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Chapter 1

Preliminaries

These are the lecture notes for a course on Poisson geometry and deformation quantization which is
taught during winter term 2022/2023. There is no original work inside these notes and the material
is taken, if not stated di�erently, from the following literature list:

• M. Crainic, R.L. Fernandes, I. M rcuµ: Lectures on Poisson Geometry, American Mathematical
Society (2021).

• C. Esposito: Formality theory: from Poisson structures to deformation quantization, Springer-
Verlag Heidelberg, Berlin, New York (2015)

• B. Fedosov: Deformation Quantization and Index Theory, Akademie Verlag (1996)

• C. Laurent-Gengoux, A. Pichereau, P. Vanhecke: Poisson Structures, Springer-Verlag Heidel-
berg, Berlin, New York (2013)

• S. Waldmann: Poisson-Geometrie und Deformationsquantisierung, Springer-Verlag Heidelberg,
Berlin, New York (2007)

The additional literature is neither exhaustive for the �eld nor necessary for this course, for a better
historical overview we refer to the book of Waldmann from the list above. The requirement for this
course is, besides linear algebra and analysis, di�erential geometry, so we assume the reader is familiar
with the notion of smooth manifolds. The manifolds we are considering are (if not stated di�erently)
Hausdor� and second countable. Moreover, we assume that the reader knows the following basic facts
about manifolds/vector bundles:

• The tangent bundle TM of a manifold M is a smooth vector bundle.

• The smooth sections of the tangent bundle are exactly derivations of the algebra of smooth
functions.

• Given two vector bundles over the same manifold one can take their direct product, their
tensor/exterior/symmetric powers, dualize, etc and the result is still a smooth vector bundle.

Nevertheless, we introduce some less basic facts in the next sections which will be needed throughout
the lecture. Note that this does not replace a lecture in di�erential geometry and is more intended
to �x notation.
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6 Chapter 1. Preliminaries

1.1 Vector �elds and all that

We denote be X(M) the Lie algebra of vector �elds. For X ∈ X(M) we denote by ΦX
t its �ow, i.e.

for every p ∈M the unique solution to{
Φ0 = idM
d
dtΦ

X
t (p) = X(ΦX

t (p))

which is a smooth map de�ned on a maximal open subset U ⊃ M × {0}. Moreover, we have that
ΦX
t+s(p) = ΦX

t (ΦX
s (p)), whenever both of the sides are de�ned. For a function f ∈ C∞(M) it follows

that

d

dt
(ΦX

t )∗f = (ΦX
t )∗X(f).

For a smooth map φ : M → N , we denote by Tφ : TM → TN the tangent map de�ned by

Tpφ : TpM 3 Xp 7→ (f 7→ Xp(φ
∗f)) ∈ Tφ(p)N.

Two vector �elds X ∈ X(M) and Y ∈ X(N) are called φ-related, if for all p ∈M , we have

TpφX(p) = Y (φ(p)).

We write X ∼φ Y . If φ is a di�eomorphism, then we can de�ne a push-forward of vector �elds

φ∗ : X(M) 3 X 7→ [p 7→ Tφ−1(p)φX(φ−1(p))] ∈ X(N),

and we denote by φ∗ = φ−1
∗ . Note that X and φ∗X are φ-related.

Theorem 1.1.1 Let M be a smooth manifold.

(a) Let X,Y ∈ X(M) be vector �elds, then d
dt

∣∣
t=0

(ΦX
t )∗Y = [X,Y ]

(b) Let φ : M → N be a smooth map and let Xi ∼φ Yi for i = 1, 2, then [X1, X2] ∼φ [Y1, Y2].

We are not only interested in the Lie algebra of vector �elds on M , but instead in their exterior
algebra:

X•(M) := Γ∞(Λ•TM) = Λ•C∞(M)Γ
∞(TM) =

dim(M)⊕
i=0

ΛkC∞(M)Γ
∞(TM).

Theorem 1.1.2 Let M be a manifold, then there is a unique bracket J · , · KS : X•(M) × X•(M) →
X•(M), such that

• JX,Y KS = [X,Y ] for all X,Y ∈ X1(M).

• JX, fKS = X(f) for all X ∈ X1(M) and f ∈ C∞(M) = X0(M).

• JX,Y ∧ ZKS = JX,Y KS ∧ Z + (−1)(k−1)`Y ∧ JX,ZKS for all X ∈ Xk(M), Y ∈ X`(M) and

Z ∈ X•(M).

• JX,Y KS = −(−1)(k−1)(`−1)JY,XKS for all X ∈ Xk(M) and Y ∈ X`(M).

• JX, JY, ZKSKS = JJX,Y KS, ZKS + (−1)(k−1)(`−1)JY, JX,ZKSKS for all X ∈ Xk(M), Y inX`(M) and
Z ∈ X•(M).
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Proof (Sketch): The idea is the following: one uses properties one, two and three to extend the
usual Lie bracket for vector �elds to X•(M) and proves the remaining properties. �

Remark 1.1.3 Theorem 1.1.2 show that the triple (X•,∧, J · , · KS) carries the structure of a Gersten-
haber algebra.

Now one can see that on factorizing multivector �elds X1 ∧ · · · ∧Xk and Y1 ∧ · · · ∧ Y` for Xi, Yj ∈
X(M) one has

JX1 ∧ . . . ∧Xk, Y1 ∧ · · · ∧ Y`KS =
k∑
i=1

∑̀
j=1

(−1)i+j [Xi, Yj ] ∧X1 . . .
i
∧ · · · ∧Xk ∧ Y1 ∧ . . .

j
∧ · · · ∧ Y`

(1.1.1)

Moreover, in local coordinates (U, x) every multivector �eld X ∈ Xk(M) is of the form

X
∣∣
U

=
1

k!
Xi1...ik

∂

∂xi1
∧ · · · ∧ ∂

∂xik

for unique Xi1...ik ∈ C∞(U) and hence we have for X ∈ Xk(M) and Y ∈ X`(M) the formula

JX,Y KS

∣∣
U

=
1

k!`!

(
kXi1...ik

∂Y j1...j`

∂xik
∂

∂xi1
∧ · · · ∧ ∂

∂xik−1
∧ ∂

∂xj1
∧ · · · ∧ ∂

∂xj`

− `Xj1...j`
∂Xi1...ik

∂xj1
∂

∂xi1
∧ · · · ∧ ∂

∂xik
∧ ∂

∂xj2
∧ · · · ∧ ∂

∂xj`

)
The compuation is an exercise.

Note that for a smooth map φ : M → N we say that X ∈ Xk(M) and Y ∈ Xk(N) are φ-related,
if for all p ∈M

Tpφ
⊗kX(p) = Y (φ(p)),

and write X ∼φ Y .

Lemma 1.1.4 Let φ : M → N be a smooth map and let Xi ∈ Xk(M) and Yi ∈ Xk(N) be multivector
�elds for i = 1, 2, such that Xi ∼φ Yi. Then

JX1, X2KS ∼φ JY1, Y2KS.

Proof: The proof is an easy consequence of Theorem 1.1.1 in combination with Formula (1.1.1). �

The property of the Schouten bracket from Lemma 1.1.4 is called naturality and it implies more-
over, that the Schouten bracket is di�eomorphism invariant, i.e. for a di�eomorphism φ : M → N ,
we have

φ∗JX,Y KS = Jφ∗X,φ∗Y KS

for all X,Y ∈ X•(N).
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1.2 Cartan Calculus

The dual picture is now the de Rham complex. We denote by T ∗M →M the cotangent bundle of a
manifold M , i.e. the dual of the tangent bundle TM →M , and consider its exterior algebra

Ω•(M) := Γ∞(Λ•T ∗M) = Λ•C∞(M)Γ
∞(T ∗M) =

dim(M)⊕
i=0

ΛkC∞(M)Γ
∞(T ∗M).

De�nition 1.2.1 Let M be a manifold, then we de�ne the R-linear map dk : Ωk(M)→ Ωk+1(M) by

dω(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i+1Xi(ω(X1, . . . ,
i
∧, . . . , Xk+1))

+
∑
i<j

ω([Xi, Xj ], X1, . . . ,
i
∧, . . . ,

j
∧, . . . , Xk+1)

for all ω ∈ Ωk(M) and X1, . . . , Xk+1 ∈ Γ∞(TM) and k ≥ 1. For k = 0 we de�ne

Ω0(M) = C∞(M) 3 f 7→ (X 7→ X(f)) ∈ Ω1(M).

d =
∑

k dk : Ω•(M)→ Ω•+1(M) is called de Rham di�erential.

Lemma 1.2.2 The de Rham di�erential d has the following properties

(a) d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ for all α ∈ Ωk(M) and Ω`(M).

(b) d2 = 0.

Proof: Exercise. �

In a local coordinate chart (U, x) we have that a di�erential form α ∈ Ωk(M) is of the form

α
∣∣
U

=
1

k!
αi1...ik dxi1 ∧ · · · ∧ dxik

and with Lemma 1.2.2, we see that

dα
∣∣
U

=
1

k!

∂αi1...ik
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxik

For a manifold M , we can now introduce the quotient

Hk
dR(M) =

ker dk

im dk−1
,

which is called the kth de Rham cohomology of M . The remarkable fact about this quotient is that
even though its de�nition involves is the solution space of a partial di�erential equation (dkα = 0)
modulo trivial solutions, the information it contains is purely topological. Nevertheless, for this course
we are only interested in the the de Rham complex itself and also very super�cial.

It is not surprising that, since the bundles TM and T ∗M are dual to each other, there are
operations wich include both X•(M) and Ω•(M). We de�ne for a factorizing X = X1 ∧ · · · ∧Xk ∈
Xk(M) and α ∈ Ω`(M):

ιXα = ιX1 . . . ιXkα, (1.2.1)
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where ιXiα is the usual contraction of a vector�eld and a di�erential form. Additionally we set
ιfα = fα for f ∈ C∞(M). Moreover, we de�ne the Lie derivative along a multivector �eldX ∈ Xk(M)
by Cartan's magic formula

LX = [ιX ,d] = ιX d− (−1)k dιX : Ω•(M)→ Ω•−(k−1)(M).

Note that for a vector �eld X and a k-form α ∈ Ωk(M), we have

d

dt

∣∣
t=0

(ΦX
t )∗α = LXα.

Proposition 1.2.3 (Cartan calculus) Let M be a smooth manifold. Then

(a) ιX∧Y = ιXιY

(b) [ιX , ιY ] = ιXιY − (−1)k`ιY ιX = 0

(c) LX∧Y = ιXLY + (−1)`LXιY

(d) [d,LX ] = dLX − (−1)(k−1)LX d = 0

(e) [LX , ιY ] = LXιY − (−1)(k−1)`ιY LX = ιJX,Y KS

(f) [LX ,LY ] = LXLY − (−1)(k−1)(`−1)LY LX = LJX,Y KS

for X ∈ Xk(M) and Y ∈ X`(M).

Proof: Note that the every point, except for (e) and (f), follow directly from skew-symmetry and
d2 = 0. (e) follows from Cartan's magic formula for two vector �elds: one can inductively show the
identity on factorizing tensors. (f) follows from (e), since

[LX ,LY ] = [LX , [ιY , d]] = [[LX , ιY ],d] + (−1)`(k−1)[ιY , [LX ,d]]

= [[LX , ιY ],d]
(e)
= [ιJX,Y KS

,d]

= LJX,Y KS
. �





Chapter 2

Poisson Geometry

Poisson geometry is the study of Poisson brackets, which were developed by Siméon Denis Poisson
in 1809 order to study integrals of motion in mechanics. After that it was Carl Gustav Jacob Jacobi
and Sophus Lie who studied Poisson brackets from di�erent angles, which lead for example to the
discovery of Lie algebras and Lie groups. The modern formulation of Poisson brackets is due to André
Lichnerowicz in the 1970s and his work is arguably the starting of the geometric point of view. As
a last historical remark we want to mention the fundamental work of Alan Weinstein in [12], who
discovered many aspects of Poisson geometry which are up to now subjects of research.

In order to understand roughly the physical background, we consider a particle moving in the
con�guration space R3 with coordinates (q1(t), q2(t), q3(t)). In order to describe its motion, we need
to �x a Hamiltonian H ∈ C∞(T ∗R3) = C∞(R3 × R3) or as it is called in in physics: an Energy.
Usually, H is of the form

H =
3∑
i=1

p2
i

2m
+ V (q) (∗)

for the standard coordinates (q, p) of R3 × R3, where the �rst summand is the kinetic energy and
the second summand is the potential energy. In the Hamiltonian formalism of classical mechanics the
motion (q1(t), q2(t), q3(t)) of the particle is a solution to the ordinary di�erential equations

dqi

dt
(t) =

∂H

∂pi
(q(t), p(t)) and

dpi
dt

(t) = −∂H
∂qi

(q(t), p(t)). (∗∗)

If we de�ne the binary operation {−,−} : C∞(R3 ×R3)× C∞(R3 ×R3)→ C∞(R3 ×R3) by

{f, g} =

3∑
i=1

∂f

∂qi
∂g

∂pi
− ∂g

∂qi
∂f

∂pi
,

then we can write the Equations (∗∗) in the form

dqi

dt
(t) = {qi, H}(q(t), p(t)) and

dpi
dt

(t) = {pi, H}(q(t), p(t)).

Note that {−,−} is a Lie bracket which is a derivation in both slots, and this is basically the starting
point of Poisson geometry. In fact, to do mechanics, we need to �x three things:

(a) a phase space, which has su�ciently nice properties, i.e. is a smooth manifold M ,

(b) a Poisson bracket, i.e. a Lie bracket {−,−} : C∞(M)×C∞(M)→ C∞(M), which is a derivation
in both slots,

11



12 Chapter 2. Poisson Geometry

(c) a Poisson subalgebra Acl ⊆ C∞(M) of classical Observables and

(d) an energy function H ∈ Acl (the Hamiltonian).

From the geometric point, we forget the chosen energy function and call the pair (M, {−,−}) a
Poisson manifold. The study of these brackets is what is called Poisson geometry.

2.1 Poisson Brackets, Poisson Tensors and Poisson maps

Before we de�ne Poisson manifolds, we de�ne algebraic structure behind the geometric version:

De�nition 2.1.1 Let A be a commutative algebra over k. A Poisson bracket is a bilinear map

{ · , · } : A × A → A, such that

(a) {a, b} = −{b, a} (skew symmetry)

(b) {a, {b, c}} = {{a, b}, c}+ {b, {a, c}} (Jacobi identity)

(c) {a, bc} = {a, b}c+ b{a, c} (biderivation)

for all a, b, c ∈ A.

Remark 2.1.2 The �rst two properties of the Poisson bracket in De�nition 2.1.1 are exactly the
axioms for (A, { · , · }) being a Lie algebra.

The next section is full of examples, but let us, before entering the realm of Poisson manifolds,
get rid of a triviality:

Example 2.1.3 We can endow every commutative algebra A with the trivial Poisson bracket, i.e.
the bracket sending every two elements to 0. This bracket fulills axioms (a)-(c) for trivial reasons.

Given a smooth manifold there is obviously a commutative algebra canonically attached to it:
C∞(M). The de�nition of a Poisson manifold is now straight forward:

De�nition 2.1.4 A Poisson manifold is a smooth manifoldM together with a Poisson bracket { · , · }
on C∞(M).

Lemma 2.1.5 For every open subset U of a Poisson manifold (M, { · , · }) there exists a Poisson

bracket { · , · }U on U , such that.

{f, g}
∣∣
U

= {f
∣∣
U
, g
∣∣
U
}U .

for all f, g ∈ C∞(M).

Proof: Let f, g ∈ C∞(U) be given. We de�ne

{f, g}U (x0) = {f̃ , g̃}(x0)

where f̃ , g̃ ∈ C∞(M) are chosen such that there is an open neighbourhood x0 ∈ U ′ ⊆ U and
f
∣∣
U ′

= f̃
∣∣
U ′

and g
∣∣
U ′

= g̃
∣∣
U ′
. To prove that this bracket is well de�ned, we just have to check that

{f, g} vanishes at a point x0 ∈ M , if there is an open neighbourhood x0 ∈ O with g
∣∣
O

= 0. We
therefore choose a function ρ ∈ C∞(M), such that ρ(x0) = 0 and ρ(x) = 1 for all x /∈ O. We have
therefore g = ρg and hence

{f, g}(x0) = {f, ρg}(x0) = {f, ρ}(x0)g(x0) + ρ(x0){f, g}(x0) = 0.

This bracket is indeed Poisson, since the other properties can be checked using small enough neigh-
bourhoods in which all the involved functions can be extended to M . �
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Proposition 2.1.6 Let ( C∞(M), { · , · }) be a Poisson manifold, then

(a) { · , · } is local, i.e. supp{f, g} ⊆ supp f ∩ supp g and in local coordinates (U, x) of M we have

{f, g}
∣∣
U

= πij
∂f

∂xi
∂f

∂xj
(2.1.1)

for local functions πij ∈ C∞(U) de�ned by

πij = {xi, xj} = −πji.

(b) there exists a bivector �eld π ∈ X2(M) with Jπ, πKS = 0 such that

{f, g} = df ⊗ dg(π) = −JJf, πKS, gKS

The local functions in (2.1.1) are exactly the coe�cient function of the bivector �eld from (b), i.e.

π =
1

2
πij

∂

∂xi
∧ ∂

∂xj
.

Proof: We start proving (a). Let f, g ∈ C∞(M) and let U := M \ supp g, by Lemma 2.1.5 we know
that there is a Poisson bracket { · , · }U , such that

{f, g}
∣∣
U

= {f
∣∣
U
, g
∣∣
U
}U = {f

∣∣
U
, 0}U = 0.

