) <= ( Ja=0 forallie{l,...,2n}.

And in fact, one can show that

0 0 0 0 0 0

holds for all 4 € {1,...,2n} and hence Formula (3.4.1) defines an associative product and coincides
with the one we defined in Equation ({3.2.1). The difference is now that this ansatz can be formalized
and applied to arbitrary regular Poisson manifolds.

Throughout the whole section we fix a regular Poisson manifold (M, ) and we denote by F C T M
the associated involutive subbundle and by w the associated foliated symplectic 2-form.
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3.4.1 The Weyl algebra bundle
We consider the 6°°(M )-module

W = ﬁrm(sis*).
=0

Note that there are definitions of pro-finite dimensional vector bundles in differential geometry, where
the above €°° (M )-module is the space of smooth sections of a vector bundle in this sense. Neverthe-
less, for us this doe not matter at the moment.

We have an obvious commutative multiplication on W, which is given by the symmetric product

WxWs (P,Q)— PVQeW,
which is compatible with the € °° (M )-module structure Moreover, we consider
0o
W A® = [[T(S'F @ A°F¥)
i=0
with the product
pWRAXWRAS(PRa,Q@B)—PVQR®aAfeWe A
This product is graded commutative with respect to the anti symmetric degree, i.e.
a-b:=pla,b) = (=D ub,a) = (-1)*b-a
for a € W® AF and b € W® A’. Let us denote for a section X € I'*°(F) the insertions
E(X)(P®a)=1x(P)®@a and i(X)(P®a):=P®ix«
for P a € W® A®. We want to keep track of different gradings and hence, we introduce:
deg,,deg,: WR A - W® A®
by

deg,(P® a) = k(P® «a) and
deg,(P® a) = (P ® a)

for P® a € T®(SFF* @ ACF*).
Lemma 3.4.1 The maps degg,deg,: W® A®* - W ® A® can be realized in a local trivialization by
deg, = (¢! ® 1) -is(e;) and deg, = (1® €') -ia(e;),
where {e;}icr are local basis sections of F with dual {e'}ic;.
PROOF:
We introduce the linear map 6: W® A®* — W ® A**T! by
S(Pea)=(1®¢e) i(e)(PRa)=1,PRe Aa

for a basis sections {e; };e; with dual {e'};c; of F. Note that the definition of § is independent of the
chosen basis section (check!) and hence it is globally defined.
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Lemma 3.4.2 The following identities hold
(a) 62 =0
(b) §(a-b) = (0a)-b+ (—1)ka- (6b) fora € W AF and b € W@ A°.

PROOF: The first result is an easy consequences of the fact that is(X)is(Y) = i5(Y)is(X) for all
X,Y € I'*°(F). And the second result is a consequence of the fact that is(X) is a derivation of the
symmetric product. O

The previous Lemma showed that the map ¢ is a differential and hence we have a canonical
cohomology attached to it. In this case it is rather simple: let us define the map §*: W ® A® —
W® A*~! by

FP@a)=(®1) ia(e))(P®a) =€V P® i,

for a basis sections {e; }ic; with dual {e'};c; of F. Note that the definition of 6* is also independent
of the chosen basis section (check!) and hence it is globally defined.

Lemma 3.4.3 The following equation holds
[0%,0] = 070 4 60™ = deg, + deg, .
PRrROOF: Let P® a € W® A, then

56" (P® ) =6(e"VP® te,0) =L, (' VP)® € Ao,
:P®ei/\Leia—i—ei\/LEjP@)ej/\Leia
=deg,(P® a)—e'V te; P ® Le,(e Na)+ € Vi, P®
= deg,(P® a) —e' Vv Le; P® te,(¢7 N a) + deg, (P ® a)
= deg,(P ® a) + deg (P ® a) — §"§(P ® ). O

Let us now define for P ® o € I'®(SFF* @ A*T*)

5-1(P @ a) = {kifa*(P@ a), fork+L0#0
0, fork+¢=0
and with Lemma B.4.3] we see that
570 4+66 " +o=id
where o: W® A® — 6°°(M) = I'°(S°F* ® A°F*) is the projection to symmetric and anti-symmetric
degree 0.

