
Ordinary Differential Equations (Ode’s): Example 1

m L t ) = money
at  time t

assume you invest your money m ( to ) at time to

and you get an interest i l t )
,

while you pay

To the bank a management cost e C m ) . in

( for example i 1% for ME 10K€
,

0.8%

for higher amount )

then the mathematical model looks like
:

{
date It ) = ( itt ) - com )) mft )

m I to ) = given initial amount
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f Ct
,

mut )
-

{
date It ) = ( itt ) - ccm )) MH

m I to ) = given initial amount

note that if i so and e - o then me remains constant .
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Ordinary Differential Equations (Ode’s): Example 2

I (f) = position in R
'

of a

rigid
particle subject to

a force

ELI
,

t )
, for example

vs constant related To viscosity
f- z = Viscous force from the steady liquid to a

-

-

the movingparticle -Iz
 =

-VII 
= velocity of the particle = DIE •

-
-fi

i force due to the spring
- of.¥¥' -

O z

m = mass of the particle

date ( t ) = I ( t ) ← definition of velleity

µ÷H=mL(- k±H - u CH) ← ÷a¥ Atf .

± Ito) = initial position

I Ctu) =
initial velocity
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Ordinary Differential Equations (Ode’s): Example 2

date I t ) = I ( t ) ← definition of velleity

date It ) = Im ( - kelt ) - v Ctl ) ← m - dat = force = fntfz!it:innit:c:*;
÷÷

introducing

±
HI = [ ! e IR

-

then

the Cauchy problem above reads :

¥1
C t ) = I ( t

, I ( t ) ) ← system of differential eq .

Y I to ) = yo ←

initial condition
-  -
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Ordinary Differential Equations (Ode’s)

We shall consider some numerical schemes to solve initial-value problems
(Cauchy’s problems) written as: Find y = y(t) solution of{

y ′(t) = f (t, y(t)) t ∈ [t0,T ]

y(t0) = y0.
(1)

In general f (t, y(t)) is a non-linear function describing the evolution in
time of y(t). The true solution y(t) of (1) evolves continuously in time,
and we want to follow it by a discrete approximation.

Both exact and discrete solution of (1) start from the same initial value
y0 at t0. The discrete one takes finite steps ∆t, and after n steps it
reaches a value yn. We hope and expect that yn is close to the exact value
y(t0 + n∆t). We shall see that this may or may not happen.
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Numerical methods for Ode’s

let us see some schemes to solve numerically (1). They are numerous, and
a first distinction is among 1-step methods and multi-step methods. Let
us see 1-step methods.

They can all be derived in the following way.
Le t0, t1, · · · , tN = T be a set of points in [t0,T ]; as usual, for simplify

notation we take them equally spaced: (N given, we define ∆t =
T − t0

N
and we set t0, t1 = t0 + ∆t, t2 = t1 + ∆t, · · · , tN = T ).
At each step, (on each subinterval [tn, tn+1]) we integrate the differential
equations...

y(tn+1)− y(tn) =

∫ tn+1

tn

y ′(t)dt =

∫ tn+1

tn

f (t, y(t))dt. (∗)

Then, as y(t) in the interval [tn, tn+1] is unknown to us (and moreover, in
general, we are unable to compute the integral exactly), we use some
quadrature formula.

4 / 59



Numerical methods for Ode’s

let us see some schemes to solve numerically (1). They are numerous, and
a first distinction is among 1-step methods and multi-step methods. Let
us see 1-step methods.

They can all be derived in the following way.
Le t0, t1, · · · , tN = T be a set of points in [t0,T ]; as usual, for simplify

notation we take them equally spaced: (N given, we define ∆t =
T − t0

N
and we set t0, t1 = t0 + ∆t, t2 = t1 + ∆t, · · · , tN = T ).

At each step, (on each subinterval [tn, tn+1]) we integrate the differential
equations...

y(tn+1)− y(tn) =

∫ tn+1

tn

y ′(t)dt =

∫ tn+1

tn

f (t, y(t))dt. (∗)

Then, as y(t) in the interval [tn, tn+1] is unknown to us (and moreover, in
general, we are unable to compute the integral exactly), we use some
quadrature formula.

4 / 59



Numerical methods for Ode’s

let us see some schemes to solve numerically (1). They are numerous, and
a first distinction is among 1-step methods and multi-step methods. Let
us see 1-step methods.