Hence supp{f, g} ⊆ supp g and with {f, g} = −{g, f} we also get {f, g} ⊆ supp f . To proceed with
the proof, we notice that for all functions f ∈ C∞(M), we have {f, 1} = {1, f} = 0, since

{f, 1} = {f, 1 · 1} = {f, 1}1 + 1{f, 1} = 2{f, 1}

and 0 = {f, 1} = −{1, f}. By bilinearity this holds even for all constant functions. Let us now pick
a coordinate chart (U, x) and let f, g ∈ C∞(U), then we �nd functions Ei, Eij , Ti, Tij ∈ C∞(U), such

that Ei(x0) = ∂f
∂xi

(x0), Ti(x0) = ∂g
∂xi

(x0)

f(x) = f(x0) +
n∑
i=1

Ei(x)(xi − xi0) +
n∑

i,j=1

Eij(x)(xi − xi0)(xj − xj0)

and

g(x) = g(x0) +

n∑
i=1

Ti(x)(xi − xi0) +
∑ n∑

i,j=1

Tij(x)(xi − xi0)(xj − xj0)

close to x0. We work now with the Poisson bracket { · , · }U from Lemma 2.1.5. We have, using that
{ · , · }U vanishes on constants and its Leibniz rule, that

{f, g}U (x0) = {xi, xj}U (x0)
∂f

∂xi
(x0)

∂g

∂xj
(x0)

and the claim is proven.
To prove (b) it is now enough to prove that π

∣∣
U

:= 1
2{x

i, xj} ∂
∂xi
∧ ∂
∂xj

glues together to a global
object. Let therefore be given two coordinate charts (U, x) and (V, y), such that U ∩ V 6= ∅, then

{yk(x), y`(x)} = {xi, xj}∂y
k

∂xi
∂y`

∂xj
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and hence

πyU∩V =
1

2
{yk, y`} ∂

∂yk
∧ ∂

∂y`

=
1

2
{xi, xj}∂y

k

∂xi
∂y`

∂xj
∂

∂yk
∧ ∂

∂y`

=
1

2
{xi, xj} ∂

∂xi
∧ ∂

∂xj

= πxU∩V .

In every chart (U, x) we can see that {f, g}
∣∣
U

= −JJf, πKS, gKS

∣∣
U
and thus it is valid globally. Let us

denote Xf = −Jf, πKS, then we see

{f, {g, h}} = JXf , {g, h}KS

= JXf , JXg, hKSKS

= JJXf , XgKS, hKS + JXg, JXf , hKSKS.

Moreover, we have

JXf , XgKS = −JXf , Jg, πKSKS = JJXf , hKS, πKS + Jg, JXf , πKSKS

= −X{f,g} +
1

2
Jg, Jf, Jπ, πKSKSKS.

This implies that

{f, {g, h}} − {{f, g}, h} − {g, {f, h}} = −1

2
Jh, Jg, Jf, Jπ, πKSKSKSKS

and since di�erentials span the cotangent space at every point we get {f, {g, h}} − {{f, g}, h} −
{g, {f, h}} = 0 ⇐⇒ Jπ, πKS = 0. �

Remark 2.1.7 Note that, if there is a bivector �eld π ∈ X2(M), such that Jπ, πKS = 0, we can induce
a Poisson bracket { · , · } via the formula in (b) of Proposition 2.1.6. We will in the following switch
freely between the two equivalent descriptions. A bivector �eld π ∈ X2(M) with Jπ, πKS = 0 is from
now on called Poisson bivector �eld.

The Schouten bracket is a local operator itself, so it is enough to check the condition Jπ, πKS = 0
locally. In a chart (U, x), we have

Jπ, πKS

∣∣
U

= 0 ⇐⇒ πij
∂πkl

∂xj
+ πlj

∂πik

∂xj
+ πkj

∂πli

∂xj
= 0 for all i, k, l.

The proof is an exercise. We note that π being Poisson is the same as its coe�cients are a solution
to a certain quadratic PDE and one can study Poisson geometry from this point of view. But this is
not part of these lecture notes.

Let us now focus on the Poisson tensor itself: even though it might very singular, we can still
de�ne one direction of the musical isomorphism from Riemannian geometry, but instead we �just� get
a homomorphism:

De�nition 2.1.8 Let (M,π) be a Poisson manifold.

(a) The musical homomorphism π] : T ∗M → TM is the vector bundle map de�ned by

π] : T ∗M 3 αp 7→ π( · , αp) ∈ TM.
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(b) The rank of π at p ∈M is de�ned by

rank(π)p = rank(π](p)).

Lemma 2.1.9 The rank map M 3 p 7→ rank(π)p ∈ N takes only values in 2N and is lower semicon-

tinuous, i.e. for all points x ∈M there exists an open neighbourhood U ⊆M , such that

rank(π)x ≤ rank(π)y

for all y ∈ U .

Proof: Exercise. �

As a next step, we want to compare Poisson manifolds and therefore we need to de�ne Poisson
maps.

De�nition 2.1.10 Let (M, { · , · }M ) and (N, { · , · }N ) be two Poisson manifolds. A smooth map

φ : M → N is called Poisson map, if

φ∗{f, g}N = {φ∗f, φ∗g}M

for all f, g ∈ C∞(M).

Note that it is obvious, that one can concatenate two Poisson maps and the result is still a Poisson
map, which ensures that Poisson manifolds together with Poisson maps form a category, the category
PoissMfld. Note that, however it is sometimes preferable to de�ne the category of Poisson manifolds
with di�erent morphisms, but this goes beyond the scope of this lecture notes.

Let us now investigate the relation of a Poisson map with the Poisson bivector �eld.

Proposition 2.1.11 Let φ : M → N a smooth map between the Poisson manifolds (M,πM ) and

(N, πN ). The following are equivalent:

(a) φ is a Poisson map.

(b) πM and πN are φ-related.

(c) For all p ∈M , we have

Tpφ ◦ πM (p)] ◦ (Tpφ)∗ = π]N (φ(p)).

In particular, if φ is a (local) di�eomorphism , then φ∗πN = πM .

Proof: Let us assume (a). Let f, g ∈ C∞(N) and p ∈M , then we have

dfφ(p) ⊗ dgφ(p)(Tpφ⊗ Tpφ(πM (p))) = dfφ(p) ◦ Tpφ⊗ dgφ(p) ◦ Tpφ(πM (p))

= dφ∗fp ⊗ dφ∗gp(πM (p)) = {φ∗f, φ∗}M (p)

= φ∗{f, g}N (p) = {f, g}N (φ(p))

= dfφ(p) ⊗ dgφ(p)(πN (φ(p)).

Since the di�erentials on functions span the whole cotangent space, we get Tpφ⊗ Tpφ(π) = πN (φ(p)
and hence πM ∼φ πN . Let us now assume (b)and let αφ(p), βφp ∈ T ∗φ(p)N be arbitrary, then

αφ(p)(Tpφ ◦ πM (p)] ◦ (Tpφ)∗(βφ(p)) = αφ(p)(TpφπM (p)( · , βφ(p) ◦ Tpφ)
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= αφ(p) ⊗ βφ(p)(Tpφ⊗ Tpφ(πM (p)))

= αφ(p) ⊗ βφp(πN (φ(p))

= αφ(p)(πN (φ(p)]βφ(p)).

And again, since αφ(p), βφp ∈ T ∗φ(p)N were chosen arbitrary, we get Tpφ◦πM (p)] ◦ (Tpφ)∗ = πN (φ(p))].

Let us �nally assume (c) and let f, g ∈ C∞(N), then for all p ∈M we have

φ∗{f, g}N (p) = {f, g}(φ(p)) = dfφ(p)(φN (p)] dgφ(p))

= dfφ(p)(Tpφ ◦ πM (p)] ◦ (Tpφ)∗ dgφ(p))

= dφ∗fp ⊗ dφ∗gp(πM (p)) = {φ∗f, φ∗g}M (p). �

2.2 Hamiltonian and Poisson Vector �elds

After the �rst properties and de�nitions of Poisson manifolds we want to study their symmetries.
Recall that in Riemannian geometry the isometries are always a Lie group, and to hope for such a
strong statement is beyond any reason in Poisson geometry. This is why we only deal with in�nitesimal
symmetries, i.e. vector �elds which preserve the Poisson structure in a reasonable way:

De�nition 2.2.1 Let (M,π) be a Poisson manifold.

(a) A vector �eld X ∈ X1(M) is called Poisson vector �eld, if

LXπ = JX,πKS = 0.

(b) The vector �eld

XH = π](dH) = JH,πKS

is called Hamiltonian vector �eld of the function H ∈ C∞(M).

We collect in the following theorem the �rst properties of Hamiltonian and Poisson vector �elds.

Theorem 2.2.2 Let (M,π) be a Poisson manifold.

(a) Each Hamiltonian vector �eld is also a Poisson vector �eld.

(b) For all f, g ∈ C∞(M) the following identities hold:

{f, g} = Xg(f) and [Xf , Xg] = −X{f,g}.

(c) The Poisson vector �elds are a Lie subalgebra of X(M), moreover for a function f ∈ C∞(M)
and a Poisson vector �eld X, we have

[X,Xf ] = XX(f),

so the Hamiltonian vector �elds are a Lie ideal in the Poisson vector �elds.

(d) A vector �eld X is a Poisson vector �eld, i� for all functions f, g ∈ C∞(M) the equality

X({f, g}) = {X(f), g}+ {f,X(g)}

holds.
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(e) A vector �eld X is a Poisson vector�eld, i� its (local) �ow is a Poisson map.

Proof: In the �rst four points we will see the strength of the Schouten calculus:

(a) Let f ∈ C∞(M) be arbitrary, then

JXf , πKS = JJf, πKS, πKS = Jf, Jπ, πKSKS − JJf, πKS, πKS

= −JJf, πKS, πKS = −JXf , πKS

and hence JXf , πKS = 0.

(b) Let f, g ∈ C∞(M), then by using Proposition 2.1.6

{f, g} = −{g, f} = JJg, πKS, fKS = JXg, fKS = Xg(f).

Moreover, we have

[Xf , Xg] = JJf, πKS, Jg, πKSKS = JJJf, πKS, gKS, πKS + JJJf, πKS, πKS, gKS

= −J{f, g}, πKS + JLXfπ, gKS

= −X{f,g}

(c) Let X,Y be two Poisson vector �elds, then

L[X,Y ]π = JJX,Y KS, πKS = JX, JY, πKSKS − JY, JX,πKSKS = 0.

(d) Let f, g ∈ C∞(M) and let X be a vector �eld, then

X({f, g}) = JX, {f, g}KS = −JX, JJf, πKS, gKSKS

= −JJX(f), πKS, gKS − JJf,LXπKS, gKS − JJf, πKS, X(g)KS

= {X(f), g}+ {f,X(g)} − JJf,LXπKS, gKS.

Hence, we see that if X is Poisson the equality holds. If now the equality holds, then we know
that

0 = JJf,LXπKS, gKS = df ⊗ dg(LXπ).

Since the di�erentials of functions span the cotangent space at every point and we get the claim.

(e) Let X be a vector �eld, then we have for its �ow

d

dt
(ΦX

t )∗π = (ΦX
t )∗(LXπ).

If X is a Poisson vector �eld, we have that d
dt(Φ

X
t )∗π = 0 and hence π = (ΦX

0 )∗π = (ΦX
t )∗π

for all t. If ΦX
t is a Poisson map, we have that d

dt(Φ
X
t )∗π = d

dtπ = 0 and and the equivalence
follows. �

The quotient

H1
π(M) =

{Poisson vector �elds}
{Hamiltonian vector �elds}

measures how many Poisson vector �elds are not Hamiltonian vector �elds and is called the �rst
Poisson cohomology. Moreover, as a direct consequence of Theorem 2.2.2 we have:
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Corollary 2.2.3 Let (M,π) be a Poisson manifold. The vector space H1
π(M) carries the structure

of a Lie algebra induced by the usual Lie bracket from X(M).

In general, this quotient can be rather wild and hard to compute. In some special cases one can
compute it as for the trivial Poisson structure.

Example 2.2.4 Let M be a manifold and π = 0 the trivial Poisson bivector �eld, then we have
Xf = 0 for all f ∈ C∞(M), but it is clear that for all vector �elds X, we have LXπ = 0 and hence
every vector �eld is a Poisson vector �eld.

In Example 2.2.4, we could see that sometimes two functions have the same Hamiltonian vector
�eld even though they do not coincide (even if there di�erence is not constant). This motivates the
following de�nition

De�nition 2.2.5 Let (M,π) be a Poisson manifold. A function f ∈ C∞(M) is called Casimir

function, if Xf = 0. The vector space of all Casimir functions is also called zeroth Poisson cohomology

and is denoted by H0
π(M).

Remark 2.2.6 (∗) The notation H0
π(M) and H1

π(M) suggests that both vector spaces are part of
a cohomology theory for Poisson manifolds and this is in fact true, but the exact formulation goes
beyond the scope of this lecture notes.

Let us close this section with a lemma connecting Hamiltonian vector �elds and Poisson maps:

Lemma 2.2.7 Let φ : (M,πM ) → (N, πN ) be a Poisson map. For every function f ∈ C∞(N), we
have

Xφ∗f ∼φ Xf

Proof: We have for g ∈ C∞(N)

(TpφXφ∗f (p))(g) = Xφ∗f (p)(φ∗g) = −{φ∗f, φ∗g}M (p) = −{f, g}N (φ(p)) = Xf (φ(p))(g)

and the claim is proven. �

2.3 Examples

2.3.1 Constant and linear Poisson Structures

We consider M = V , where V is a �nite dimensional real vector space, with a given basis {ei}1≤i≤n
and its dual {ei}1≤i≤n. For a skew symmetric matrix {πij}1≤i,j≤n we de�ne

π =
1

2
πij

∂

∂xi
∧ ∂

∂xj
,

where the coordinate xi is de�ned by V 3 v 7→ ei(v) ∈ R. One can see by using the local formula for
Jπ, πKS, that π is indeed a Poisson bivector. In this case we call π constant. Note that the de�nition
of being a constant Poisson structure is independent of the chosen basis, i.e. if a Poisson structure
on V is constant for one basis, it is constant for all.

Proposition 2.3.1 (linear Weinstein Splitting Theorem) For a constant Poisson bivector π of

rank 2d on V there is a basis (f1, . . . , fd, g1 . . . , gd, h1, . . . , hn−2d), such that

π =
d∑
i=0

∂

∂qi
∧ ∂

∂pi
,

where the qi's (resp. the pi's) correspond to the basis elements fi (resp. gi).
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Proof: Exercise. �

From Proposition 2.3.1, one can see that in this case the Casimir functions are exactly the functions
which are constant in q and p directions.

Let us now de�ne what a linear Poisson structure is. Let therefore V be again a real vector space
with a given basis {ei}1≤i≤n. A Poisson bivector �eld π is called linear, if there are cijk ∈ R with

cijk = −cjik , such that

π =
1

2
xkcijk

∂

∂xi
∧ ∂

∂xj
.

Note that the de�nition of π being linear is also independent of the choice of the basis. Moreover, the
constants cijk cannot be chosen arbitrary:

Proposition 2.3.2 A bivector �eld π = 1
2x

kcijk
∂
∂xi
∧ ∂
∂xj

for cijk ∈ R is Poisson, i�

ci`mc
jk
` + ck`mc

ij
` + cj`mc

ki
` = 0

für alle i, j, k,m ∈ {1, . . . , n}.

Proof: A tiny computation shows that

Jπ, πKS = xm(ci`mc
jk
` + ck`mc

ij
` + cj`mc

ki
` )

∂

∂xi
∧ ∂

∂xj
∧ ∂

∂xk
�

Corollary 2.3.3 A bivector �eld π = 1
2x

kcijk
∂
∂xi
∧ ∂
∂xj

for cijk ∈ R is Poisson, i� the map

V ∗ × V ∗ 3 (α, β) 7→ αiβjc
ij
k e

k ∈ V ∗

is a Lie bracket.

Note that this corollary shows that linear Poisson structures and �nite dimensional real Lie alge-
bras are in one-to-one correspondence given by Corollary 2.3.3:{

linear Poisson structures on V
}

1:1←→
{
Lie algebra structures on V ∗

}
.

For a real �nitie dimensional Lie algebra g, we call the associated Poisson structure the KKS-Poisson
structure (Kostant-Kirillov-Souriau).

2.3.2 Symplectic Manifolds

De�nition 2.3.4 A symplectic manifold (M,ω) is a manifold endowed with a 2-form ω ∈ Ω2(M),
such that

(a) dω = 0 and

(b) ω is non-degenerate, i.e. ω[ : TM 3 vp 7→ ω(p)(vp, · ) ∈ T ∗M is bijective.

Even though symplectic manifolds play an important role in many branches in math, we will only
consider them as particularly nice Poisson manifolds. So let us show that we can de�ne a canonical
Poisson bracket: First we de�ne a vector �eld Hf for each function f ∈ C∞(M) which is uniquely
determined by the equation

ιHfω = df, (2.3.1)

the we set

{f, g}ω := Hg(f) (2.3.2)

for all f, g ∈ C∞(M).



20 Chapter 2. Poisson Geometry

Proposition 2.3.5 Let (M,ω) be a symplectic manifold and let { · , · }ω be de�ned as in Equation

(2.3.2), then { · , · }ω is a Poisson bracket. Moreover, the vector �elds de�ned in Equation (2.3.1) are
exactly the Hamiltonian vector �elds of { · , · }ω and we have that

π] ◦ ω[ = idTM as well as ω[ ◦ π] = idT ∗M

for the Poisson bivector �eld π of { · , · }ω.

Proof: We begin showing that { · , · }ω is a Poisson bracket. So let f, g, h ∈ C∞(M)

• {f, g}ω = Hg(f) = df(Hg) = ιHfω(Hg) = ω(Hf , Hg) = −ω(Hg, Hf ) = −{g, f}ω.

• {f, gh}ω = −Hf (gh) = −Hf (g)h− gHf (h) = {f, g}ωh+ g{f, h}ω.

• We �rst proof that [Hf , Hg] = −H{f,g}ω :

ι[Hf ,Hg ]ω = [LHf , ιHg ]ω = LHf ιHgω − ιHgLHfω

= LHf dg − ιHg ιHf dω − ιHg dιHfω

= dLHf g − 0− ιHg d2f

= −d{f, g}ω,

where we used that [LX , ιY ] = ι[X,Y ] holds for all vector �elds X,Y ∈ X(M) and Cartan's
magic formula. Now we have

{f, {g, h}ω}ω = H{g,h}ω(f) = −[Hg, Hh](f) = −Hg(Hh(f)) +Hh(Hg(f))

= −{{f, h}ω, g}ω + {{f, g}ω, h}ω = {g, {f, h}ω}ω + {{f, g}ω, h}ω.

It follows now immediately, that Hf = Xf for all f ∈ C∞(M), since Xf (g) = {g, f}ω = Hf (g)
for all g ∈ C∞(M). Moreocer, we have that

df = ω[(Xf ) = ω[(π](df))

and since the di�erentials of functions span the cotangent space, we have the claim. �

Moreover, if we de�ne non-degenerate Poisson bivector �eld by requiring that the map π] : T ∗M →
TM is bijective, then we have

{
non-degenerate Poisson bivector �elds on M

}
1:1←→

{
symplectic 2-forms on M

}
.