The idea is now to deform the (graded) commutative algebra W® A® into a non-commutative one
using the foliated symplectic form, or better said the Poisson structure: We define

(P& a)®(Q® f)) =7 (te,P ® ) ® (1c;Q ® )
as an operation on (W ® A®)®? and define
aopb=poe(a®b) € Wa A[[H]]

for a,b € W® A® similar to Example [3.2.1]
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Lemma 3.4.4 The product op is an associalive deformation of the graded product p and 6 is a
derivation of degree 1 of op with respect to the anti-symmeitric degree.

PrOOF: The product is an associative deformation, since the symmetric insertions is(e;) are commut-
ing derivations and this is also the reason, why ¢ is a derivation. O

Proposition 3.4.5 Let a € W ® A¥[[h]] such that
aob—(=1)*boa=0

for all W& A*[[h]] and all £ € Ny, then a € T®(A*F*). Moreover, every a € T'°(A*F*)[[R]] fulfills
FEquation (3.4.5]).

PROOF: Let s € I°(F*) C W® A, then we have
)ké

[a,8]0, = ao0s— (—)"so0a=hi(n*(s))

and if this is 0, a only have trivial symmetric degree, since 7 is non-degenerate on F. O

3.4.2 The Fedosov Derivation and the Fedov Star Product

We choose now a partial connection V with Vyw = 0 for all X € I'*°(F), which exists due to Lemma
2.5.12| and introduce the map

D:WRA*3P®a— V., Poe Aa+Pedyae W AT
Note that this is equivalent to
D: (1@61) 'Vei,

where V is extended to W® A® by Vx(P ® o) = VxP ® a+ P ® Vxa and the reason for this is
that V fulfills VxY — Vy X — [X,Y] = 0. Let us we introduce the curvature

R(X,Y)Z = VxVyZ - VyVxZ - VixyZ
for X,Y,Z € T'°(F). Note that we actually have
R e T®(A2F* @ End(F)) = I°(A2F* @ F* @ F),
so it is €°°(M)-linear. We now contract this to R defined by
R(Z,U,X,Y) = w(R(X,Y)Z,U)

for Z,U, X, Y € I'*°(F) Using the fact that Vxw=0forall X € ' (F), we see that R(Z,U, X,Y) =
R(U,Z,X,Y) and by the very definition of R we get R(U,Z,X,Y) = —R(U, Z,Y, X). And thus we
have

ReT™(S*F* @ AT ) CW® A®

Proposition 3.4.6 The identities

[6,D] =0 and DQ:%[D,D]:%[R, Jog

hold. Moreover, D 1is a derivation of op of degree 1 with respect to the anti-symmetric degree.
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PROOF: Let P ® a € W® AF be given, then we have:

SD(P® o) =6(Ve,P® e Aa+ P® dsa)
=1¢; Ve, P ® el Net Ao+ Le;, P ® e’ Adga
= [te;, Ve, JP® N N+ Ve, PO e Ne' A — 1, P @ dg(e' A ) + 1, P& (dge’) A
=—D6(P® a) + [te;, Ve, | P @ N Na+ i, P® (dge’) Aa

So let us check what the two terms are: for a local basis there are local functions C’fj, such that
lei, ej] = ijek, thereforewe have

em(84)=0
dgei(em, en) = em(ei(en)) —en(ei(em)) — ei([em, en]) = —C,inn = —%C’j’:kej A ek(em, €n)-
Moreover, we have for a € I'*°(F*), that
txVya=Vya(X)=Ya(X) - a(VyX) =Vyix — v, xa.
So if we denote by Ffj the coeeficients V., e; = Ffjek, we find
[te;, Ve, | P ® e NeENa= —v,e; P ® e NeENa= —FZ-LekP ®ejAe' Na

1 o
= —i(f‘fj - I‘?i)bekP@) el Ne' A a.

With Ffj - F?i = C’fj, since VxY — Vy X — [X,Y] =0, we get [§, D] = 0. We proceed showing that
D is a derivation of op. Note that by definition it is a derivation of the undeformed product. We see

that for X € T'>°(F)

(Vx ®id+id@Vx)(I((P ® o) ® (Q ® f)) = (Vx ®id +1d @V x) (17 (1, P ® @) @ (1¢,Q © f))
= X(17)(te, P ® @) @ (1,Q ® B) + 77 (Vixte, P ® @) (e, Q ® B))
+ 77 (e, P @ @) (Vxie;Q ® B))

