
Exercises NMES - 13.1.2025

Exercise 1
Apply the Gaussian elimination method, without pivoting, to solve the

linear system Ax = b, where

(r1)
(r2)
(r3)

2 4 10
2 6 20
1 4 18

x1x2
x3

 =

−6
12
18


showing the intermediate computations.

Solution: First we eliminate the first column of A under the diagonal term

a1,1. Compute l2,1 =
a2,1
a1,1

= 1 and l3,1 =
a3,1
a1,1

=
1

2
. Then perform

(r1)
(r2) = (r2)− l2,1 · (r1)
(r3) = (r3)− l3,1 · (r1)

2 4 10
0 2 10
0 2 13

x1x2
x3

 =

−6
18
21


In the second step of the Gaussian elimination we eliminate the second

column of A under the diagonal term a2,2. Compute l3,2 =
a3,2
a2,2

= 1. Then

perform

(r1)
(r2)

(r3) = (r3)− l3,2 · (r2)

2 4 10
0 2 10
0 0 3

x1x2
x3

 =

−6
18
3


Finally compute the solution by back-substitution method:

3x3 = 3;→ x3 = 1;

2x2 + 10x3 = 18;→ 2x2 = 18− 10;→ x2 = 4;

2x1 + 4x2 + 10x3 = −6;→ 2X1 = −6− 10− 16;→ x1 = −16;

Finally the solution of the linear system is x =

−16
4
1

.

Exercise 2
Compute the quadratic least-square approximation r(x) = c0+c1x+c2x

2

for the set of points

(−2,
5

2
), (−1, 0), (0,−1), (1, 0), (2,

5

2
).
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Solution: Here we want to minimize the quadratic function

F (c0, c1, c2) =
m∑
i=1

(
F (xi)− c0 − c1 · xi − c2 · x2i )

)2
.

The problem is equivalent to solve

(LS2)

 m
∑m

i=1 xi

∑m
i=1(xi)

2∑m
i=1 xi

∑m
i=1(xi)

2
∑m

i=1(xi)
3∑m

i=1(xi)
2

∑m
i=1(xi)

3
∑m

i=1(xi)
4

c0c1
c2

 =


∑m

i=1 yi∑m
i=1 xiyi∑m

i=1(xi)
2yi

.
For the given set of points, it holds

(LS2)

 5 0 10
0 10 0
10 0 34

c0c1
c2

 =

 4
0
20

.
We get immediately c1 = 0. And then{

5c0 + 10c2 = 4

10c0 + 34c2 = 20
→

{
5c0 + 10c2 = 4

14c2 = 12
→

{
c0+ = 4

5 − 60
35 = −32

35

c2 =
6
7

Therefore the solution is r(x) = −32
35 + 6

7x
2.

Exercise 3
Starting from x(0) = (0, 0, 0)T , compute 2 iterations of the Gauss-Seidel

method applied to the system Ax = b, where

A =

1 4 1
2 1 0
0 2 1

 b =

11
1



Solution: Recall that for iterative methods, we can split A = M − N , so
that the general step of an iterative method is

x(k+1) = x(k) +M−1r(k)

In the case of Gauss-Seidel method, M = tril(A)

M =

1 0 0
2 1 0
0 2 1

 .
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Before starting, compute the residual r(0)

r(0) = b−Ax(0) = b =

11
1


First iteration
Firstly, we have to compute M−1r(0), which amounts to solving the linear
system

Mu = r(0).

Since M is lower triangular, it is easier to solve the linear system by forward-
substitution, obtaining the solution u

u =

 1
−1
3

 ,

so x(1) = x(0) + u = (1,−1, 3)T . Then compute the residual r(1) = b−Ax(1)

r(1) =

11
1

−

1 4 1
2 1 0
0 2 1

 1
−1
3

 =

11
1

−

01
1

 =

10
0


Second iteration As before, compute the solution of the linear system

Mu = r(1)

using forward substitution. This yields

x(2) = x(1) + u =

 1
−1
3

+

 1
−2
4

 =

 2
−3
7

 .