We can see now Poisson brackets as a generalization of symplectic structures allowing them to be
singular.

Let us check in this case how the Casimir functions and the Poisson vector �elds behave. In fact,
there are very few Casimir functions:

Lemma 2.3.6 Let (M,ω) be a symplectic manifold. Then

Xf = 0 ⇐⇒ f is locally constant

Proof: We have

Xf = 0
ω is sympl.⇐⇒ df = 0 ⇐⇒ f is locally constant. �



2.3. Examples 21

Note that however the converse statement is not true: we consider

π = x
∂

∂x
∧ ∂

∂y

as a Poisson structure on R2. For C∞(R2), we have

Xf = x
∂f

∂y

∂

∂x
− x∂f

∂x

∂

∂y
,

and so Xf = 0 is equivalent to ∂f
∂y = ∂f

∂x = 0 and so f has to be constant. On the other hand π is
clearly not symplectic.

We also have a nice interpretation of the Poisson vector �elds:

Lemma 2.3.7 Let (M,ω) be a symplectic manifold with Poisson bivector �eld π. Then

(a) LXω = 0 i� X is a Poisson vector �eld

(b) the form ω[(X) is closed i� X is a Poisson vector �eld.

(c) the vector �eld π](α) is Poisson i� α is closed.

Proof: Exercise. �

Now we want to �nd examples for symplectic manifolds, which are by the above discussion also
Poisson manifolds. Luckily enough there are a lot examples ranging from rather abstract constructions
to concrete examples.

Example 2.3.8 We consider S2 ⊆ R3 and view the tangent bundle TS2 as a subbundle of the trivial
bundle TSR

3 = S ×R3. We de�ne ω ∈ Ω2(S2) pointwise by

ω(p)(v, w) = 〈p, v × w〉

This form is closed by dimensional arguments and non-degenerate which can be shown by a tiny
computation.

In fact there are two possible generalizations of this example: The �rst one comes from the
observation that S2 ' CP 1 and in fact every complex projective space CPn admits a symplectic
structure, the so-called Fubini-Study form (Exercise!). The other possble way of generalizng is to go
to arbitrary orientable 2-dimensional manifolds:

Lemma 2.3.9 Every orientable two dimensional manifold admits a symplectic structure.

Proof: LetM be an orientable 2-dimensional manifolds, then there exists a volume form ω ∈ Ω2(M).
This form is closed by dimensional reasons (i.e. dω ∈ Ω3(M) = 0) and since it is a volume form it is
also symplectic. �

But also beyond two dimension there are plenty of examples. Let us consider an arbitrary manifold
M and its cotangent bundle π : T ∗M →M and let us de�ne the canonical 1-form θ ∈ Ω1(T ∗M) by

θαx(vαx) = αx(Tαxπ(vαx))

Lemma 2.3.10 Let (U, q) be a chart of M and (T ∗U, q, p) the induced chart of of T ∗M , then

θ
∣∣
T ∗U

= pi dqi.
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Proof: In general, we know that there exist functions αi, β
j ∈ C∞(T ∗U), such that θ

∣∣
T ∗U

= αi dqi+

βj dpj . In the induced chart the projection π is particualrly easy: π(q, p) = q and hence Tπ( ∂
∂qi

) = ∂
∂qi

and Tπ( ∂
∂pj

) = 0 for all i, j. This implies that

θ(q,p)(
∂

∂qi
) = pi and θ(q,p)(

∂

∂pj
) = 0.

If we now compare the coe�cients, we see that αi = pi and βj = 0 for all i, j. �

Proposition 2.3.11 Let M be a manifold. The two form ω0 ∈ Ω2(T ∗M) de�ned by ω0 = −dθ is

symplectic. ω0 is called the canonical symplectic structure on T ∗M .

Proof: ω0 is obviously closed, since d2 = 0. Using the the local formula from Lemma 2.3.10, we see
that ω0

∣∣
T ∗U

= dqi ∧ dpi and hence it is non-degenerate. �

Remark 2.3.12 Note that symplectic manifolds are by themselves interesting objects to study not
only from the geometric, but also from the topological point of view, since the existence of a symplectic
structure on a (compact) manifold induces topological constraints on the manifold itself (not only the
dimension). There are �easy� arguments that S2 is the only even dimesnional sphere that admits a
symplectic structure.

2.4 Poisson Submanifolds, theWeinstein Splitting Theorem and Sym-
plectic foliations

In this section we will see that symplectic manifolds can be seen as the smallest building blocks of
Poisson manifolds, i.e. every Poisson manifold is made up of symplectic manifolds which nicely glued
together (we will give this sentence sense throughout this section). In order to show this, we �rst
have to improve Proposition 2.1.6 to a more fundamental local structure theorem:

Theorem 2.4.1 (Weinstein Splitting theorem) Let (M,π) be a Poisson manifold and let x ∈M ,

then there exist local coordinates (q1, . . . , qk, p1, . . . , pk, y
1 . . . , ys) centered around x, such that

π
∣∣
U

=
∂

∂qi
∧ ∂

∂pi
+

1

2
ϕab(y)

∂

∂ya
∧ ∂

∂yb
,

where k = rank(π)x and ϕkl(y) are functions only depending on y with ϕkl(0) = 0.

In order to proof that theorem, we need a standard lemma about commuting vector �elds.

Lemma 2.4.2 Let M be a manifold, and let V1, . . . , VN ∈ X(M) be pairwise commuting vector �elds,
such that V1(p), . . . , VN (p) are linear independent for a point p ∈M , then there exist local coordinates

(U, x) around p, such that

Vi
∣∣
U

=
∂

∂xi

for i ∈ {1, . . . , N}.

Proof: Exercise. �
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Proof (of Theorem 2.4.1): Let x ∈M and let k = rank(π)x > 0, since otherwise there is nothing
to show. We can assume that we have shown the statement for all Poisson structures with rank(π) < k.
Since the rank is bigger than 0, we can �nd a Function p ∈ C∞(M), such that Xp(x) 6= 0. With
Lemma 2.4.2, we can �nd local coordinates (U, x) such that

Xp

∣∣
U

=
∂

∂x1
.

We set q = x1 and see that

Xp(p) = 0, Xq(q) = 0, Xp(q) = 1 and Xq(p) = −1,

which means in particular that XpandXq are linearly independent. Moreover, we see that

[Xp, Xq] = −X{p,q} = −X−1 = 0

and we can �nd, by Lemma 2.4.2, new coordinates (y1, . . . , yn), such that

Xq =
∂

∂y1
and Xp =

∂

∂y2
.

Since

dq ∧ dp ∧ dy3 ∧ · · · ∧ dyn = (
∂q

∂y1

∂p

∂y2
− ∂p

∂y1

∂q

∂y2
) dy1 ∧ · · · ∧ dyn

= dy1 ∧ · · · ∧ dyn,

we see that (q, p, y3, . . . , yn) is also a coordinate chart. Moreover, we have {q, p} = 1 and {p, yi} =
{q, yi} = 0 for all 3 ≤ i ≤ n, which means in particular:

π
∣∣
U

=
∂

∂q
∧ ∂

∂p
+

1

2

s∑
m,n=3

π̃mn(p, q, y)
∂

∂ym
∧ ∂

∂yn
.

Since π̃mn = {ym, yn}, we have that

∂π̃mn

∂p
= {q, {ym, yn}} = {{q, ym}, yn}+ {ym, {q, yn}} = 0

And hence the functions π̃mn do not depend on the coordinate p. With a similar computation, one
sees that they also do not depend on q. One sees that π̃ := 1

2

∑s
m,n=3 π̃

mn(y) ∂
∂ym ∧

∂
∂yn is a Poisson

structure as well and having rank strictly smaller than k at x. So inductively we can proceed to get
the claim. �

Corollary 2.4.3 (Darboux Theorem) Let (M,ω) by a symplectic manifold of dimension 2n, then
around every point x ∈M there exists coordinates (U, {q1, . . . , qn, p1, . . . , pn}), such that

ω
∣∣
U

= dqi ∧ dpi.

In this section we are dealing with submanifolds, which means for us always immersed submanifolds.
If the manifold happens to be embedded, we will always refer to it as embedded submanifold.

De�nition 2.4.4 Let (M,π) be a submanifold. A Poisson submanifold is a is a submaniold ι : C ↪→
M together with a Poisson bivector �eld πC ∈ X2(C), such that ι is a Poisson map.

One special case of Poisson submanifold are level sets of Casimir functions:
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Lemma 2.4.5 Let (M,π) be a Poisson manifold and let fi ∈ H0
π(M) be Casimir functions for i ∈

{1, . . . , N} such that F = (f1, . . . , fN ) : M → RN has regular value 0. Then there is a unique Poisson

structure πC on C = F−1({0}), such that (C, πC) is a(n embedded) Poisson submanifold of (M,π).

Proof: First of all, it is clear that C is an embedded submanifold, since 0 ∈ R is a regular value of
F . Let g, h ∈ C∞(M) be two functions, then we de�ne

{g, h}C = ι∗{g̃, h̃},

where g̃, h̃ ∈ C∞(M), such that ι∗f̃ = f, ι∗g̃ = g. Let us now check that { · , · }C is well-de�ned,
therefore it is enough to show that for a function g̃ ∈ C∞(M) with ι∗g̃ = 0, we also have ι∗{g̃, h̃} = 0
for all h̃ ∈ C∞(M). Since ι∗g = 0 we can always �nd a smooth functions hi ∈ C∞(M) for i ∈
{1, . . . , N}, such that g̃ = fih

i, then we see Xg̃ = fiXhi + hiXfi = fiXhi which is a vector �eld
vanishing at every point c ∈ C ⊆ M , and moreover it follows by de�nition, that ι : C → M is a
Poisson map. The Jacobi identity and that { · , · }C is a biderivation follows trivially from the one
from { · , · }. �

In the following we will try to divide a Poisson manifolds into special submanifolds. In the previous
Lemma we could see that regular level sets of Casimir functions are indeed a �rst approximation to
that, but we can improve this division drastically. To do so, we introduce so-called distributions.

De�nition 2.4.6 Let M be a manifold. A smooth distribution on M is a subset D ⊆ TM , such that

(a) for each p ∈M , the set Dp := D ∩ TpM is a subvector space, in particular Dp 6= ∅.

(b) for Γ∞(D) := {X ∈ X(M) | X(p) ∈ Dp}, we have that for each point there exists a open

neighbourhood U and X1 . . . , Xk ∈ Γ∞(D
∣∣
U

), such that that Dy = span{Xi(y)}1≤i≤k for all

y ∈ U .

Moreover, a smooth distribution D ⊆ TM is called,

• regular, if dim(Dp) = const.

• involutive, if there exists a set of local sections D ⊂ Γ∞loc(D), such that

Dp = {X(p) ∈ TpM | X ∈ D} and [D,D] ⊆ D

whenever de�ned.

Corollary 2.4.7 A smooth distribution D ⊆ TM is regular if and only if it is a subbundle.

Proof: Exercise. �

Note that not every distribution is regular, in fact the distributions which are induced by Poisson
manifolds are usually not. If a distribution is not regular, one can divide it into two disjoint sets:

De�nition 2.4.8 Let E ⊆ TM be a smooth distribution. A point p ∈M is called

(a) regular, if there exists an open neighbourhood U of p, such that dim(Dp) = dim(Dy) for all

y ∈ U .

(b) singular, if it is not regular.

Proposition 2.4.9 Let D ⊆ TM be a smooth distribution. Then



2.4. Poisson Submanifolds, the Weinstein Splitting Theorem and Symplectic foliations 25

(a) the map p 7→ dim(Dp) is lower semi-continuous.

(b) the set of regular points is open and dense.

Proof: Let p ∈ M , then we �nd an open neighbourhood U of p and X1, . . . , Xk ∈ Γ∞(D
∣∣
U

), such
that Dy = span{X1(y), . . . , Xk(y)}. Moreover, we can �nd a subset {Xi1 , . . . , Xil} of {X1, . . . , Xk},
such that {Xi1(p), . . . , Xil(p)} is a basis of Dp. Since {Xi1(p), . . . , Xil(p)} is linearly independent at
p, there is an open neighbourhood V ⊂ U of p, where they are still linear independent, because of
continuity. In particular, at very point y in V they span a subspace of Dy of dimension dim(Dp).

For point (b) it is enough to show that every open neighbourhood U of a point p contains a regular
point. We de�ne

R = {dim(Dy) | y ∈ U},

then clearly we have that R ≤ dim(M) hand hence there is a maximum m of R and let x ∈ U be
chosen such that dim(Dx) = m. The fact that x is a regular point follows now with (a), since we can
�nd an open neighbourhood V ⊆ U of x, such that dim(Dx) ≤ dim(Dy) for all y ∈ V , but

m = dim(Dx) ≤ dim(Dy) ≤ m

for all y ∈ V and the claim is proven. �

Before going on with distributions, let us interrupt this with some Poisson geometry:

Theorem 2.4.10 Let (M,π) be a Poisson manifold. Then imπ] ⊆ TM is an involutive distribution.

Proof: As the image of a vector bundle map, we clearly have that imπ]p ⊆ TpM is a vector subspace.
Moreover, we can choose D = {Xf ∈ Γ∞(imπ]) | f ∈ C∞(M)}. This is a set of sections for which
we have

im(π])p = {X(p) ∈ TpM | X ∈ D} and [D,D] ⊆ D

since for all f, g, we have [Xf , Xg] = X−{f,g} ∈ D and Hamiltonian vector �elds span im(π]) at every

point and hence im(π]) is involutive. �

In fact, among involutive distributions there are even nicer ones, namely integrable ones.

De�nition 2.4.11 A distribution D ⊆ TM is called integrable, if for each point p ∈ M there exists

a submanifold ι : N ↪→M , such that p ∈ ι(N) and

Tqι(TqN) = Dι(q)

for all q ∈ N . A submanifold ful�lling this property is called integral submanifold.

Note that it clear, that every integrable distribution is involutive. In fact, we can choose all the
sections as E (from De�nition 2.4.6). The converse is however not true in general: one has to impose
another condition on the distribution in order to get an equivalence. This is what is called Sefan-

Sussmann-Distributions. This additional condition is always ful�lled, if the distribution is regular.

What follows now are some rather technical facts about integral submanifolds, in fact we want to
discuss the global nature of integral submanifolds inside M . One of the di�culties is, that in general
integral submanifolds are only injectively immersed, but in fact they behave slightly nicer than just
that.
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Lemma 2.4.12 Let D ⊆ TM be a smooth distribution and let ιj : Nj →M be integral submanifolds

for j = 1, 2 of D. Then ι−1
j (ι1(N1) ∩ ι2(N2)) is open and if ι1(N1) ∩ ι2(N2) is non-empty, then

ι−1
2 ◦ ι

∣∣
ι1(N1)∩ι2(N2)

: ι−1
1 (ι1(N1) ∩ ι2(N2))→ ι−1

2 (ι1(N1) ∩ ι2(N2))

is a di�eomorphism.

Proof: We assume from the beginning that ι1(N1) ∩ ι2(N2) 6= ∅, since otherwise the statement is
trivial. Thus, let p ∈ ι1(N1) ∩ ι2(N2), then there exists an open neighbourhood U of p and vector
�elds X1, . . . , Xk ∈ Γ∞(D

∣∣
U

), such that they are pointwise linear independent and k = dim(Dp).

Since the Nj are integral submanifolds, we �nd Xj
1 , . . . , X

j
k ∈ X(ι−1

j (U)) such that

Xj
i ∼ιj Xi.

Let us now de�ne the map Φj : Vj → Nj for 0 ∈ Vj ⊆ Rk by

Φ(t1, . . . , tk) = Φ
Xj

1
t1
◦ · · · ◦ Φ

Xj
k

tk
(pj),

where we denote by pj ∈ Nj the unique points, such that ιj(pj) = p and by Φ
Xj
i

t the �ows of Xj
i .

Moreover, Vj is a small enough neighbourhood, such that Φj is de�ned. We have that

TΦj(
∂

∂ti

∣∣
0
) =

d

dt

∣∣
t=0

Φj(0, . . . , t, 0, . . . , 0)

=
d

dt

∣∣
t=0

Φ
Xj
i

t (pj)

= Xj
i (pj)

and hence Φj is a local di�eomorphism around 0. Using now that Xj
i ∼ιj Xi, we know that we have

for the �ows ιj ◦ Φ
Xj
i

t = ΦXi
t ◦ ιj whenever de�ned. It follows that

ι1(Φ1(t1, . . . , tk)) = ι1(Φ
X1

1
t1
◦ · · · ◦ Φ

X1
k

tk
(p1))

= ΦX1
t1
◦ · · · ◦ ΦXk

tk
(p)

= ι2(Φ2(t1, . . . , tk)),

and hence on V = V1 ∩ V2 we have that ι1 ◦ Φ1 = ι2 ◦ Φ2 is an embedding. This means in particular,
that Φj(V ) is an open neighbourhood of pj ∈ Nj , such that Φj(V ) ⊆ ι−1

j (ι1(N1) ∩ ι2(N2)) and since

p was arbitrary, we have that the subsets ι−1
j (ι1(N1) ∩ ι2(N2)) are open.

Moreover it follows that ι−1
2 ◦ι1◦Φ1 = Φ2 and hence ι

−1
2 ◦ι1 is a di�eomorphism around p1 = ι−1

1 (p).
A bijective local di�eoemorphism is a always a di�eomorphism and the claim is proven. �

The preceding lemma is the key to see that we can de�ne a maximal integral submanifold through
a point.

Theorem 2.4.13 Let D ⊂ TM be a smooth distribution, such that there exists an integral submani-

fold through p ∈ M . Then there is a unique maximal connected integral submanifold ι : N ↪→ M , i.e.

for all integral submanifolds j : S → M through p, there exists an open embedding φ : S → N , such

that

N M

S

ι

jφ
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commutes.