= (Vxm)"(1e, P ® ) ® (1,Q ® B) + II(Vx ® id +1d @ Vx) (P ® a) ® (Q ® B)),

but since Vym = 0 we get that (Vx ® id+id®Vx)oll =1lo (Vx ® id+id ®Vx) and hence we get
that Vx is a derivation of op by the construction of op. This means in particular for a € W ® AR
and be W® A°:

D(aopb)=(1®¢€") -V, (aopb) =(1®¢€") Veaopb+ (1®e) aop Vb
=((1®e') - Vega)opb+ (—1)faop (1®e')- Vb,

where we used that (1® ¢€')-a = (1®¢e')opaand (1®¢')-a=(—1)Fa-(1® €).
For the last part we take P ® o € W® A* and see

D*(P®a)=D(Ve,P®e Na+ P® dga)
=V, Ve,P® AN Na+ Ve, P@ds(ef Aa)+ V., P® e Adga

1 . . .
= i[vej,vei]P ®@eNe'Na+ Ve, P®dg(e') Na

1 ) ) 1 . )
= 5[Vei,Vej]P@) e'nNeI Ao — injVekP(X) e nNel Na
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= -(Ve,, Ve JP@ e N Ao =V, . )P @ €' Ned Na)

J

N~ DN

(Ve Vel = Vieye, ) P @ € N el N a)
If we define the coefficients f%iij by ]%(ei, ej)er = Rfjkeg, we see

1. o
D*(P®a) = —injkek Vi, P®e Ne! N

1 R A _
= —§7rmzwmnR?jkek Vi, P®e' Ne! N
_ lﬂmﬁR“ LAV = ( J
=5 ikm€ le, @€ Nel A

1 .
= ZWmZ(LemRijkoek Ve Vi, Pe Ned N

were Rjjre are the coefficients Ryg; = R(eg,er, €,€5) = wkaZ‘j of the contracted cuvature tensor
from Equation (3:4:2). Since R = 1 Rype" Vel @ e A e, we have that

[R, -]op = hD?* 4+ O(h?).

Since R has only two symmetric degrees, we see immediatly that [R, -]o, — hD? has order A2, but for
op, we have that for all a € W ® A®, that [R,a] has only odd orders of i and hence [R, -], = hD?
and the claim is proven. ([

The idea is now to consider the sum —d§ + D, which is a derivation of or of degree 1 and thus we
have

(=6 + D) = 4[R. ]

and so it is not a differential. To correct this, we make the following Ansatz

@z—é—i-D—F%[r,-]

for r € W® Al[[h]]. Using the graded commutator, we see that

1 1 1
9 _ 1 _tip_ .
D —Q[D,D] h[R 5T+Dr+2h[r,r], -

So if we can find r € W ® A'[[A]], such that R — 6r + Dr + 5=[r,r] is central, we have that D? = 0.
This means in particular that

1
S+ Dr+ —[rr] =0
R —6r+ r—|—2h[r,r]

for 2 € I'°°(A2F*)[[h]] using Proposition [3.4.5]
Lemma 3.4.7 For every r € W® A[[A]] we get for D = —6 + D + F[r, -] the equation
1
D(—=6r+ R+ Dr + %[r, T]op) = 0.

PRrROOF: We have

1 1 1 1
D(—ér+ R+ Dr + ﬁ[r, r]) = —[0,Dlr + DR — 0R — ﬁd[r, Top + ﬁD[r, Tom — ﬁ[r, 0o p+
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1 1 !
%[T7 R]OF + DZT + ﬁ[’l”, DT]OF + ﬁ[”% [T7 T:IOF:IOF

1
= - 0R+ DR+ ﬁ[rv [7", 7A]OF]OF7

where we used that ¢ and D are graded derivations of degree 1 in the last step as well as D? = %[R, Jop-
Note that [r, [r,7]op]o, = 0 for every degree 1 element. Moreover, we get

{5R7 ']OF = [57 [R7 ']OF“ = h[(Sv [D7DH = h([[57 D],D} - [Dv [(5, DH) =0.