Exercise 4

Starting from v(0) =

[
1
0

]
, compute 2 iterations of the power method on

the matrix

A =

[
2 1
1 2

]
returning the eigenvector and eigenvalue approximation and showing the
intermediate steps.
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Solution: In the first iteration of the power method we compute:

w1 = Av0 =

[
2 1
1 2

]
·
[
1
0

]
=;

[
2
1

]
∥w1∥ =

√
22 + 12 =

√
5;

v1 =
w1

∥w1∥
=

1√
5

[
2
1

]
;

λ1 = vT1 Av1 =
1

5

[
2 1

]
·
[
2 1
1 2

]
·
[
2
1

]
=

1

5

[
2 1

]
·
[
5
4

]
=

14

5
.

In the second iteration of the power method we compute:

w2 = Av1 =

[
2 1
1 2

]
· 1√

5

[
2
1

]
=

1√
5

[
5
4

]
;

∥w2∥ =
1√
5

√
52 + 42 =

√
41

5
;

v2 =
w2

∥w2∥
=

1√
41

[
5
4

]
;

λ2 = vT2 Av2 =
1

41

[
5 4

]
·
[
2 1
1 2

]
·
[
5
4

]
=

1

5

[
5 4

]
·
[
14
13

]
=

122

41
.

Exercise 5
With initial guess x(0) = 1 apply one Newton iteration to find an ap-

proximate solution of the equation

(2x− 1)
(
3x2 − 2x+ 1

)
= 0

Solution: We have to solve the equation F (x) = 0 where

F (x) := (2x− 1)
(
3x2 − 2x+ 1

)
Recall that the generic Newton iteration is given as follows

x(k+1) = x(k) − F (x(k))

F ′(x(k))
,

so firstly compute F ′

F ′(x) = 2(3x2 − 2x+ 1) + (2x− 1)(6x− 2).

So, compute the first iteration of the Newton method

x(1) = x(0) − F (x(0))

F ′(x(0))
= 1− 2

8
= 1− 1

4
=

3

4
.
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Exercise 6
Given the Cauchy problem:{

y′(t) = −2ty(t) + 2t3 for t > 0

y(0) = −1;

compute two steps by the implicit Euler method, with ∆t = 1, in order to
approximate y(2). Report the intermediate computations.

Solution: We denote by yn := y(tn), where tn = t0 + n∆t, and here we
have t0 = 0, t1 = 1 and t2 = 2. The Implicit Euler (IE) method is given by

yn+1 − yn
∆t

= f(tn+1, yn+1),

and for this exercise, we have f(t, y(t)) = −2ty(t)+2t3. Thus, the IE method
applied to our Cauchy problem leads to solving, for each step, the following
equation:

yn+1 − yn
∆t

= −2tn+1yn+1 + 2t3n+1, (Implicit in the unknown yn+1).

Therefore we manipulate it as

yn+1 + 2∆t · tn+1 · yn+1 = yn + 2∆t · t3n+1;

yn+1 =
yn + 2∆t · t3n+1

1 + 2∆t · tn+1
, (Explicitated in yn+1).

Finally, the computation of the first step is

y1 =
y0 + 2∆t · t31
1 + 2∆t · t1

=
−1 + 2

1 + 2
=

1

3
,

and the computation of the second step is

y2 =
y1 + 2∆t · t32
1 + 2∆t · t2

=
1/3 + 16

1 + 4
=

1 + 48

15
=

49

15
,

Exercise 7
Write the pseudo-code of the composite trapezoidal quadrature rule, then

use the composite trapezoidal quadrature rule to compute an approximation
of ∫ 2π

0
sin2(t) dt

by splitting the integration interval [0, 2π] into four uniform subintervals.
Report the intermediate computations.
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Solution: The composite trapezoidal quadrature rule amounts to approx-
imating the function to be integrated with the Lagrange piecewise-linear
approximation and integrating it. The extema of the four subintervals are
t1 = 0, t2 = π

2 , t3 = π, t4 = 3π
2 , t5 = 2π. The width of such subintervals is

π
2 . So∫ 2π

0
sin2(t)dt ≃ π

4

4∑
i=1

∫ ti+1

ti

Π1(sin
2)(t)dt =

π

4

4∑
i=1

[sin2(ti) + sin2(ti+1)].

Compute each term of the sum individually:

• sin2(0) + sin2(π2 ) = 1,

• sin2(π2 ) + sin2(π) = 1,

• sin2(π) + sin2(3π2 ) = 1,

• sin2(3π2 ) + sin2(2π) = 1,

combining all the terms yields∫ 2π

0
sin2(t)dt ≃ π

4
(1 + 1 + 1 + 1) = π.
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