Proof: First we de�ne N ⊆M to be the subset of points which are contained in a connected integral
submanifold through p. We de�ne now a topology on N by declaring ια(Uα) ⊆ N for Uα ⊆ Nα to
be a basis for this topology. Note that this is in general �ner than the subspace topology and N is
by de�nition connected and Hausdor�. Moreover, using charts for Nα we obtain charts for N which
are indeed an atlas by Lemma 2.4.12. Furthermore, ι : N → M is smooth and an immersion by
construction. The last, but most subtle point is the second countability of N . This follows from a
theorem which states that if the codomain of an immersion is second countable, then the domain as
well, if it is connected. As a last point we notice that by the very de�nition of the topology of N ,
that every ια : Nα → N is an open embedding. �

Using this we can apply our new knowledge to Poisson geometry:

Theorem 2.4.14 Let (M.π) be a Poisson manifold.

(a) The distribution imπ] is integrable.

(b) Each maximal integral submanifold ι : L → M has a unique symplectic structure ωL, such that

ι is Poisson map.

Proof: Let p ∈ M be arbitrary such that rank(π)p using Theorem 2.4.1, we can �nd a local chart
U with coordinates (q1, . . . , qk, p1 . . . , pk) such that

π
∣∣
U

=
∂

∂qi
∧ ∂

∂pi
+

1

2
ϕab(y)

∂

∂ya
∧ ∂

∂yb
,

where ϕkl(y) are functions only depending on y with ϕkl(0) = 0. We use the embedding ι(q, p) =
(q, p, 0) (restricted to opens). It is now clear that ι de�nes an integral submanifold and hence imπ]

is integrable.
Let now ι : L→M be a maximal integral submanifold. And let f, g ∈ C∞(L) and let x ∈ L, then

there exist open neighbourhoods U ⊆ L and V ⊆ M , such that ι
∣∣
U

: U → V is an embedding and

hence there there exist f̃ , g̃ ∈ C∞(V ), such that (ι
∣∣
U

)∗f̃ = f
∣∣
U
and (ι

∣∣
U

)∗g̃ = g
∣∣
U
. We de�ne

{f, g}L(x) = {f̃ , g̃}V (ι(x)).

To check that this is well de�ned we have to check that if for a function f̃ , such that ι∗f = 0 we have
{f̃ , g̃}V = 0. This follows from the fact that Xg̃ ∈ Γ∞(imπ]

∣∣
V

) and hence there exists a vector �eld
Y ∈ X(U) such that Y ∼ι Xg̃, which implies that

{f̃ , g̃}V (ι(x)) = ι∗(Xg̃(f̃))(x) = Y (ι∗f̃)(x) = 0,

and hence { · , · }L is well de�ned. It is now an easy exercise to see the Jacobi identity, skew symmetry
and the derivation property. Moreover we can check the non-degeneracy of { · , · } in a chart from
Theorem 2.4.1 easily. �

So in some sense, we can understand a Poisson manifold as a collection of symplectic submanifolds,
such that the symplectic structures glue smoothly in a sense. A maximal integral submanifold is
called symplectic leaf and the collection of all symplectic leaves is called the symplectic foliation of
the Poisson manifold.

Let us discuss some examples. We start with the easiest:

Example 2.4.15 Let (M,ω) be a symplectic manifold then the corresponding symplectic leaves are
the connected components of M .
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A bit more involved are linear Poisson structures: let us pick a connected Lie group G with Lie
algebra g and let π the Poisson structure on g∗ from Section 2.3.1. We denote by Ad∗ : G× g∗ → g∗

the coadjoint action, then the symplectic leaves are exactly the coadjoint orbits. We are going to use
the following lemma

Lemma 2.4.16 Let Φ: M × G → M be a Lie group action of a connected Lie group G with Lie

algebra g on a manifold M . The distribution D given by Dm = {ξM (m) | ξ ∈ g} is a smooth

integrable distribution. Moreover, the maximal integral submanifolds are exactly the orbits.

Proof: Let us �x a point m ∈M and ed�ne the map Φm : G→M by

Φm(g) = Φ(m, g).

By de�nition we have that the orbit through m is the image of Φm. We want to show �rst that
we can �nd a manifold and an injective immersion, such that the orbit is an immersed submanifold.
Let us de�ne Gm = {g ∈ G | Φ(m, g) = m}, which is a closed Lie subgroup and hence G/Gm is
a manifold, such that p : G → Gm\G is a surjective submersion. Thus, there exists a smooth map
φm : Gm\G→M , such that

G M

Gm\G

Φm

p
φm

commutes. Let [g], [h] ∈ G/Gm be such that φm([g]) = φm([h]), which means that Φ(m, g) =
Φ(m,h) ⇐⇒ Φ(h−1g,m) = m. This in turn means that gh−1 ∈ Gm and hence [h] = [gh−1h] = [g].
Let v ∈ T[g]Gm\G then there exists a curve γ : I → G, such that γ(0) = g and d

dt

∣∣
t=0

[γ(t)] = 0. Let

us denote ξ = d
dt

∣∣
t=0

γ(t)γ(0)−1 ∈ g, then

T[g]φm(v) =
d

dt

∣∣
t=0

Φ(γ(t),m) =
d

dt

∣∣
t=0

Φ(γ(t)γ(0)−1,Φ(γ(0),m)) = ξM (Φ(g,m)) = ξM (φm([g])),

which means in particular that Tφm(TGm\G) = D. The last thing to show is that φm is immersive,
so let v ∈ kerT[g]φm. As above we choose a path such that γ : I → G, such that γ(0) = g and
d
dt

∣∣
t=0

[γ(t)] = v. Without loss of generality we may assume that γ(t) = exp(tξ)g with ξ ∈ g. We have

0 = T[g]φ(v) =
d

dt

∣∣
t=0

Φ(m, exp(tξ)g) =
d

dt

∣∣
t=0

Φ(Φ(m, exp(tξ)), g) = TmΦ( · , g)(ξM (m))

Since Φ( · , g) is di�eomorphism, we have that ξM (m) = 0. We claim now that this implies that
exp(tξ) ∈ Gm and in fact this follwos from the exsitence and uniqueness theorem for �ows of vector
�elds. Therefore we have γ(t) = [exp(tξ)g] = [g] and is therefore constant and hence v = 0. �

So we are left to show that the distribution induced by the Poisson structure π is the same as the
distribution spanned by the fundemantal vector �elds. Let us choose a basis {ei}i∈{1,...,N}, then we

have π = 1
2xkC

k
ij

∂
∂xi
∧ ∂
∂xj

and ξg∗ = xjξ
kCjkl

∂
∂xl

and hence we have ξg∗ = π](−ξi dxi) and we get the

claim.

2.5 Regular Poisson Structures

There is a big class of Poisson manifolds which behave very nicely in many ways: regular Poisson
manifolds. We are mainly interested in them, since they provide a nice enough structure to quantize
them rather easily, which we will see in the the next chapter.
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De�nition 2.5.1 A Poisson manifold (M,π) is called regular, if rank(π) is constant or equivalently
if its distribution is regular. Moreover, all the symplectic leaves of a regular Poisson manifold have

the same dimension.

Let us start with motivating examples:

Example 2.5.2 Every symplectic manifold is a regular Poisson manifold.

Example 2.5.3 Let so(3)∗ be the dual of the Lie algebra of in�nitesimal rotations together with the
KKS-Poisson structure. If we restrict to so(3)∗ \ {0}, we get a regular Poisson manifold.

Recall from Corollary 2.4.7 that regularity of the Poisson tensor implies that Fπ := im(π]) ⊆ TM
is a subbundle.

Remark 2.5.4 Note that since Γ∞(Fπ) ⊆ X(M), we can take the commutator of two sections in
Γ∞(F) and the involutivity implies that we get back a section of Fπ.

Moreover, we have a short exact sequence of vector bundles and thus we can choose a splitting

0 kerπ] T ∗M Fπ 0,π]

φ

i.e. a vector bundle map φ : Fπ → T ∗M , such that π] ◦ φ = id and hence T ∗M = kerπ]⊕ imφ. With
this map we de�ne ωπ ∈ Γ∞(Λ2F∗π) by

ωπ(e, f) = π(φ(e), φ(f))

for all e, f ∈ Fπ. ωπ is called the foliated symplectic form associated to π. Moreover, one can show
that ω is independent of φ (Check!).

Lemma 2.5.5 The tensor ωπ ∈ Γ∞(Λ2F∗π) is non-degenerate.

Proof: Let e ∈ Fπ such that ωπ(e, f) = 0 for all f , then we have φ(f)(e) = 0. Moreover, let
α ∈ kerπ], then we have α(e) = α(π]φ(e)) = −φ(e)(π](α) = 0 and hence e = 0. �

Since Fπ is involutive, the sections Γ∞(Fπ) possess a Lie bracket, which is just the Lie bracket of
the vector �elds. Therefore, we can de�ne the R-linear map dkFπ : Γ∞(ΛkF∗π)→ Γ∞(Λk+1F∗π) by

dFπωπ(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)iXi(ω(X1, . . . ,
i
∧, . . . , Xk+1))

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . ,
i
∧, . . . ,

j
∧, . . . , Xk+1)

for all ω ∈ Γ∞(ΛkF∗π) and X1, . . . , Xk+1 ∈ Γ∞(Fπ) and k ≥ 1. For k = 0 we de�ne

Γ∞(Λ0F∗π) = C∞(M) 3 f 7→ (X 7→ X(f)) ∈ Γ∞(F∗π).

d =
∑

k dk : Γ∞(Λ•F∗π)→ Γ∞(Λ•+1F∗π) is called foliated de Rham di�erential. And we obtain

Lemma 2.5.6 The de Rham di�erential dFπ has the following properties

(a) d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ for all α ∈ Γ∞(ΛkF∗π) and Γ∞(Λ`F∗π).
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(b) d2 = 0.

Lemma 2.5.7 The two form ωπ ∈ Γ∞(Λ2F∗π) is closed, i.e. dFπωπ = 0 and we have

{f, g} = ωπ(Xf , Xg).

Moreover, the inverse ω−1 ∈ Γ∞(Λ2Fπ) is given by π under the canonical inclusion ι : Fπ ↪→ TM .

Proof: Let f, g ∈ C∞(M), then we have Xf , Xg ∈ Γ∞(Fπ) and hence

ω(Xf , Xg) = φ(Xf )(Xg) = π(φ(Xf ),dg) = −dg(π](φ(Xf ))) = −dg(Xf ) = {f, g}.

It follows for f, g, h ∈ C∞(M) that

dFπωπ(Xf , Xg, Xh) = 2({f, {g, h}} − {g, {f, h}}+ {h, {f, g}}) = 0,

because of the Jacobi identity. Since Hamiltonian vector �elds span Fπ at every point, the claim is
proven. Let us now denote by ω−1

π ∈ Γ∞(Λ2Fπ) denote the tensor, such that (ω−1
π )] ◦ω[π = idFπ , then

we have for f ∈ C∞(M) that df
∣∣
Fπ

= ω[(Xf ) this means

df ⊗ dg(ω−1
π ) = df((ω−1

π )](dg)) = df(Xg) = {f, g}

and by the de�nition of the Poisson bivector �eld. �

Corollary 2.5.8 Let F ⊆ TM be a regular foliation. There is a one-to-one correspondence between

foliated symplectic 2-forms ω ∈ Γ∞(Λ2F2) and regular Poisson structures with Fπ = F.

The associated foliated symplectic form has a very nice connection to the symplectic forms on the
symplectic leaves:

Lemma 2.5.9 Let (M,π) be a regular Poisson manifold, let ωπ ∈ Γ∞(Λ2F∗π) the associated foliated

symplectic form and let ι : S →M be a symplectic leaf. The symplectic structure ωS ∈ Ω2(S) is given
by

ωS(Xp, Yp) = ωπ(TpιXp, TpιYp)

Proof: We use Theorem 2.4.14: Let f, g ∈ C∞(M) and let { · , · }S be the Poisson structure associ-
ated to ωS . Then we know that

ι∗{f, g} = {ι∗f, ι∗g}S

and thus

ωS(Xι∗f , Xι∗g)
∣∣
p

= {ι∗f, ι∗g}S(p) = ι∗{f, g}(p) = ι∗(ωπ(Xf , Xg))
∣∣
p

= ωπ(Xf (ι(p)), Xg(ι(p))) = ωπ(TpιXι∗f , TpιXι∗g).

Since the Hamiltonian vector �elds span the tangent spaces TpS point-wise, the claim is proven. �

This means, to some extend, we can use symplectic techniques for regular Poisson manifolds in
the sense that we can just replace the tangent bundle with Fπ. Our last aim is to show that there is
a partial connection for which the symplectic form is parallel.

De�nition 2.5.10 Let (M,π) be a regular Poisson manifold. A partial connection on Fπ is a bilinear

map ∇π : Γ∞(Fπ)× Γ∞(Fπ)→ Γ∞(Fπ), such that
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(a) ∇πfXY = f∇πXY

(b) ∇πXfy = X(f)Y + f∇πXY

(c) ∇πXY −∇πYX − [X,Y ] = 0

for all X,Y ∈ Γ∞(Fπ) and f ∈ C∞(M).

Lemma 2.5.11 There exists a partial connection on Fπ.

Proof: Let us choose a �bre metric g on Fπ. We de�ne implictely

g(∇πXY, Z) =
1

2

(
X(g(Y, Z)) + Y (g(X,Z)))− Z(g(X,Y )) + g([X,Y ], Z)− g([Y, Z], X)− g([X,Z], Y )

)
for X,Y, Z ∈ Γ∞(Fπ). To prove that this operator is well-de�ned and has peroperties (a)-(c) is an
exercise. �

Having a partial connection ∇π, we can immediatly extend it to Γ∞(Λ•Fπ) by demanding a
Leibniz rule on ∧-product:

∇πX(Y ∧ Z) = (∇πXY ) ∧ Z + Y ∧ (∇πXZ)

for X,Y, Z ∈ Γ∞(Fπ). Moreover, it induces always a dual connection by demanding a Leibniz rule
on insertions:

∇πXα(Y ) = X(α(Y ))− α(∇πXY )

for X,Y ∈ Γ∞(Fπ) and α ∈ Γ∞(F∗π). We also can extend it by

∇πX(α ∧ β) = (∇πXα) ∧ β + α ∧ (∇πXβ)

for X ∈ Γ∞(Fπ) and α, β ∈ Γ∞(F∗π) to Γ∞(Λ•F∗π). For a foliated k-form γ ∈ Γ∞(ΛkF∗π), we have
then

∇πXγ(X1, . . . , Xk) = X(γ(X1, . . . , Xk))− γ(∇πXX1, X2, . . . , Xk)− · · · − γ(X1, . . . , Xk−1,∇πXXk).

Lemma 2.5.12 Let (M,π) be a regular Poisson manifold and ωπ ∈ Γ∞(Λ2F∗π) the associated foliated
symplectic form. Then there exists a partial connection ∇π, such that

∇πXωπ = 0 and ∇πXπ = 0

for all X ∈ Γ∞(Fπ).

Proof: Let us choose any partial connection ∇̂π, then we de�ne implicitly

ωπ(∇πXY, Z) = ωπ(∇̂πXY,Z) +
1

3
∇πXωπ(Y, Z) +

1

3
∇πY ωπ(X,Z)

for X,Y, Z ∈ Γ∞(Fπ). We �rst have to check that it is in fact a partial connection: let f ∈ C∞(M)
and X,Y, Z ∈ Γ∞(Fπ), then

ωπ(∇πXfY, Z) = ωπ(∇̂πXfY, Z) +
1

3
∇̂πXωπ(fY, Z) +

1

3
∇̂πfY ωπ(X,Z)

= ωπ(X(f)Y + f∇̂πXY,Z) + f(
1

3
∇̂πXωπ(Y,Z) +

1

3
∇̂πfY ωπ(X,Z))
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= ωπ(X(f)Y,Z) + f(ωπ(∇̂πXY,Z) +
1

3
∇̂πXωπ(Y, Z) +

1

3
∇̂πfY ωπ(X,Z))

= ωπ(X(f)Y,Z) + fωπ(∇πXY,Z)

= ωπ(X(f)Y + f∇πXY,Z).

Since theis equality holds for all Z and ω is non-degenerate, it follows that ∇πXfY = X(f)Y +f∇πXY ,
similarly we can see that ∇πfXY = f∇πXY . Let again be X,Y, Z ∈ Γ∞(Fπ) given, then

ωπ(∇πXY −∇πYX,Z) = ωπ(∇πXY,Z)− ωπ(∇πYX,Z) = ωπ(∇̂πXY − ∇̂πYX,Z)

= ωπ([X,Y ], Z)

and henceforth also ∇πXY −∇πYX = [X,Y ]. The most important property is that ∇πXωπ = 0, which
follows since

∇πXωπ(X,Y ) = X(ωπ(Y,Z))− ωπ(∇πXY,Z)− ωπ(Y,∇πXZ)

= X(ωπ(Y,Z))− ωπ(∇̂πXY,Z)− 1

3
∇̂πXωπ(Y,Z)− 1

3
∇̂πY ωπ(X,Z) + ωπ(∇̂πXZ, Y )

+
1

3
∇̂πXωπ(Z, Y ) +

1

3
∇̂πZωπ(X,Y )

= ∇πXωπ(Y, Z)− 1

3
∇̂πXωπ(Y, Z)− 1

3
∇̂πY ωπ(X,Z)

+
1

3
∇̂πXωπ(Z, Y ) +

1

3
∇̂πZωπ(X,Y )

=
1

3
(∇πXωπ(Y, Z)− ∇̂πY ωπ(X,Z) + ∇̂πZωπ(X,Y ))

=
1

3
(dFπωπ(X,Y, Z))

= 0.

The last claim, ∇πXπ = 0, follows directly from ∇πXωπ = 0 and π = ω−1
π . �

2.6 Lie group actions, moment maps and phase space reduction

Throughout the whole section we assume that all Lie group actions are free and proper, which means
that a reasonable quotient space (as a manifold) exists.

De�nition 2.6.1 Let (M,π) be a Poisson manifold and let Φ: M × G → M be a Lie group action.

The action is called Poisson, if the map Φg : M 3 m 7→ Φ(m, g) is a Poisson map for all g ∈ G.

Lemma 2.6.2 Let Φ: M × G → M be a Poisson action on (M,π). Then there exists a unique

Poisson structure πG on M/G such that the canonical projection is p : M →M/G is a Poisson map.

Proof: We can identify C∞(M/G) = C∞(M)G := {f ∈ C∞(M) | Φ∗gf = f for all g ∈ G} and thus

we get that for f, h ∈ C∞(M)G

Φ∗g{f, h} = {Φ∗gf,Φ∗hh} = {f, h}.