So R is central and by Proposition [3.4.5] it has to have symmetric degree 0, but it has also symmetric
degree 1, by the form of R. The only possibility is that 0 R = 0. Similarly, we proceed with DR, we
have

[DR7 ']OF = [D,[R, ']OF]:h[Dv[DvDH:O

and since DR has symmetric degree 2, we get, again by Propisiton that DR = 0. (]
If we want now that D = —6 + D + +[r, -] squares to 0 or equivalently

1
R—5T+Dr—|—ﬁ[r7r]—9

for Q0 € T°°(A%29*)[[A]], we know already that the only possibility is D = d#Q2 = 0 by Lemma [3.4.7|
Let us make our ansatz now a bit more precise: we introduce the total degree Deg: W @ A®[[h]] —
W ® A*[[h]] by

0
Deg = d 2h—.
eg eg. + an

This is a derivation of degree 0 of op, i.e.
Deg(a op b) = Deg(a) op b+ a o Deg(b),
which can be seen by the observation that gl’[ kills two symmetric degrees and adds one A-degree, i.e.
[Deg ® id +id ® Deg, 211] = 0.

Note that neither deg, nor 2h% are derivations of o separately. We want to understand D =
—5+D+%[r, -] now as a series of operators with respect to the total degree: § lowers the total degree
by 1, D keeps it, and hence we want we want %[7‘, -] to be a series which does not decrease the total
degree. Note that if an element a has total degree k, then %[a,] increases the total degree by k — 2.

Let us define W,y @ A®[[R]] := {a € W ® A®[[A]] | Deg(a) = ka} and the canonical associated
filtration

Wi, ® A*[[R] = [ Wi © A°[A]]
i=k

Proposition 3.4.8 We have

Wo @ A*[[H]] = W A*[[h]] and ﬁ W; @ A*[[H]] = 0.
=0
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PROOF: The proof is almost a tautology. Let us write for a(¥) = Z’;iﬂ.:k ag-k)hi where a; has

symmetric degree j. So for a general element in a = (a™V,...) € T2, Wy @ A®[[h]], we want to
show that

o0 o0
_ i o— (J+2z
= E:asz —E:E:“
1=0 =

i=0 j=0

is a well-defined element in W ® A®[[#i]]. So we just have to make sure it is a well-defined formal
power series in each h-degree(so no infinite series of fixed symmetric degree appear). But the only
(j+2m) O

symmetric term in degree j appearing in hA-degree m is a >

This proposition shows that we can decompose every a € W ®@ A*[[h]] into a series } ;7 a),

where a(®) € Wy ® A®[[R]]. Moreover, every series » a® with a®) € Wiy ® A®[[R]] converges to
an Element in W ® A®[[h]]. This allows us to prove:

Theorem 3.4.9 For each 2 € hI'*®(A2F*)[[h]] with dg2 = 0 there is a unique r € W3 ® A[[R]], such
that

1
5T:R—|—DT+%[T,T‘]+Q and 6 'r =

PROOF: We define a recursive formula of elements of homogeneous total degree by (®) = §~1(R+Q(?)
and

k—

1 . .
(k+1) _ -1 (k) - (z) (k+2—1) (k)
r =4 (Dr hEZS[ ,T |+ Q )

[y

for £ > 3. Then we know by Proposition m that 7 = 302, 7 an element in W ® A'[[A]]. This
element fulfills, by taking sums over the total degrees, the necessary equation:

1
r=6 YR+ Dr+ —

2h[r,r]oF + Q).

Since (671)2 = 0 and 6~ 1r(®) = 0 for all k, we also have that §~'r = 0. TLet us denote by A =
6r — R — Dr — 3 [r,r]o, — Q, then we have

DA=0 < 6A=(D+ %[r, Jor ) (A),

since DO = ds2 = 0 by Lemma Using o(r) = o(0" (R + Dr + 5z [r,7]o, + Q) = 0, we get
1
?h[rv T]OF - Q)

=6-16r — 0 Y (R+ Dr + 2—17:&[

=r -6 tr—o(r) =0 '(R+ Dr+ 27171[

+Q)=0.

§'A=6"Y6r —R—Dr—
T 7]op + §2)
oy + Q)
_ 1
=r—6 '(R+Dr+ ﬁ[r,r]oF
Using again 66 ' + 6710 + o = id, we get

A=516A=5"Y (DA + %[n A,
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The operator a — 61 (Da + %[r, a)) is a linear operator which increases the total degree and hence
the only fixed point can be 0. So we found an r fulfilling the required equation. The uniqueness
follows from the fact that every r fulfilling the required equations has to fulfill

1
r=0 YR+ Dr+ ﬁ[r,r]oF +Q)

and hence the same recursion. O

Let us pick a closed Q € AI*°(A2F*)[[A]], denote by r the corresponding solution to Equations