They can all be derived in the following way.
Le t0, t1, · · · , tN = T be a set of points in [t0,T ]; as usual, for simplify

notation we take them equally spaced: (N given, we define ∆t =
T − t0

N
and we set t0, t1 = t0 + ∆t, t2 = t1 + ∆t, · · · , tN = T ).
At each step, (on each subinterval [tn, tn+1]) we integrate the differential
equations...

y(tn+1)− y(tn) =

∫ tn+1

tn

y ′(t)dt =

∫ tn+1

tn

f (t, y(t))dt. (∗)

Then, as y(t) in the interval [tn, tn+1] is unknown to us (and moreover, in
general, we are unable to compute the integral exactly), we use some
quadrature formula.

4 / 59



Numerical methods for Ode’s

let us see some schemes to solve numerically (1). They are numerous, and
a first distinction is among 1-step methods and multi-step methods. Let
us see 1-step methods.

They can all be derived in the following way.
Le t0, t1, · · · , tN = T be a set of points in [t0,T ]; as usual, for simplify

notation we take them equally spaced: (N given, we define ∆t =
T − t0

N
and we set t0, t1 = t0 + ∆t, t2 = t1 + ∆t, · · · , tN = T ).
At each step, (on each subinterval [tn, tn+1]) we integrate the differential
equations...

y ′(t) = f (t, y(t))

y(tn+1)− y(tn) =

∫ tn+1

tn

y ′(t)dt =

∫ tn+1

tn

f (t, y(t))dt. (∗)

Then, as y(t) in the interval [tn, tn+1] is unknown to us (and moreover, in
general, we are unable to compute the integral exactly), we use some
quadrature formula.

4 / 59



Numerical methods for Ode’s

let us see some schemes to solve numerically (1). They are numerous, and
a first distinction is among 1-step methods and multi-step methods. Let
us see 1-step methods.

They can all be derived in the following way.
Le t0, t1, · · · , tN = T be a set of points in [t0,T ]; as usual, for simplify

notation we take them equally spaced: (N given, we define ∆t =
T − t0

N
and we set t0, t1 = t0 + ∆t, t2 = t1 + ∆t, · · · , tN = T ).
At each step, (on each subinterval [tn, tn+1]) we integrate the differential
equations...

y(tn+1)− y(tn) =

∫ tn+1

tn

y ′(t)dt =

∫ tn+1

tn

f (t, y(t))dt. (∗)

Then, as y(t) in the interval [tn, tn+1] is unknown to us (and moreover, in
general, we are unable to compute the integral exactly), we use some
quadrature formula.

4 / 59



y(tn+1)− y(tn) =

∫ tn+1

tn

y ′(t)dt =

∫ tn+1

tn

f (t, y(t))dt. (∗)

∫ tn+1

tn

f (t, y(t))dt ∼ quadrature formula.

Different choices of quadrature formulas give rise to different schemes.
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Examples of numerical schemes

Example 1 We consider first the quadrature formula∫ d

c
g(s)ds ' (d − c) g(c) (2)

that, indeed, is very poor (and is exact only for g = constant).

Then∫ tn+1

tn

f (t, y(t))dt ' (tn+1 − tn)f (tn, y(tn)) n = 0, 1, 2, · · · (3)

Using (3) into y(tn+1)− y(tn) =
∫ tn+1

tn
y ′(t)dt =

∫ tn+1

tn
f (t, y(t))dt we get:
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Examples of numerical schemes

It is clear from this that errors accumulate at each step and might produce
unexpected results. We will analyse the scheme later on. Let us write it in
a compact form:{

y0 given

yn+1 = yn + ∆t f (tn, yn) n = 0, 1, · · · ,N − 1 (EE )

This is called EXPLICIT EULER method or FORWARD EULER method:
at each step, the value yn can be explicitly computed using values at the
previous steps. It is very simple and inexpensive but, as we shall see, there
is a “but”...
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Examples of numerical schemes

Example 2 This time we consider the quadrature formula∫ d

c
g(s)ds ' (d − c) g(d) (4)

that is also very poor and is exact only if g = constant, like the previous
one. However the resulting scheme will be very different.