This we get a Poisson bracket on C∞(M/G). Note that p∗ : C∞(M/G) → C∞(M) conicides with
with the identi�cation C∞(M/G) = C∞(M)G. �
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Note that one can say very few about the structure of πG even having a full knowledge of π, which
is illustrated by the following example

R : G×G 3 (h, g) 7→ hg ∈ G

is a Lie group action. By exercise 4.3 we see that for all g ∈ G the map T∗Rg : T ∗G → T ∗G is a
symplectic map and hence a Poisson map (since it is a di�eomorphism). Moreover, we have

T∗Re = T∗ idG = idT ∗G

and

T∗Rg ◦ T∗Rh(αk) = T∗Rh(αk) ◦ TkhgRg−1 = αk ◦ TkhRh−1 ◦ TkhgRg−1

= αk ◦ TkhgR(hg)−1 = T∗Rhg(αk).

and hence T∗R de�nes a Lie group action (which is free and proper). One can show (Exercise!), that

p : T ∗G→ T ∗G/G ∼= g∗

is a Poisson map with respect to the KKS-Poisson structure on g∗. This means in turn that even
starting with a symplectic structure, one can arrive by taking quotients to a Poisson structure with
non-constant rank. Also from the physical point of view this does not make too much sense, since if
we start with symmetry of the con�guration space and our phase space is the cotangent of the latter,
we want to arrive the cotangent bundle of a new con�guration space.

De�nition 2.6.3 Let (M,π) be a Poisson manifold and let Φ: M ×G→M be a Poisson action. A

map J : M → g∗ is called moment map, if

(a) J ◦ Φg = Ad∗g ◦J for all g ∈ G.

(b) ξM = XĴ(ξ), for all x ∈ g where Ĵ(ξ) ∈ C∞(M) is given by Ĵ(ξ)(p) = J(p)(ξ).

An Poisson action admitting a moment map is called Hamiltonian.

Lemma 2.6.4 Let (M,π) be a Poisson manifold and let Φ: M × G → M be a Hamiltonian action

with moment map J : M → g∗.

(a) {Ĵ(ξ), Ĵ(η)} = Ĵ([ξ, η])

(b) J : (M,π)→ (g∗, πKKS) is a Poisson map.

Example 2.6.5

(a) Let (M,π) be a Poisson manifold and let H ∈ C∞(M), such that XH has complete �ow ΦXH
t .

Then Φ: M ×R→M with Φ(m, t) = Φt(m) is a Poisson action with moment map H.

(b) Let G be a Lie group with Lie algebra g. The coadjoint action Ad∗ : g∗ ×G→ g∗ is a Poisson
action with respect to the KKS Poisson srtucture. Moreover, it is Hamiltonian with moment
map id : g∗ → g∗.

(c) Let Φ: M ×G → M be a Lie group action, then the cotangent lift T∗Φ: T ∗M ×G → T ∗M is
a Poisson action. Moreover, the map

J : T ∗M 3 αp → αp((ei)M (p))ei ∈ g∗

turns T∗Φ into a Hamiltonian action.
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A Hamiltonian action is compatible with the foliation of a Poisson manifold.

Proposition 2.6.6 Let (M,π) be a Poisson manifold, let Φ: M ×G→M be a Hamiltonian action

of a connected Lie group with moment map J : M → g∗ and let ι : S →M be a symplectic leaf.

(a) The action Φ restricts to an action ΦS : S ×G→ S, i.e. ΦS is a Lie group action, such that

ι(ΦS(s, g)) = Φ(ι(s), g).

(b) The map JS : S → g∗ given by JS(s) = J(ι(s)) turns ΦS into a Hamiltonian action.

Proof: We consider the fundamental vector �elds ξM . Since J : M → g∗ is a moment map, we have
ξM = XĴ(ξ). We de�ne

ξS := XĴS(ξ) für alle ξ ∈ g

an thus we have ξS ∼ι ξM for all ξ ∈ g. This means in particular, that the distribution which is
spanned by the fundamental vector �elds through ι(s) is contained in Tι(TS). Due to Lemma 2.4.16,
this means that the orbits are contained in ι(S). The restriction of the action is also smooth since
smoothness is a local property and locally S is embedded. �

Remark 2.6.7 Note that even if we can restrict a Hamiltonian action to a symplectic leaf due to
Propostion 2.6.6, the restricted action might not by proper anymore. Nevertheless, it will still be free.

The existence of a moment map to a given action is not always clear, but it is clear that a necessary
condition is that the fundamental vector �elds have to be tangent to all the symplectic leaves.

Proposition 2.6.8 Let (M,π) be a symplectic manifold with Poisson action Φ: M × G → M of a

connected Lie group. If H1
dR(M) = 0, then there exists a moment map. Moreover, the di�erence J ′J

of two moment maps J and J ′ is locally constant taking values in (g∗)G.

Proof: Since the fundamental vector �elds are in particular Poisson vector�elds, there are, using
Lemma 2.3.7, unique closed 1-Forms αξ, such that ξM = π](αξ). Moreover, since

π](αAdg ξ) = (Adg ξ)M = Φ∗gξM = Φ∗gπ
](αξ) = π](Φ∗gαξ),

we get Φ∗gαξ = αAdg ξ. Moreover, the map g 3 ξ 7→ αξ ∈ Ω1(M) is linear. We choose a basis
{ei}i∈I of g and since H1

dR(M) = 0 we can �nd Ji ∈ C∞(M), such that dJi = αei . We de�ne
J : M 3 m 7→ Ji(m)ei ∈ g∗. Note that this map is not equivariant so far, but with standard averaging
techniques for proper actions, we can �nd a J being equivariant having the same derivative.

Let now J and J ′ be two moment maps, then

π](d(Jξ − J ′ξ)) = ξM − ξM = 0

and since π is non-degenerate, we get that d(Jξ−J ′ξ) = 0 and hence it is locally constant. In particular
we have on a connected component of M we de�ne J − J ′ = α for α ∈ g∗. Therefore,

α = J(m)− J ′(m) = J(Φg(m))− J(Φg(m)) = Ad∗g(J(m)− J ′(m)) = Ad∗g α,

since G is connected, we have that Φg(m) and m are always in the same connected component. �

Remark 2.6.9 It is clear from the proof Propisition 2.6.8 that for general Poisson manifolds it is a
non-trivial task to decide if a given Poisson action is Hamiltonian or not.
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Theorem 2.6.10 (Noether) Let (M,π) be a Poisson manifold, let Φ: M ×G → M be a Hamilto-

nian action with moment map J : M → g∗ and let H ∈ C∞(M)G. The functions Ĵ(ξ) are constant

along the �ow lines of XH .

Proof: We have

XH(Ĵ(ξ)) = −XĴ(ξ)(H) = ξM (H) = 0

and thus

d

dt
Φ∗t Ĵ(ξ) =

d

dt
Φ∗t (XH(Ĵ(ξ)) = 0. �

A moment map does not only provide conserved quantities, but also allows us to get rid of
unnecessary �un-physical� variables. In the geometric setting this was obtained by Marsden and
Weinstein in the symplectic case and by Ortega Ratiu in the Poisson case. Both cases are more
general than the one presented here.

Theorem 2.6.11 (phase space reduction) Let (M,π) be a Poisson manifold, let Φ: M×G→M
be a Hamiltonian action with moment map J : M → g∗. If 0 ∈ g∗ is a regular value of J , then

Mred := J−1({0})/G

is manifold which admits a unique Poisson structure πred, such that

ι∗{f, g} = p∗{f̃ , g̃}red,

for M
ι←↩ J−1({0})

p
� Mred and f, g ∈ C∞(M) and f̃ , g̃ ∈ C∞(Mred), such that ι∗f = p∗f̃ and

ι∗g = p∗g̃.

Proof: Let m ∈ J−1({0}), then J(Φg(m)) = Ad∗g J(m) = 0 and hence G restricts to an action
on C. G acts free and proper on M and since J−1({0}) ↪→ M is embedded, it also acts free and
proper on J−1({0}) and there is a unique smooth structure on Mred = J−1({0})/G turning the
canonical projection p : J−1({0}) → Mred into a surjective submersion. Let f, g ∈ C∞(Mred) then
p∗f, p∗g ∈ C∞(J−1({0}))G morover let f̃ , g̃ ∈ C∞(M) such that ι∗f̃ = p∗f ι∗g̃ = p∗g. We de�ne

{p∗f, p∗g}red = ι∗{f̃ , g̃}

and note that for ι∗h = 0, we �nd hi ∈ C∞(M), such that h = hiĴ(ei) and hence

ι∗{h, g̃} = ι∗({hi, g̃}Ĵ(ei) + hi{Ĵ(ei), g̃}) = ι∗hi{Ĵ(ei), g̃} = −ι∗hi(ei)M (g̃) = ι∗hi(ei)C(ι∗g̃).

Since ι∗g̃ = p∗g ∈ C∞(J−1({0}))G, we get that ι∗{h, g̃} = 0 and the bracket { · , · }red is well de�ned.
Moreover, we have for all h ∈ G

(ΦC
h )∗{p∗f, p∗g}red = (ΦC

h )∗ι∗{f̃ , g̃} = ι∗Φ∗h{f̃ , g̃} = ι∗{Φ∗hf̃ ,Φ∗hg̃}

But ι∗Φ∗hf̃ = (ΦC
h )∗ι∗f̃ = (ΦC

h )∗p∗f = p∗f and hence we get that {p∗f, p∗g}red is G-invariant for every
f, g ∈ C∞(Mred), which means in particular that using the ismorphism C∞(J−1({0})G = C∞(Mred)
we get a bracket { · , · }red onMred. One can chek, that using the de�nition that it is indeed a Poisson
bracket and is also the only possible choice by construction. �

Lemma 2.6.12 Let (M,π) be a regular Poisson manifold, let Φ: M × G → M be a Hamiltonian

action with moment map J : M → g∗. Then the Poisson structure πred on Mred is also regular and

moreover, we have that rank(kerπ]red) = rank(kerπ]). In particular, if π is symplectic then so is πred.
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Proof: Let c ∈ J−1({0}), then we can choose a splitting T ∗cM = E⊕Ann(TC), such that kerπ]
∣∣
c
⊆

E, since Ann(TcC) = 〈dĴ(ξ)
∣∣
c
〉 and π](Ĵ(ξ)

∣∣
c
) = ξM (c) and since Φ is a free action we get that

π]
∣∣
Ann(TcC)

is injective. Moreover, we have that E ∼= T ∗c C Let α ∈ kerπ]
∣∣
c
⊆ E, then we have that

α(ξM (c)) = α(π](dĴ(ξ)) = −dĴ(ξ)(π](α)) = 0.

This means in particular that there exists a unique β ∈ T ∗p(c)Mred, such that α = β ◦ Tcp. We choose

an f ∈ C∞(Mred) such that df
∣∣
p(c)

= β, and moreover we can �nd f̃ ∈ C∞(M), such that ι∗f̃ = p∗f ,

moreover we can choose f̃ in such a way that df̃
∣∣
c

= α. Now we �nd that for g ∈ C∞(Mred), we have

−dg
∣∣
p(c)

(π]red(df
∣∣
p(c)

) = {f, g}red(p(c)) = ι∗{f̃ , g̃}(c) = −dg̃
∣∣
c
(π](df̃

∣∣
c
)) = 0

for an arbitrary g̃ ∈ C∞(M) with ι∗g̃ = p∗g. Since df
∣∣
p(c)

= β, we get that β ∈ kerπ]red. Moreover,

we have shown that the map χ : kerπ]red

∣∣
p(c)
3 β 7→ β◦Tcp ∈ T ∗c C ∼= E is injective with image kerπ]

∣∣
c
.

And the claim is proven. �

Remark 2.6.13 There is a slightly more involved proof of Lemma 2.6.12, which roughly speaking
goes as follows: one considers the subbundle F = imπ] and de�nes

FC = TC ∩ F
∣∣
C
⊆ TC,

where C := J−1({0}) This is a regular involutive distribution on C together with morphism

FC F

C M

I

ι

such that I∗ : Γ∞(Λ•F∗) → Γ∞(Λ•F∗C) is a cochain map. The one shows that there is a regular
involutive distribution Fred ⊆ TMred and a morphism

F Fred

C Mred

P

p

such that P ∗ : Γ∞(Λ•F∗C)→ Γ∞(Λ•F∗red) ic a cochain map. The foliated symplectic structure onMred

is now a non-degenerate closed foliated 2-Form ωred ∈ Γ∞(Λ•F∗red), such that P ∗ωred = I∗ω, where ω
is the foliated symplectic 2-Form induced by π.



Chapter 3

Formal Deformation Quantization

After having discussed the basics of Poisson geometry, we want to understand deformation quanti-
zation. But before we want to motivate the idea behind and to do so we have to clarify what a
quantization is. Quantum mechanics describes the world on a very small scale very well, but in
daily life we do not see quantum e�ects directly and it is for the motion hardly of importance of
macroscopic objects. This is what is called a classical limit, i.e. the quantum mechanical description
of a macroscopic system should be close to its classical description. The physical parameter which
�measures� the ratio of the di�erence of classical and quantum description is the Planck constant ~.
To summarize, admittedly over-simpli�ed, we have

Quantum theory
~→0−−−→ Classical theory.

A quantization Q is now a right inverse to the classical limit ~ → 0. We argued already in Chapter
2, that classical theories are linked with Poisson geometry and this will be our starting point:

Poisson geometry
Q−→ ???.

To understand what we should expect, we list now the important issues of classical and quantum
mechanical despription (we choose the Heisenberg picture):

Classical Quantum

Observables
Poisson subalgebra Acl ⊆ C∞(M)
on a Poisson manifold (M,π)

subalgebra AQM ⊆ Operators on a
Hilbert space H

Time evolu-
tion

Hamiltonian function H ∈ Acl: Hamilton operator Ĥ ∈ AQM :

d
dtf(t) = {f(t), H} d

dtA(t) = 1
i~ [A(t), Ĥ]

With this in mind we can formulate what we expect from a quantization, which is summarized in
a wishlist:

• Q should be a linear map from Acl (usually we have to take C∞(M), sicnce there is no distin-
guished Poisson subalgebra on a general Poisson manifold) to AQM .

• lim~→0Q(f) = f

• Q(H) = Ĥ

• [Q(f), Q(g)] = i~Q({f, g}) +O(~2)

37
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Where we added the term O(~2), since one can show that in easy examples this map can otherwise
not exist (Exercise!).

Formal deformation quantization was developed by Bayen, Flato, Fronsdal, Lichnerowicz and
Sternheimer in their seminal work [1]. The idea is following the motto:

�We suggest that quantization be understood as a deformation of the structure of the algebra of

classical observables,rather than as a radical change in the nature of the observables.�

� Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer

We will discuss their ideas in this chapter and make precise what this quote means.

3.1 Di�erential Operators on manifolds

Di�erential operators are actually algebraic objects de�nable for any (commutative) algebra over a
�eld k. We de�ne them in full generality and show afterwards, that in our setting they look exactly how
one thinks of di�erential operators. To do so let us start with an obvious operation on a commutative
algebra A: let a ∈ A, then we de�ne

la : A 3 b 7→ ab ∈ A.

De�nition 3.1.1 Let A be a commutative algebra. Then the vector space DiffOp(k)(A) ⊆ Endk(A)
is recursively de�ned for k ≥ −1 by DiffOp(−1)(A) = {0} and

DiffOp(k+1)(A) := {D ∈ Endk(A) | [la, D] = laD −Dla ∈ DiffOp(k)(A)}.

We have DiffOp(k+1)(A) ⊇ DiffOp(k)(A) for all k ≥ −1 and hence we set

DiffOp(A) =
∞⋃
k=0

DiffOp(k)(A).

We know now from this de�nition, that for D ∈ DiffOp(A), there is a k ∈ N, such that D ∈
DiffOp(k)(A). We call

o(D) = min{k ∈ N | D ∈ DiffOp(k)(A)}

the order of k.

Corollary 3.1.2 Let A be a commutative unital algebra, then

(a) A 3 a 7→ la ∈ DiffOp0(A) is surjective.

(b) for D1, D2 ∈ DiffOp(A) their concatenation D1 ◦ D2 ∈ DiffOp(A). Moreover, o(D1 ◦ D2) ≤
o(D1) + o(D2).

Proof: Exercise. �

For a later use we introduce

De�nition 3.1.3 Let A be a commutative A. A bilinear map B : A×A → A is called bidi�erential

operator of order (r, s), if for every a ∈ A, we have that

• the map La : A 3 b 7→ B(a, b) ∈ A is a di�erential operator of order s, and

• the map Ra : A 3 b 7→ B(b, a) ∈ A is a di�erential operator of order r.
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We denote the set of bidi�erential operators of order (r, s) on A by BiDiffop(r,s)(A).

We are mainly interested in the algebra of smooth functions on a manifold, so let us prove a local
structure theorem for di�erential operators, which justi�es the nomenclature:

Theorem 3.1.4 Let M be a manifold. For D ∈ DiffOpk(M) := DiffOpk( C∞(M)), we have

(a) suppD(f) ⊆ supp f and for every open subset U ⊆M there exists DU ∈ DiffOpk(U), such that

for all f ∈ C∞(M) we have

D(f)
∣∣
U

= DU (f
∣∣
U

).

(b) that for a coordinate chart (U, x), we have for f ∈ C∞(U)

DU (f) =
k∑
r=0

1

r!
Di1,...,ir
U,r

∂rf

∂xi1 · · · ∂xir

for local functions Di1,...,ir
U,r ∈ C∞(U).

Proof: We proof (a) with induction: for k = 0 the statement is clear, since DiffOp0( C∞(M)) are
exactly the left multiplications with functions. So let us assume that the statement is true for all
k < N and let f ∈ C∞(M) and let x0 ∈ M \ supp f , then there is a function ρ ∈ C∞(M) with
ρ(x0) = 0 and ρ

∣∣
supp f

= 1 and it follows ρf = f . We have for D ∈ DiffOpN (M)

D(f)(x0) = D(ρf)(x0) = ρ(x0)D(f)(x0)− [ρ,D](f)(x0) = −[ρ,D](f)(x0) = 0,

where the last equality follows from the fact that [ρ,D] is a di�erential operator of order N − 1 and
the �rst statement fromn (a) follows. The proof of the second statement follows the same lines as the
proof of Proposition 2.1.6. The proof of part (b) is an exercise. �

Example 3.1.5 (a) One �rst immediate example are the vector �elds on a manifold. In fact, the
Leibniz rule shows that they are di�erential operators of order one.