(3.4.9) and let us denote by

1
D=—0+D+ 2l o

the associated differential. Our interpretation was that D is a series of operators, which increase
the symmetric degree, so in particular it is a pertubation of the differential —¢ which aleady has an
homotopy 6

G(M)[[H]) T (W& A[l], 5D s

where we denote by i the canonical inclusion 6> (M) = I'°(S°F* @ A°F*) and by o the projection
to symmetric and anti-symmetric degree 0. Note that we have the canonical identities (6=1)% = 0,
§oi=6"1oi=0,000"'=006=0and ooi=id. The idea is now to deform the whole diagram
, and not only —d to D to do so we use homological pertubation theory:

Theorem 3.4.10 For O = [0~', D + 1[r, -]] we have that id —O is invertible and the operator
Dli= 571Gid-0)"! = —(id—-0) "t !
is an endomorphism of degree —1 and fulfills
DD+ DD + (id — O) tio = id (3.4.2)

ProOOF: First of all we notice that O increases the total degree by at least 1 and hence we have
o
> 0
k=0

is a well-defined map and hence we have that id —O is invertible. Moreover, O is of anti-symmetric
degree 0 and so is id —O and also (id —O)~!. Let a € W ® A®[[A]], then we have

—Dé ta—6Da+ o(a)

=06"ta— (D + %[r, Jop)dta+66"1a — 571D + %[T‘, Jop)a+o(a)
=a—[0D+ %[7’, Jopla = (id —-0)a.

If we apply d—1 once from the right and once from the left to this equation and then subtract the
equations from each other, we have

5~to =061

We apply now D to the same equation, once from the right and once from the left and get D(id —0O) =
Do + (id —0)D and hence D(id —0)d~! = (id —O)Ds~! and finally also

D(id-0)7167 = (id—0) D5 ?

and this already proves the claim. O
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Let us denote from now on
1

T C€(M)[A]] > fr (id-0)f =) [6", D+ -

k=0

[r, Jor*f € W@ A%[[1]

and call it the Fedosov-Taylor series.
Corollary 3.4.11 D7 =0, (D)2 =0,0D ' =0, Dr=0and oot =id
PROOF: The proof consists of a careful counting of degrees and Equation (3.4.2]). O
Proposition 3.4.12 The map
7: 6°(M)[[R]] = ker DNW ® A°[[R]]
s an ismorphism with inverse o.

PrOOF: The map 7 is clearly injective, since 0 o 7 = id. Let now a € ker D N'W @ A°[[A]], then we
have

a=DDla+ D 'Da+ 7(0(a) = 7(c(a))
and thus 7 is also surjective. O

Note that W @ A°[[A]] is a subalgebra with respect to the product or by definition and that for
a,b € ker DN'W @ A°[[A]], we have

D(aopb) =D(a)opb+aorD(b)=0
and hence also ker D N'W @ A°[[R]] is a subalgebra. We therefore can define the associative product
frg=o(r(f)or7(9))-

Theorem 3.4.13 The product x is a formal star product on M with associated Poisson structure .
* 1§ called the Fedosov star product.

Proor: If we write 7(f) in a series of elements in the total degree, we see that

o0

7= 1(HD =f+df ® 1+ hot
=0

we have that 7(f * g) = 7(f) o 7(9) = Siee(r(f) op () = X320 g 7(/)@ 0p 7(9) ") and
hence

o(r()D o 7(g) =) € h2E(M) (3.43)

if k is even and 0 otherwise. This means in particular that f g = fg+ O(h) and hence « is a formal
deformation of the commutative product on €°° (M), since 7(1) = 1. This means in particular that

2
frg="rfg+od 7(HP orT(9)* D) +0(n?)
1=0
= fg+o(r(f)P op 7(9)V) + O(K?)

= g+ 2{f.9) +O(R)

by the explicit formula of or. The last thing we have to discuss, is the differentiability of x, but this
is clear since 7 is differential Operator with values in 'W. U



3.4. FEDOSOV’S CONSTRUCTION 59

To construct the Fedosov star product we used two ingredients: a formal series of foliated 2-forms
Q € hI'*°(A%2F*) and a partial symplectic connection V. To emphasise this dependence, we write

(V, Q) — *(V,Q)'

Note that this is not very well-behaved from the functorial point of view, but this is another story.
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