(b) The Laplace operator ∆g induced by a Riemannian metric g is a di�erential Operator of order
2.

Theorem 3.1.4 showed that di�erential operators are local operators, which is not very surprising
concerning how one would imagine a di�erential operator. There is also a remarkable theorem by
Peetre, which states that every local operator looks locally like a di�erential operator (Note that this
does not imply it is a di�erential operator.)

Theorem 3.1.6 (Peetre) Let D : C∞(M)→ C∞(M) be a linear local operator. Then for each point

p ∈M there exists an open neighbourhood U , such that D
∣∣
U
is a di�erential operator.

We are not going to show this theorem in this course, it is just helpful to justify late choices.
As a last part of this section and a �rst application of Theorem 3.1.4, we prove a local structure

result for Bidi�erential operatorsd on a manifold.

Theorem 3.1.7 Let M be a manifold. For B ∈ BiDiffop(r,s)( C∞(M)), we have

(a) suppB(f, g) ⊆ supp f∩supp g and for every open subset U ⊆M there exists BU ∈ BiDiffop(r,s)(U),
such that for all f, g ∈ C∞(M) we have

B(f, g)
∣∣
U

= BU (f
∣∣
U
, g
∣∣
U

).
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(b) that for a coordinate chart (U, x), we have for f, g ∈ C∞(U)

BU (f, g) =
r∑

n=0

s∑
m=0

1

n!m!
Bi1,...,in;j1,...,jm
U,n,m

∂nf

∂xi1 · · · ∂xin
∂mg

∂xj1 · · · ∂xjm

for local functions Bi1,...,in;j1,...,jm
U,n,m ∈ C∞(U).

Proof: Let f, g ∈ C∞(M), then we have that B(f, g) = Lf (g), which is a di�erential operator and
thus we get by Theorem 3.1.4, that suppB(f, g) ⊆ supp f . Since we also have that B(f, g) = Rg(f),
we get also suppB(f, g) ⊆ supp g. We can now use the same arguments as in Theorem 3.1.4 in order
to show the existence of BU for open subsets U .

We work now in a chart (U, x), we denote by Lf and Rf the corresponding operators of the
restricted bidi�erential operator BU . Using again Theorem 3.1.4, we see that for f ∈ C∞(U) we have
that Lf is a di�erential operator of order s and hence

Lf =
s∑

m=0

1

m!
(Lf )j1,...jmm

∂m

∂xj1 . . . ∂xjm

in a chart (U, x). With an induction one can see that

Lf (xi1 · · ·xik) =
k∑

m=0

∑
σ∈Sk

1

m!(k −m)!
xiσ(1) · · ·xiσ(m)(Lf )

iσ(m+1),...iσ(k)

k−m

= (Lf )i1,...ikk +
k∑

m=1

∑
σ∈Sk

1

m!(k −m)!
xiσ(1) · · ·xiσ(m)(Lf )

iσ(m+1),...iσ(k)

k−m ,

which means, that we can write all (Lf )i1,...ikk as C∞(U)-linear combinations of Lf (xi1 · · ·xi`), such
that the coe�cient functions are independent of f . We have that the map

C∞(U) 3 f 7→ Lf (xi1 · · ·xi`) = Rxi1 ···xi` (f) ∈ C∞(U)

is a di�erential operator of order r and hence we get the claim. �

3.2 Formal Deformations and Star Products on Poisson Manifolds

The idea of deformations goes back to Gerstenhaber in a series of papers [5�7] where he discusses
deformations of algebraic structures. For an algebra the precise de�nition of a deformation is the
following:

De�nition 3.2.1 Let A• be a unital (graded ∗) commutative algebra over a �eld k. A formal defor-

mation is a formal power series
∑

k ~kµk of k[[~]]-bilinear maps µk : A[[~]] × A[[~]] → A[[~]], such
that

(a) a ? b :=
∑

k ~kµk(a, b) is an associative product on A[[~]].

(b) a ? b = ab (mod ~) for all a, b ∈ A

(c) 1 ? a = a ? 1 = a for a ∈ A[[~]]

(d) a ? b ∈ Ak+`[[~]] for all a ∈ Ak[[~]] and b ∈ A`[[~]] (∗)
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Remark 3.2.2 For the moment we can ignore the graded version of De�nition 3.2.1 and consider
only trivially graded commutative algebras. This graded version is not much more di�cult than the
trivially graded version and it will be needed in a later stage of this lecture.

Let us, before we go towards the di�erential geometric picture, give a �rst important example:

Example 3.2.3 (Commuting derivations) Let A be a commutative algebra over k, let {Di}i∈{1,...,N}
be a �nite set of commuting derivations and let πij ∈ k for 1 ≤ i, j ≤ N . We de�ne:

Π: A ⊗ A 3 a⊗ b 7→ πijDi(a)⊗ Dj(b) ∈ ⊗A ⊗ A

and �nally

a ? b = µ(e
~Π
2 (a⊗ b)) =

∞∑
k=0

~k

2kk!
πi1j1 . . . πikjkDi1 . . . Dik(a)Dj1 . . . Djk(b).

This is a formal deformation of the algebra A. (The proof is an Exercise!)

Let us show the signi�cance of formal deformations with respect to Chapter 2:

Lemma 3.2.4 Let A be a commutative algebra and let ? be a formal deformation, then

{a, b}? :=
a ? b− b ? a

~
∣∣
~=0

for a, b ∈ A is a Poisson bracket on A. We call { · , · }? the classical limit of ?.

Proof: { · , · } is obviously skew-symmetric. Let us denote by [ · , · ]? the commutator with respect
to ?. Since ? is an associative product, we know that

[a, b ? c]? = [a, b]? ? c+ b ? [a, c]?

for a, b, c ∈ A. Evaluating this in order 1 (of ~), we get that {a, bc}? = {a, b}?c+ b{a, c}?. Moreover,
again since ? is associative, we see that

[a, [b, c]?]? = [[a, b]?, c]? + [b, [a, c]?]?,

for a, b, c ∈ A. evaluating this in order 2, we obtain the Jacobi identity for { · , · }? and the claim is
proven. �

If one has a formal deformation
∑

k ~kµk of an associative algebra A, the associativity of the
product is encoded in order ~k by

k∑
i=0

µi(µk−i(a, b), c) =

k∑
i=0

µi(a, µk−i(b, c)).

for all a, b, c ∈ A. If this equation is ful�lled for all k ≤ N , we say that
∑

k ~kµk is a formal
deformation up to order N .

So one can try to make the following Ansatz: starting with a Poisson algebra (A, { · , · }), we
de�ne

a ? b = ab+
~
2
{a, b}.
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this is a formal deformation up to order 1, because of the fact that { · , · } is a biderivation. so we can
try to �nd µ2 in order to make it a formal deformation up to order 2, which means that

µ2(ab, c) +
1

4
{{a, b}, c}+ µ2(a, b)c = µ2(a, bc) +

1

4
{a, {b, c}}+ aµ2(b, c)

has to hold for all a, b, c ∈ A and already in order 2, we see that this might be a highly non-trivial
task. Note that a necessary condition for such a µ2 to exist, is the Jacobi identity of { · , · }, see
the proof of Lemma 3.2.4, but this condition is not for every algebra su�cient and in fact, it is not
su�cient for the algebras we are interested in this course: we already argued that the algebra we want
to deform for quantization is C∞(M) for a manifold M . In fact, this step-by-step procedure works
here only if dim(M) ≤ 2.

We do not only want arbitrary deformations, we want to make the structure of our speci�c algebra
visible, i.e. we impose di�erentiability and hence also locality:

De�nition 3.2.5 A star product ? on a manifold is a is a formal deformation
∑

k ~kµk of C∞(M),
such that µk is a bidi�erential operator for all k.

Remark 3.2.6 The products de�ned in 3.2.5 are sometimes called di�erential star products to em-
phasise that they are series of bidi�erential operators. In fact, the only known general constructions
produce di�erential star products. Since we are only dealing with these kinds of star products we
omit the additonal term �di�erential�. Note that a star product induces now a Poisson bracket on a
manifold and this does not depend on the di�erentiability of the star product anyway.

As a �rst example of a star product, we can use Example 3.2.3: let pij be an n× n-matrix, we de�ne

P : C∞(Rn)⊗ C∞(Rn)→ C∞(Rn)⊗ C∞(Rn)

by

P (f ⊗ g) = pij
∂f

∂xi
⊗ ∂g

∂xj

then we go on to de�ne the product ?p

f ?p g = µ(e
~P
2 (f ⊗ g)) =

∞∑
k=0

~k

2kk!
pi1j1 . . . pikjk

∂kf

∂xi1 . . . ∂xik
∂kg

∂xj1 . . . ∂xjk
, (3.2.1)

where µ is just the point-wise product of C∞(Rn). Additionally, it is immediate that the induced
Poisson structure is given by

{f, g}?p =
1

2
(pij − pji) ∂f

∂xi
∂g

∂xj
,

which is the Poisson structure associated to a constant skew-symmetric matrix from 2.3.1. Obviously
we used a lot of properties of the �at Rn, for example the exisence of non-trivial global derivations,
in order to de�ne this product which are not available in the general geometric picture on a manifold,
so there is no hope to just globalize this product for smooth manifolds, since Poisson structures can
have rather wild local behaviour.

Inducing a Poisson structure via a formal deformation of the smooth functions on a manifold can
be understood as the classical limit of a quantum system, as we already discussed in the introduction
of this chapter. Starting from a classical system, i.e. a Poisson manifold, we want to make precise
what we mean by quantization:
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De�nition 3.2.7 Let (M, { · , · }) be a Poisson manifold. A star product ? is called formal deforma-

tion quantization of (M, { · , · }), if { · , · }? = { · , · }.

Remark 3.2.8 Assume that ? is a formal deformation quantization of (M, { · , · }), then we have
trivially that the canonical map

Q : C∞(M) 3 f ↪→ f ∈ C∞(M)[[~]]

is a quantization map in the sense of the wish-list in the introduction.

The question which arises now is: Does every Poisson manifold admit a deformation quantization?
In fact, the answer is yes and was fully answered by Kontsevich in his seminal paper [9]. His methods
use a lot of di�erent techniques from various areas of math and is not easy to understand. A more
conceptual proof followed by Tamarkin in [11], but this proof uses even more techniques and is harder
to understand.

Nevertheless, there are constructions of star products which are formal quantizations of certain
non-trivial Poisson brackets which do not use a lot of machinery, which we will see in the next two
sections.

3.3 Lie algebras and the Gutt Product

The Gutt product is a quantization of the KKS-Poisson structure associated to a real �nite dimensional
Lie algebra. It was one of the �rst star products ever to be constructed in [8], besides the star product
for constant Poisson structures.

Its construction is rather algebraic, so we need beforehand some construction from algebra. Note
that to every associative algebra A, we can associate a Lie algebra by taking commutators, i.e.

[a, b] := ab− ba

for a, b ∈ A de�nes a Lie bracket on A. Let us denote this Lie algebra by AL.

De�nition 3.3.1 Let g be a Lie algebra. A universal enveloping algebra for g is a pair (U, ι) consisting
of an associative algebra U and a Lie algebra morphism map ι : g → UL with the property that for

every associative algebra A with a Lie algebra morphism φ : g → AL there exists a unique algebra

morphism Φ: U → A, such that

U A

g

Φ

ι
φ

commutes. This property is called the universal property of the universal enveloping Lie algebra.

Note that it is not clear that this object exists, but with the de�nition we can already prove its
uniqueness:

Proposition 3.3.2 Let g be a Lie algebra and let (U, ι) and (Û , ι̂) be two universal enveloping algebras,
then U ' Û as algebras.

Proof: We see from the universal properties of U and Û , that we get the commutative diagram

U Û U

g

Î I

ι ι̂
ι

.
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Bu this means, that we have an algebra morphism I ◦ Î, such that ι = I ◦ Î ◦ ι, which is clearly also
ful�lled by id : U → U and by the uniqueness of the morphism from De�nition 3.3.1, we get I ◦ Î = id.
Exchanging the roles of U and Û , we also get Î ◦ I = id. �

This proposition shows that the universal enveloping algebra is unique and we can speak of the
universal enveloping algebra. Nevertheless, we still have to show that it exists

Theorem 3.3.3 Let g be a Lie algebra, then

U(g) :=
T (g)

〈x⊗ y − y ⊗ x− [x, y]〉x,y∈g

together with the canonical map ι : g→ Tg→ U(g) is a universal enveloping algebra.

Proof: By de�nition U(g) is an associative algebra and ι(x) = x (here · means taking the equiva-
lence class) and hence

ι([x, y]) = [x, y] = x⊗ y − y ⊗ x = xy − yx = ι(x)ι(y)− ι(y)ι(x).

Let now A be an associative algebra and φ : g → AL be a Lie algebra morphism, then we de�ne
Φ: Tg → A

Φ̃(x1 ⊗ · · · ⊗ xk) = φ(x1) . . . φ(xk)

which is clearly an algebra morphism. Moreover, since φ : g→ AL is a Lie algebra morphism, we get
that 〈x⊗ y− y⊗ x− [x, y]〉x,y∈g ⊆ ker Φ̃ and hence we get an algebra morphism Φ: U(g)→ A, such
that

Tg A

U(g)

Φ̃

Φ

commutes and hence also

U(g) A

g

Φ

ι
φ

.

Let us now prove that Φ is unique: we assume that there is Φ′ ful�lling the same property than Φ,
then we have

Φ′(x1 ⊗ · · · ⊗ xk) = Φ′(x1 · · ·xk) = Φ′(x1) · · ·Φ′(xk) = Φ(x1) · · ·Φ(xk) = Φ(x1 ⊗ · · · ⊗ xk)

and since elements of the form x1 ⊗ · · · ⊗ xk generate U(g) as a vector space, we have that Φ = Φ′.�

We can use from now on U(g) as a model for the universal enveloping algebra, i.e. if we write
U(g) we refer to the quotient construction above and not just its isomorphism class. This precise
model has a canonical �ltration: we de�ne

U(g)(k) = span {x1 ⊗ · · · ⊗ x` | xi ∈ g, 0 ≤ ` ≤ k} ⊆ U(g).

We clearly have that U(g)(k) ⊆ U(g)(m), whenever k ≤ m and moreover U(g) =
⋃
k U(g)(k). Note

that this is even compatible with the algebra structure, i.e. U(g)(k) · U(g)(m) ⊆ U(g)(k+m). Let us
now prove the so-called Poincaré-Birko�-Witt theorem which relates the universal enveloping algebra
to an algebra we know already



3.3. Lie algebras and the Gutt Product 45

Theorem 3.3.4 (Poincaré-Birko�-Witt) Let g be a Lie algebra. The map

qk : Skg 3 x1 ∨ · · · ∨ xk 7→
1

k!

∑
σ∈Sk

xσ(1) . . . xσ(k) ∈ U(g)(k)

sums up to an isomorphism q =
∑∞

k=0 qk : Sg→ U(g) of vector spaces. Note that we set q0 to be the

identity.

Proof: The key point in the proof is to see that for

x1 ⊗ · · · ⊗ xk − x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ xi ⊗ xi+2 ⊗ . . .⊗ xk ∈ U(g)(k−1)

for all i ∈ {1, . . . , k − 1}. This implies that qk(x1 ∨ · · · ∨ xk) − x1 ⊗ · · · ⊗ xk ∈ U(g)(k−1). We show
now by induction that

n∑
k=0

qk :
n⊕
k=0

Skg→ U(g)(k)

is an isomorphism for all n. For n = 0 the claim is true by de�nition. Let u ∈ U(g)(n+1), then we
can �nd xij ∈ g for i ∈ {1, . . . , N} for some N and and j ∈ {1, . . . , n+ 1}, such that

u−
∑
i

xi1 ⊗ · · · ⊗ xin+1 ∈ U(g)(n)

and thus

X = u−
∑
i

qn+1(xi1 ∨ · · · ∨ xin+1)

= u−
∑
i

xi1 ⊗ · · · ⊗ xin+1 +
∑
i

xi1 ⊗ · · · ⊗ xin+1 − qn+1(xi1 ∨ · · · ∨ xin+1) ∈ U(g)(n).

By Induction hypothesis we can �nd V ∈
⊕n

k=0 Skg such that
∑n

k=0 qk(V ) = X and
∑n+1

k=0 qk is

surjective. To show that the map is injective, one shows that Sng ' U(g)(n)

U(g)(n−1) (Exercise!).

Let us now denote the canonical projections pk : Sg→ Skg.

Theorem 3.3.5 The k[[t]]-bilinear extension of

?G : Skg× S`g 3 (f, g) 7→
k+`−1∑
n=0

~npk+`−nq
−1(q(f) · q(g)) ∈ Sg[[t]]

is a formal deformation of Sg with the symmetric product. We call ?G the Gutt product.

Proof: We have 1?Gf = f ?G1 = f for all f ∈ Sg by de�nition. Moreover, with the same arguments
from the proof of Theorem 3.3.4, one see that q(f) · q(g)− q(f ∨ g) ∈ U(g)(k+`−1) and hence we have
f ?G g = f ∨ g + O(~). Let us now show associativity: we choose fi ∈ Skig for i = 1, 2, 3, then

f1 ?G (f2 ?G f3) =

k2+k3−1∑
i=0

~if1 ?G (pk2+k3−i ◦ q−1)(q(f2) · q(f3))

=

k2+k3−1∑
i=0

k1+k2+k3−i−1∑
j=0

~i+jpk1+k2+k3−i−j ◦ q−1(q(f1) · q(pk2+k3−i ◦ q−1)(q(f2) · q(f3))))
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∗
=

k2+k3−1∑
i=0

k1+k2+k3−i−1∑
j=−i

~i+jpk1+k2+k3−i−j ◦ q−1(q(f1) · q(pk2+k3−i ◦ q−1)(q(f2) · q(f3))))

=

k2+k3−1∑
i=0

k1+k2+k3−1∑
j=0

~jpk1+k2+k3−j ◦ q−1(q(f1) · q(pk2+k3−i ◦ q−1)(q(f2) · q(f3))))

=

k1+k2+k3−1∑
j=0

~jpk1+k2+k3−j ◦ q−1(q(f1) · q(
k2+k3−1∑
i=0

pk2+k3−i ◦ q−1)(q(f2) · q(f3))))

=

k1+k2+k3−1∑
j=0

~jpk1+k2+k3−j ◦ q−1(q(f1) · q(f2) · q(f3))

where we used in ∗ that p` ◦ q−1 : U(g)(k) → S`g vanishes whenever ` > k. We get the same result
when we compute (f1 ?G f2) ?G f3 . �

Note that by construction of ?G, it is clear that

x1 ∨ · · · ∨ xk =
1

k!

∑
σ∈Sk

xσ(1) ?G · · · ?G xσ(k)

for all x1, . . . , xk ∈ g.
Let us denote the series expansion of the Gutt product by

?G =
∑
k≥0

~kCr,

where the Crs are bilinear maps. The Gutt product has some remarkable properties with respect to
the adjoint action. Let us �rst extend the adjoint action ad g×g→ g as a derivation of the symmetric
product to Sg, i.e.

ad: g× Sg→ Sg

ba declaring adξ(P ∨Q) = adξ(P ) ∨Q+ P ∨ adξ(Q).

Lemma 3.3.6 Let ξ ∈ g and let g ∈ Sg, then

[ξ, g]?G = ~ adξ(g).

Proof: Let ξ ∈ g and x1 ∨ · · · ∨ x` ∈ S`g, then we have

q(ξ)q(x1 ∨ · · · ∨ x`) =
1

`!

∑
σ∈S`

ξ ⊗ xσ(1) ⊗ . . .⊗ xσ(`)

=
1

`!

∑
σ∈S`

xσ(1) ⊗ ξ ⊗ xσ(2) ⊗ ⊗xσ(`) + [ξ, xσ(1)]⊗ xσ(2) ⊗ . . .⊗ xσ(`)]

= . . .

=
1

`!

∑
σ∈S`

xσ(1) ⊗ . . .⊗ xσ(`) ⊗ ξ

+
1

`!

∑
σ∈S`

∑̀
j=1

xσ(1) ⊗ . . . xσ(j−1) ⊗ [ξ, xσ(j)]⊗ xσ(j+1) ⊗ . . .⊗ xσ(`)
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= q(x1 ∨ · · · ∨ x`)q(ξ)

+
1

`!

∑
σ∈S`

∑̀
j=1

xσ(1) ⊗ . . . xσ(j−1) ⊗ [ξ, xσ(j)]⊗ xσ(j+1) ⊗ . . .⊗ xσ(`)

= q(x1 ∨ · · · ∨ x`)q(ξ)

+
1

`!

∑̀
j=1

∑̀
i=1

∑
σ∈S`, σ(j)=i

xσ(1) ⊗ . . . xσ(j−1) ⊗ [ξ, xσ(j)]⊗ xσ(j+1) ⊗ . . .⊗ xσ(`)

= q(x1 ∨ · · · ∨ x`)q(ξ)

+
∑̀
i=1

1

`!

∑̀
j=1

∑
σ∈S`, σ(j)=i

xσ(1) ⊗ . . . xσ(j−1) ⊗ [ξ, xσ(j)]⊗ xσ(j+1) ⊗ . . .⊗ xσ(`)

= q(x1 ∨ · · · ∨ x`)q(ξ)

+
∑̀
i=1

q(x1 ∨ . . . ,∨xi−1 ∨ [ξ, xi] ∨ xi+1 ∨ · · · ∨ x`)

= q(x1 ∨ · · · ∨ x`)q(ξ)
+ q(adξ(x1 ∨ · · · ∨ x`))

and the claim is proven by the eplicit formula of the Gutt product. �

Lemma 3.3.7 The Gutt product is a series out of bidi�erential operators. Moreover, we have that

Cr is of order (r, r).

Proof: One can show (see [10] for a detailed proof), that the Gutt product has the formula

η ?G (ξ1 ∨ · · · ∨ ξk) =

k∑
j=0

~j

k!

(
k

j

)
Bj
∑
σ∈Sk

[ξσ(1), [. . . , [ξσ(j), η] . . . ] ∨ ξσ(j+1) ∨ · · · ∨ ξσ(k),

where Bj are the Taylor coe�cients of x
ex−1 =

∑∞
k=0

Bk
k! x

k (or equivalently the Bernoulli numbers).
This means in particular, that

Cr(η, · ) : Sg 3 ξ1 ∨ · · · ∨ ξk 7→
1

k!

(
k

r

)
Br
∑
σ∈Sk

[ξσ(1), [. . . , [ξσ(r), η] . . . ] ∨ ξσ(r+1) ∨ · · · ∨ ξσ(k) ∈ Sg

which is a di�erential operator of order r (Exercise!). We can now use that

(ξ1 ∨ · · · ∨ ξk) ?G η = η ?G (ξ1 ∨ · · · ∨ ξk)− ~ adη(ξ1 ∨ · · · ∨ ξk)

in order to show that Cr( · , η) : Sg → g is a di�erential operator of order r for η ∈ g. Let now
η1 ∨ · · · ∨ ηk ∈
Symkg, then we have

(η1 ∨ · · · ∨ ηk) ?G P =
1

k!

∑
σ∈Sk

ησ(1) ?G · · · ?G ησ(k) ? P

=
1

k!

∑
σ∈Sk

∞∑
i1,...,ik=0

~i1+···+ikCi1(ησ(1), Ci2(ησ(2), · · ·Cik(ησ(k), P ) · · · )

and the claim is proven for general elements in Sg and hence Cr is a bidi�erential operator of order
(r, r). �
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We are not yet at the point where we have obtain a star product. We can see Sg as the polynomial
functions on g∗ (Exercise!) so the next aim is to extend the product to C∞(g∗).

Apparently, this has nothing to do with the actual shape of the Gutt product:

Lemma 3.3.8 Let V be a �nite dimensional real vector space and let D be a di�erential operator on

SV = Pol(V ∗) of order k, then we can extend it to a di�erential operator of C∞(V ∗) of order k.

Proof: Let us choose a basis {ei}i∈{1,...,N} of V . With the same idea of the proof of Theorem 3.1.4
(we only have one chart!), we can show that

D =
k∑
r=0

1

r!
Di1,...,ir
r

∂r

∂xi1 · · · ∂xir

where we see that all Di1,...,ir
r have to be polynomial functions. Now, we are able to extend it trivially

by letting the partial derivatives act on every smmoth function, i.e. for f ∈ C∞(V ∗) we set

D(f) :=

k∑
r=0

1

r!
Di1,...,ir
r

∂rf

∂xi1 · · · ∂xir

which is clearly a di�erential operator. �

Using this Lemma, we get immediately

Theorem 3.3.9 Let g be a �nite dimensional real Lie algebra and let ?G be the Gutt product extended

to C∞(g∗), then it is a quantization of the KKS Poisson structure associated to g.

Proof: Let us choose a basis {ei}i∈{1,...,N} with corresponding coordinates (x = x1, . . . , xN ). We
have

{xi, xj}?G = J(p1q
−1(q(ei)q(ej)− q(ej)q(ei))) = J(p1q

−1(q([ei, ej ]))) = J([ei, ej ]) = xkC
k
ij

where we denote by Ckij the structure constants of the Lie algebra g and J : Sg→ C∞(g∗) and hence

{f, g}?G = xkCkij
∂f

∂xi

∂g

∂xj

and the claim is proven. �

The Gutt product shows already that it is non trivial to �nd star product even in the easy situation
of a vector space with a linear Poisson structure. For quadratic and/or higher polynomial Poisson
structures there is no general way of quantizing them (without using the results of Kontsevich or
Tamarkin), but however recently it was discovered that at least some star products can be obtained
combinatorially in a similar way as the Gutt product.

3.4 Fedosov's Construction

The original construction of Fedosov included the construction of star products only for symplectic
manifolds (see [3]), but his techniques are so �exible that one can use it for regular Poisson manifolds
as well. It was not the �rst proof of the existence of star products on symplectic manifolds, this
was given in [2] by de Wilde and Lecomte, but Fedosov's proof is very constructive, allows even to
classify all symplectic star products and in fact, his techniques where used to globalize the existence of
star products for the case of Rd with an arbitrary Poisson structure from Kontsevich to an arbitrary
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Poisson manifold. It is very much inspired by Gel'fand and Fuks's formal geometry from [4], which
has many applications in di�erential geometry.

Let us discuss the basic idea behind his construction forM = R2n with coordiantes {xi}i∈{1,...,2n} =
(q1, . . . , qn, p1, . . . , pn) together with the standard Poisson structure

π =
1

2
πij

∂

∂xi
∧ ∂

∂xj
=

∂

∂qi
∧ ∂

∂pi
.

This is clearly a Poisson structure with constant coe�cients and thus can be quantized with Equation
(3.2.1). This idea has no hope to be globalized to manifolds, but there is a way out: let us introduce
formal variables y1, . . . , y2n and consider C∞(M)[[y1, . . . , y2n]], i.e. formal power series in 2n. In
particular, elements of C∞(M)[[y1, . . . , y2n]] are of the form

∞∑
k=0

ai1...ik(x)yi1 . . . yik .

We de�ne now a product ◦ by

a ◦ b =

∞∑
k=0

~k

2kk!
πi1j1 . . . πikjk

∂ka

∂yi1 . . . ∂yik
∂kb

∂yj1 . . . ∂yjk
.

Note that this product is C∞(M)-linear since the derivatives are only in y-directions and hence far
away from what we want. But we have a canonical map C∞(M) → C∞(M)[[y1, . . . , y2n]] given by
the Taylor expansion:

T (f) = ey
i ∂

∂xi (f) =
∞∑
k=0

∑
I∈N2n

0 ,|I|=k

1

I!

∂kf

∂xI
yI .

We can now de�ne

f ? g = p(T (f) ◦ T (g)), (3.4.1)

but in order to show that this product is associative, we have to make sure that T (f) ◦ T (g) ∈ imT
for all f, g ∈ C∞(M). Taylor series can by characterized by the following equation

a = T (f) ⇐⇒ (
∂

∂xi
− ∂

∂yi
)a = 0 for all i ∈ {1, . . . , 2n}.

And in fact, one can show that

(
∂

∂xi
− ∂

∂yi
)(a ◦ b) = ((

∂

∂xi
− ∂

∂yi
)a) ◦ b+ a ◦ (

∂

∂xi
− ∂

∂yi
)b

holds for all i ∈ {1, . . . , 2n} and hence Formula (3.4.1) de�nes an associative product and coincides
with the one we de�ned in Equation (3.2.1). The di�erence is now that this ansatz can be formalized
and applied to arbitrary regular Poisson manifolds.

Throughout the whole section we �x a regular Poisson manifold (M,π) and we denote by F ⊆ TM
the associated involutive subbundle and by ω the associated foliated symplectic 2-form.
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3.4.1 The Weyl algebra bundle

We consider the C∞(M)-module

W :=
∞∏
i=0

Γ∞(SiF∗).

Note that there are de�nitions of pro-�nite dimensional vector bundles in di�erential geometry, where
the above C∞(M)-module is the space of smooth sections of a vector bundle in this sense. Neverthe-
less, for us this doe not matter at the moment.

We have an obvious commutative multiplication on W, which is given by the symmetric product

W×W 3 (P,Q) 7→ P ∨Q ∈W,

which is compatible with the C∞(M)-module structure Moreover, we consider

W⊗ Λ• :=
∞∏
i=0

Γ∞(SiF∗ ⊗ Λ•F∗)

with the product

µ : W⊗ Λk ×W⊗ Λ` 3 (P ⊗ α,Q⊗ β) 7→ P ∨Q⊗ α ∧ β ∈W⊗ Λk+`.

This product is graded commutative with respect to the anti symmetric degree, i.e.

a · b := µ(a, b) = (−1)k`µ(b, a) = (−1)k`b · a

for a ∈W⊗ Λk and b ∈W⊗ Λ`. Let us denote for a section X ∈ Γ∞(F) the insertions

is(X)(P ⊗ α) := ιX(P )⊗ α and ia(X)(P ⊗ α) := P ⊗ ιXα

for P ⊗ α ∈W⊗ Λ•. We want to keep track of di�erent gradings and hence, we introduce:

degs,dega : W⊗ Λ→W⊗ Λ•

by

degs(P ⊗ α) = k(P ⊗ α) and

dega(P ⊗ α) = `(P ⊗ α)

for P ⊗ α ∈ Γ∞(SkF∗ ⊗ Λ`F∗).

Lemma 3.4.1 The maps degs, dega : W⊗ Λ• →W⊗ Λ• can be realized in a local trivialization by

degs = (ei ⊗ 1) · is(ei) and degs = (1⊗ ei) · ia(ei),

where {ei}i∈I are local basis sections of F with dual {ei}i∈I .

Proof:

We introduce the linear map δ : W⊗ Λ• →W⊗ Λ•+1 by

δ(P ⊗ α) = (1⊗ ei) · is(ei)(P ⊗ α) = ιeiP ⊗ ei ∧ α

for a basis sections {ei}i∈I with dual {ei}i∈I of F. Note that the de�nition of δ is independent of the
chosen basis section (check!) and hence it is globally de�ned.



3.4. Fedosov’s Construction 51

Lemma 3.4.2 The following identities hold

(a) δ2 = 0

(b) δ(a · b) = (δa) · b+ (−1)ka · (δb) for a ∈W⊗ Λk and b ∈W⊗ Λ•.

Proof: The �rst result is an easy consequences of the fact that is(X) is(Y ) = is(Y ) is(X) for all
X,Y ∈ Γ∞(F). And the second result is a consequence of the fact that is(X) is a derivation of the
symmetric product. �

The previous Lemma showed that the map δ is a di�erential and hence we have a canonical
cohomology attached to it. In this case it is rather simple: let us de�ne the map δ∗ : W ⊗ Λ• →
W⊗ Λ•−1 by

δ∗(P ⊗ α) = (ei ⊗ 1) · ia(ei)(P ⊗ α) = ei ∨ P ⊗ ιeiα

for a basis sections {ei}i∈I with dual {ei}i∈I of F. Note that the de�nition of δ∗ is also independent
of the chosen basis section (check!) and hence it is globally de�ned.

Lemma 3.4.3 The following equation holds

[δ∗, δ] = δ∗δ + δδ∗ = degs + dega .

Proof: Let P ⊗ α ∈W⊗ Λ, then

δδ∗(P ⊗ α) = δ(ei ∨ P ⊗ ιeiα) = ιej (e
i ∨ P )⊗ ej ∧ ιeiα

= P ⊗ ei ∧ ιeiα+ ei ∨ ιejP ⊗ ej ∧ ιeiα
= dega(P ⊗ α)− ei ∨ ιejP ⊗ ιei(ej ∧ α) + ei ∨ ιeiP ⊗ α
= dega(P ⊗ α)− ei ∨ ιejP ⊗ ιei(ej ∧ α) + degs(P ⊗ α)

= dega(P ⊗ α) + degs(P ⊗ α)− δ∗δ(P ⊗ α). �

Let us now de�ne for P ⊗ α ∈ Γ∞(SkF∗ ⊗ Λ`F∗)

δ−1(P ⊗ α) =

{
1
k+`δ

∗(P ⊗ α), for k + ` 6= 0

0, for k + ` = 0

and with Lemma 3.4.3 we see that

δ−1δ + δδ−1 + σ = id

where σ : W⊗ Λ• → C∞(M) = Γ∞(S0F∗⊗ Λ0F∗) is the projection to symmetric and anti-symmetric
degree 0.

The idea is now to deform the (graded) commutative algebra W⊗Λ• into a non-commutative one
using the foliated symplectic form, or better said the Poisson structure: We de�ne

Π((P ⊗ α)⊗ (Q⊗ β)) := πij(ιeiP ⊗ α)⊗ (ιejQ⊗ β)

as an operation on (W⊗ Λ•)⊗2 and de�ne

a ◦F b = µ ◦ e
~
2

Π(a⊗ b) ∈W⊗ Λ•[[~]]

for a, b ∈W⊗ Λ• similar to Example 3.2.1.
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Lemma 3.4.4 The product ◦F is an associative deformation of the graded product µ and δ is a

derivation of degree 1 of ◦F with respect to the anti-symmetric degree.

Proof: The product is an associative deformation, since the symmetric insertions is(ei) are commut-
ing derivations and this is also the reason, why δ is a derivation. �

Proposition 3.4.5 Let a ∈W⊗ Λk[[~]] such that

a ◦ b− (−1)k`b ◦ a = 0

for all W ⊗ Λ`[[~]] and all ` ∈ N0, then a ∈ Γ∞(ΛkF∗). Moreover, every a ∈ Γ∞(ΛkF∗)[[~]] ful�lls
Equation (3.4.5).

Proof: Let s ∈ Γ∞(F∗) ⊆W⊗ Λ0, then we have

[a, s]◦F = a ◦ s− (−)k`s ◦ a = ~ is(π
](s))α

and if this is 0, α only have trivial symmetric degree, since π is non-degenerate on F. �

3.4.2 The Fedosov Derivation and the Fedov Star Product

We choose now a partial connection ∇ with ∇Xω = 0 for all X ∈ Γ∞(F), which exists due to Lemma
2.5.12 and introduce the map

D : W⊗ Λ• 3 P ⊗ α 7→ ∇eiP ⊗ ei ∧ α+ P ⊗ dFα ∈W⊗ Λ•+1.

Note that this is equivalent to

D = (1⊗ ei) · ∇ei ,

where ∇ is extended to W ⊗ Λ• by ∇X(P ⊗ α) = ∇XP ⊗ α + P ⊗ ∇Xα and the reason for this is
that ∇ ful�lls ∇XY −∇YX − [X,Y ] = 0. Let us we introduce the curvature

R̂(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for X,Y, Z ∈ Γ∞(F). Note that we actually have

R̂ ∈ Γ∞(Λ2F∗ ⊗ End(F)) = Γ∞(Λ2F∗ ⊗ F∗ ⊗ F),

so it is C∞(M)-linear. We now contract this to R de�ned by

R(Z,U,X, Y ) = ω(R(X,Y )Z,U)

for Z,U,X, Y ∈ Γ∞(F) Using the fact that ∇Xω = 0 for all X ∈ Γ∞(F), we see that R(Z,U,X, Y ) =
R(U,Z,X, Y ) and by the very de�nition of R̂ we get R(U,Z,X, Y ) = −R(U,Z, Y,X). And thus we
have

R ∈ Γ∞(S2F∗ ⊗ Λ2F∗) ⊆W⊗ Λ•

Proposition 3.4.6 The identities

[δ,D] = 0 and D2 =
1

2
[D,D] =

1

~
[R, · ]◦F

hold. Moreover, D is a derivation of ◦F of degree 1 with respect to the anti-symmetric degree.
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Proof: Let P ⊗ α ∈W⊗ Λk be given, then we have:

δD(P ⊗ α) = δ(∇eiP ⊗ ei ∧ α+ P ⊗ dFα)

= ιej∇eiP ⊗ ej ∧ ei ∧ α+ ιeiP ⊗ ei ∧ dFα

= [ιej ,∇ei ]P ⊗ ej ∧ ei ∧ α+∇eiιejP ⊗ ej ∧ ei ∧ α− ιeiP ⊗ dF(ei ∧ α) + ιeiP ⊗ (dFe
i) ∧ α

= −Dδ(P ⊗ α) + [ιej ,∇ei ]P ⊗ ej ∧ ei ∧ α+ ιeiP ⊗ (dFe
i) ∧ α

So let us check what the two terms are: for a local basis there are local functions Ckij , such that

[ei, ej ] = Ckijek, thereforewe have

dFe
i(em, en) =

em(δin)=0︷ ︸︸ ︷
em(ei(en))−en(ei(em))− ei([em, en]) = −Cimn = −1

2
Cijke

j ∧ ek(em, en).

Moreover, we have for α ∈ Γ∞(F∗), that

ιX∇Y α = ∇Y α(X) = Y α(X)− α(∇YX) = ∇Y ιX − ι∇YXα.

So if we denote by Γkij the coee�cients ∇eiej = Γkijek, we �nd

[ιej ,∇ei ]P ⊗ ej ∧ ei ∧ α = −ι∇eiejP ⊗ e
j ∧ ei ∧ α = −ΓkijιekP ⊗ ej ∧ e

i ∧ α

= −1

2
(Γkij − Γkji)ιekP ⊗ e

j ∧ ei ∧ α.

With Γkij − Γkji = Ckij , since ∇XY −∇YX − [X,Y ] = 0, we get [δ,D] = 0. We proceed showing that
D is a derivation of ◦F . Note that by de�nition it is a derivation of the undeformed product. We see
that for X ∈ Γ∞(F)

(∇X ⊗ id + id⊗∇X)(Π((P ⊗ α)⊗ (Q⊗ β)) = (∇X ⊗ id + id⊗∇X)(πij(ιeiP ⊗ α)⊗ (ιejQ⊗ β))

= X(πij)(ιeiP ⊗ α)⊗ (ιejQ⊗ β) + πij((∇XιeiP ⊗ α)(⊗ιejQ⊗ β))

+ πij((ιeiP ⊗ α)(∇XιejQ⊗ β))

= ...

= (∇Xπ)ij(ιeiP ⊗ α)⊗ (ιejQ⊗ β) + Π(∇X ⊗ id + id⊗∇X)((P ⊗ α)⊗ (Q⊗ β)),

but since ∇Xπ = 0 we get that (∇X ⊗ id + id⊗∇X) ◦Π = Π ◦ (∇X ⊗ id + id⊗∇X) and hence we get
that ∇X is a derivation of ◦F by the construction of ◦F . This means in particular for a ∈ W ⊗ Λk

and b ∈W⊗ Λ•:

D(a ◦F b) = (1⊗ ei) · ∇ei(a ◦F b) = (1⊗ ei) · ∇eia ◦F b+ (1⊗ ei) · a ◦F ∇eib
= ((1⊗ ei) · ∇eia) ◦F b+ (−1)ka ◦F (1⊗ ei) · ∇eib,

where we used that (1⊗ ei) · a = (1⊗ ei) ◦F a and (1⊗ ei) · a = (−1)ka · (1⊗ ei).
For the last part we take P ⊗ α ∈W⊗ Λk and see

D2(P ⊗ α) = D(∇eiP ⊗ ei ∧ α+ P ⊗ dFα)

= ∇ej∇eiP ⊗ ej ∧ ei ∧ α+∇eiP ⊗ dF(ei ∧ α) +∇eiP ⊗ ei ∧ dFα

=
1

2
[∇ej ,∇ei ]P ⊗ ej ∧ ei ∧ α+∇eiP ⊗ dF(ei) ∧ α

=
1

2
[∇ei ,∇ej ]P ⊗ ei ∧ ej ∧ α−

1

2
Ckij∇ekP ⊗ e

i ∧ ej ∧ α
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=
1

2

(
[∇ei ,∇ej ]P ⊗ ei ∧ ej ∧ α−∇[ei,ej ]P ⊗ e

i ∧ ej ∧ α
)

=
1

2

(
([∇ei ,∇ej ]−∇[ei,ej ])P ⊗ e

i ∧ ej ∧ α
)

If we de�ne the coe�cients R̂`kij by R̂(ei, ej)ek = R̂`ijke`, we see

D2(P ⊗ α) = −1

2
R̂`ijke

k ∨ ιe`P ⊗ e
i ∧ ej ∧ α

= −1

2
πm`ωmnR̂

n
ijke

k ∨ ιe`P ⊗ e
i ∧ ej ∧ α

=
1

2
πm`Rijkme

k ∨ ιe`P ⊗ e
i ∧ ej ∧ α

=
1

4
πm`(ιemRijkoe

k ∨ eo) ∨ ιe`P ⊗ e
i ∧ ej ∧ α

were Rijk` are the coe�cients Rk`ij = R(ek, e`, ei, ej) = ωkmR̂
m
`ij of the contracted cuvature tensor

from Equation (3.4.2). Since R = 1
4Rk`ije

k ∨ e` ⊗ ei ∧ ej , we have that

[R, · ]◦F = ~D2 + O(~2).

Since R has only two symmetric degrees, we see immediatly that [R, · ]◦F −~D2 has order ~2, but for
◦F , we have that for all a ∈ W ⊗ Λ•, that [R, a] has only odd orders of ~ and hence [R, · ]◦F = ~D2

and the claim is proven. �

The idea is now to consider the sum −δ +D, which is a derivation of ◦F of degree 1 and thus we
have

(−δ +D)2 =
1

~
[R, · ]

and so it is not a di�erential. To correct this, we make the following Ansatz

D = −δ +D +
1

~
[r, · ]

for r ∈W⊗ Λ1[[~]]. Using the graded commutator, we see that

D2 =
1

2
[D,D] =

1

~
[R− δr +Dr +

1

2~
[r, r], · ].

So if we can �nd r ∈ W ⊗ Λ1[[~]], such that R − δr + Dr + 1
2~ [r, r] is central, we have that D2 = 0.

This means in particular that

R− δr +Dr +
1

2~
[r, r] = Ω

for Ω ∈ Γ∞(Λ2F∗)[[~]] using Proposition 3.4.5.

Lemma 3.4.7 For every r ∈W⊗ Λ1[[~]] we get for D = −δ +D + 1
~ [r, · ] the equation

D(−δr +R+Dr +
1

2~
[r, r]◦F ) = 0.

Proof: We have

D(−δr +R+Dr +
1

2~
[r, r]) = −[δ,D]r +DR− δR− 1

2~
δ[r, r]◦F +

1

2~
D[r, r]◦F −

1

~
[r, δr]◦F+
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1

~
[r,R]◦F +D2r +

1

~
[r,Dr]◦F +

1

2~2
[r, [r, r]◦F ]◦F

= −δR+DR+
1

2~2
[r, [r, r]◦F ]◦F ,

where we used that δ andD are graded derivations of degree 1 in the last step as well asD2 = 1
~ [R, · ]◦F .

Note that [r, [r, r]◦F ]◦F = 0 for every degree 1 element. Moreover, we get

[δR, · ]◦F = [δ, [R, · ]◦F ]] = ~[δ, [D,D]] = ~([[δ,D], D]− [D, [δ,D]]) = 0.

So δR is central and by Proposition 3.4.5, it has to have symmetric degree 0, but it has also symmetric
degree 1, by the form of R. The only possibility is that δR = 0. Similarly, we proceed with DR, we
have

[DR, · ]◦F = [D, [R, · ]◦F ] = ~[D, [D,D]] = 0

and since DR has symmetric degree 2, we get, again by Propisiton 3.4.5, that DR = 0. �

If we want now that D = −δ +D + 1
~ [r, · ] squares to 0 or equivalently

R− δr +Dr +
1

2~
[r, r] = Ω

for Ω ∈ Γ∞(Λ2F∗)[[~]], we know already that the only possibility is DΩ = dFΩ = 0 by Lemma 3.4.7.
Let us make our ansatz now a bit more precise: we introduce the total degree Deg : W ⊗ Λ•[[~]] →
W⊗ Λ•[[~]] by

Deg = degs + 2~
∂

∂~
.

This is a derivation of degree 0 of ◦F , i.e.

Deg(a ◦F b) = Deg(a) ◦F b+ a ◦F Deg(b),

which can be seen by the observation that ~
2Π kills two symmetric degrees and adds one ~-degree, i.e.

[Deg ⊗ id + id⊗Deg, ~2Π] = 0.

Note that neither degs nor 2~ ∂
∂~ are derivations of ◦F separately. We want to understand D =

−δ+D+ 1
~ [r, · ] now as a series of operators with respect to the total degree: δ lowers the total degree

by 1, D keeps it, and hence we want we want 1
~ [r, · ] to be a series which does not decrease the total

degree. Note that if an element a has total degree k, then 1
~ [a, ] increases the total degree by k − 2.

Let us de�ne W(k) ⊗ Λ•[[~]] := {a ∈ W ⊗ Λ•[[~]] | Deg(a) = ka} and the canonical associated
�ltration

Wk ⊗ Λ•[[~]] =
∞∏
i=k

W(i) ⊗ Λ•[[~]].

Proposition 3.4.8 We have

W0 ⊗ Λ•[[~]] = W⊗ Λ•[[~]] and

∞⋂
i=0

Wi ⊗ Λ•[[~]] = 0.
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Proof: The proof is almost a tautology. Let us write for a(k) =
∑k

2i+j=k a
(k)
j ~i where aj has

symmetric degree j. So for a general element in a = (a(1), . . . ) ∈
∏∞
k=0 W(k) ⊗ Λ•[[~]], we want to

show that

a =
∞∑
i=0

(
∞∑
k=0

a
(k)
k−2i)~

i =
∞∑
i=0

(
∞∑
j=0

a
(j+2i)
j )~i

is a well-de�ned element in W ⊗ Λ•[[~]]. So we just have to make sure it is a well-de�ned formal
power series in each ~-degree(so no in�nite series of �xed symmetric degree appear). But the only

symmetric term in degree j appearing in ~-degree m is a
(j+2m)
j . �

This proposition shows that we can decompose every a ∈ W ⊗ Λ•[[~]] into a series
∑∞

k=0 a(k),

where a(k) ∈ W(k) ⊗ Λ•[[~]]. Moreover, every series
∑

k a
(k) with a(k) ∈ W(k) ⊗ Λ•[[~]] converges to

an Element in W⊗ Λ•[[~]]. This allows us to prove:

Theorem 3.4.9 For each Ω ∈ ~Γ∞(Λ2F∗)[[~]] with dFΩ = 0 there is a unique r ∈W3⊗Λ1[[~]], such
that

δr = R+Dr +
1

2~
[r, r] + Ω and δ−1r = 0.

Proof: We de�ne a recursive formula of elements of homogeneous total degree by r(3) = δ−1(R+Ω(2))
and

r(k+1) = δ−1
(
Dr(k) +

1

2~

k−1∑
i=3

[r(i), r(k+2−i)] + Ω(k)
)

for k ≥ 3. Then we know by Proposition 3.4.8, that r =
∑∞

i=3 r
(i) an element in W ⊗ Λ1[[~]]. This

element ful�lls, by taking sums over the total degrees, the necessary equation:

r = δ−1(R+Dr +
1

2~
[r, r]◦F + Ω).

Since (δ−1)2 = 0 and δ−1r(k) = 0 for all k, we also have that δ−1r = 0. Let us denote by A =
δr −R−Dr − 1

2~ [r, r]◦F − Ω, then we have

DA = 0 ⇐⇒ δA = (D +
1

~
[r, · ]◦F )(A),

since DΩ = dFΩ = 0 by Lemma 3.4.7. Using σ(r) = σ(δ−1(R+Dr + 1
2~ [r, r]◦F + Ω)) = 0, we get

δ−1A = δ−1(δr −R−Dr − 1

2~
[r, r]◦F − Ω)

= δ−1δr − δ−1(R+Dr +
1

2~
[r, r]◦F + Ω)

= r − δδ−1r − σ(r)− δ−1(R+Dr +
1

2~
[r, r]◦F + Ω)

= r − δ−1(R+Dr +
1

2~
[r, r]◦F + Ω) = 0.

Using again δδ−1 + δ−1δ + σ = id, we get

A = δ−1δA = δ−1(DA+
1

~
[r,A]).
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The operator a 7→ δ−1(Da + 1
~ [r, a]) is a linear operator which increases the total degree and hence

the only �xed point can be 0. So we found an r ful�lling the required equation. The uniqueness
follows from the fact that every r ful�lling the required equations has to ful�ll

r = δ−1(R+Dr +
1

2~
[r, r]◦F + Ω)

and hence the same recursion. �

Let us pick a closed Ω ∈ ~Γ∞(Λ2F∗)[[~]], denote by r the corresponding solution to Equations
(3.4.9) and let us denote by

D = −δ +D +
1

~
[r, · ]◦F

the associated di�erential. Our interpretation was that D is a series of operators, which increase
the symmetric degree, so in particular it is a pertubation of the di�erential −δ which aleady has an
homotopy δ−1:

C∞(M)[[~]] (W⊗ Λ•[[~]],−δ)
i

σ
−δ−1

where we denote by i the canonical inclusion C∞(M) = Γ∞(S0F∗ ⊗ Λ0F∗) and by σ the projection
to symmetric and anti-symmetric degree 0. Note that we have the canonical identities (δ−1)2 = 0,
δ ◦ i = δ−1 ◦ i = 0, σ ◦ δ−1 = σ ◦ δ = 0 and σ ◦ i = id. The idea is now to deform the whole diagram
(3.4.2), and not only −δ to D to do so we use homological pertubation theory :

Theorem 3.4.10 For O = [δ−1, D + 1
~ [r, · ]] we have that id−O is invertible and the operator

D−1 := −δ−1(id−O)−1 = −(id−O)−1δ−1

is an endomorphism of degree −1 and ful�lls

D−1D + DD−1 + (id−O)−1iσ = id (3.4.2)

Proof: First of all we notice that O increases the total degree by at least 1 and hence we have

∞∑
k=0

Ok

is a well-de�ned map and hence we have that id−O is invertible. Moreover, O is of anti-symmetric
degree 0 and so is id−O and also (id−O)−1. Let a ∈W⊗ Λ•[[~]], then we have

−Dδ−1a− δ−1Da+ σ(a)

= δδ−1a− (D +
1

~
[r, · ]◦F )δ−1a+ δδ−1a− δ−1(D +

1

~
[r, · ]◦F )a+ σ(a)

= a− [δ−1, D +
1

~
[r, · ]◦F ]a = (id−O)a.

If we apply δ−1 once from the right and once from the left to this equation and then subtract the
equations from each other, we have

δ−1O = Oδ−1.

We apply now D to the same equation, once from the right and once from the left and get D(id−O) =
Dσ + (id−O)D and hence D(id−O)δ−1 = (id−O)Dδ−1 and �nally also

D(id−O)−1δ−1 = (id−O)−1Dδ−1

and this already proves the claim. �
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Let us denote from now on

τ : C∞(M)[[~]] 3 f 7→ (id−O)f =

∞∑
k=0

[δ−1, D +
1

~
[r, · ]◦F ]kf ∈W⊗ Λ0[[~]]

and call it the Fedosov-Taylor series.

Corollary 3.4.11 Dτ = 0, (D−1)2 = 0, σD−1 = 0, Dτ = 0 and σ ◦ τ = id

Proof: The proof consists of a careful counting of degrees and Equation (3.4.2). �

Proposition 3.4.12 The map

τ : C∞(M)[[~]]→ kerD ∩W⊗ Λ0[[~]]

is an ismorphism with inverse σ.

Proof: The map τ is clearly injective, since σ ◦ τ = id. Let now a ∈ kerD ∩W ⊗ Λ0[[~]], then we
have

a = DD−1a+ D−1Da+ τ(σ(a)) = τ(σ(a))

and thus τ is also surjective. �

Note that W ⊗ Λ0[[~]] is a subalgebra with respect to the product ◦F by de�nition and that for
a, b ∈ kerD ∩W⊗ Λ0[[~]], we have

D(a ◦F b) = D(a) ◦F b+ a ◦F D(b) = 0

and hence also kerD ∩W⊗ Λ0[[~]] is a subalgebra. We therefore can de�ne the associative product

f ? g = σ(τ(f) ◦F τ(g)).

Theorem 3.4.13 The product ? is a formal star product on M with associated Poisson structure π.
? is called the Fedosov star product.

Proof: If we write τ(f) in a series of elements in the total degree, we see that

τ(f) =

∞∑
i=0

τ(f)(i) = f + df ⊗ 1 + h.o.t.

we have that τ(f ? g) = τ(f) ◦F τ(g) =
∑∞

k=0(τ(f) ◦F τ(g))(k) =
∑∞

k=0

∑k
i=0 τ(f)(i) ◦F τ(g)(k−i) and

hence

σ(τ(f)(i) ◦F τ(g)(k−i)) ∈ ~
k
2 C∞(M) (3.4.3)

if k is even and 0 otherwise. This means in particular that f ? g = fg+O(~) and hence ? is a formal
deformation of the commutative product on C∞(M), since τ(1) = 1. This means in particular that

f ? g = fg + σ(

2∑
i=0

τ(f)(i) ◦F τ(g)(k−i)) + O(~2)

= fg + σ(τ(f)(1) ◦F τ(g)(1)) + O(~2)

= fg +
~
2
{f, g}+ O(~2)

by the explicit formula of ◦F . The last thing we have to discuss, is the di�erentiability of ?, but this
is clear since τ is di�erential Operator with values in W. �
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To construct the Fedosov star product we used two ingredients: a formal series of foliated 2-forms
Ω ∈ ~Γ∞(Λ2F∗) and a partial symplectic connection ∇. To emphasise this dependence, we write

(∇,Ω)→ ?(∇,Ω).

Note that this is not very well-behaved from the functorial point of view, but this is another story.
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