In fact, applying it to our case we get∫ tn+1

tn

f (t, y(t))dt ' (tn+1 − tn)f (tn+1, y(tn+1)) n = 0, 1, 2, · · ·

that used into y(tn+1)− y(tn) =
∫ tn+1

tn
y ′(t)dt =

∫ tn+1

tn
f (t, y(t))dt gives
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Examples of numerical schemes

The scheme becomes{
y0 given

yn+1 = yn + ∆t f (tn+1, yn+1) n = 0, 1, · · · ,N − 1 (IE )

This is called IMPLICIT EULER method or BACKWARD EULER method.
Note that, at every time step, the unknown yn+1 in (IE ) appears both on
the left-hand side and in the right-hand side, and in order to perform the
step we must solve an equation in the unknown yn+1. Since f is in general
non-linear, at each step, to find yn we need to solve a non-linear equation
(for example, with Newton method). The method is obviously more
expensive than Explicit Euler.
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Examples of numerical schemes

Example 3 As a third example we consider the quadrature formula∫ d

c
g(s)ds ' (d − c)

(g(c) + g(d)

2

)
(5)

(trapezoidal rule) that is better than the previous ones since it is exact
whenever g is a polynomial of degree ≤ 1.

Applying it to our case we get∫ tn+1

tn

f (t, y(t))dt ' (tn+1 − tn)

2

(
f (tn, y(tn)) + f (tn+1, y(tn+1))

)
∀n

The corresponding scheme becomesy0 given

yn+1 = yn +
∆t

2

(
f (tn, yn) + f (tn+1, yn+1)

)
n = 0, 1, · · · ,N − 1
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Examples of numerical schemes

y0 given

yn+1 = yn +
∆t

2

(
f (tn, yn) + f (tn+1, yn+1)

)
n = 0, 1, · · · ,N − 1

This is called CRANK-NICOLSON method. It is an implicit method (and
hence, as the previous Implicit Euler, expensive) but it has a good
accuracy, as we shall see.
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Examples of numerical schemes

Explicit methods could be derived from an implicit scheme:

P: use the explicit formula to predict a new y∗n+1

E: use y∗n+1 to evaluate f ∗n+1 = f (tn+1, y
∗
n+1)

C: use f ∗n+1 in the implicit formula to correct the new yn+1

Example 4 In the Crank-Nicolson scheme, use Explicit Euler as a
predictor, we get rid of the implicit part and obtain a new explicit method,
called HEUN method, which reads

y0 given

y∗n+1 = yn + ∆t f (tn, yn)

yn+1 = yn +
∆t

2

(
f (tn, yn) + f (tn+1, y

∗
n+1)

)
n = 0, 1, · · · ,N − 1
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Systems of Ode’s

It is much more common to have systems of differential equations than a
single equation. The unknown is now a vector Y (t), and so is the
right-hand side F (t,Y (t)). The problem is: find Y (t) solution of{

Y ′(t) = F (t,Y (t)) t ∈ [t0,T ]

Y (t0) = Y (0).
(6)

with

Y (t) =


y1(t)
y2(t)

...
yN(t)

 , F (t,Y (t)) =


f1(t,Y (t))
f2(t,Y (t))

...
fN(t,Y (t))

 , Y (0) =


y

(0)
1

y
(0)
2
...

y
(0)
N
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Systems of Ode’s

The numerical schemes used for a single equation apply directly to systems
of Ode’s.
For instance, the two Euler methods become:

(EE )

{
Y (0) given

Y (n+1) = Y (n) + ∆tF (tn,Y
(n)) n = 0, 1, · · ·

Ex: N = 2 equations, and 2 unknowns y1, y2:
y

(0)
1 , y

(0)
2 given

y
(n+1)
1 = y

(n)
1 + ∆t f1(tn, y

(n)
1 , y

(n)
2 ) n = 0, 1, · · ·

y
(n+1)
2 = y

(n)
2 + ∆t f2(tn, y

(n)
1 , y

(n)
2 ) n = 0, 1, · · ·
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(IE )

{
Y (0) given

Y (n+1) = Y (n) + ∆tF (tn+1,Y
(n+1)) n = 0, 1, · · ·

Ex: N = 2 equations, and 2 unknowns y1, y2:
y

(0)
1 , y

(0)
2 given

y
(n+1)
1 = y

(n)
1 + ∆t f1(tn+1, y

(n+1)
1 , y

(n+1)
2 ) n = 0, 1, · · ·

y
(n+1)
2 = y

(n)
2 + ∆t f2(tn+1, y

(n+1)
1 , y

(n+1)
2 ) n = 0, 1, · · ·

much more expensive now: at each step, to go from Y (n) to Y (n+1)

requires the solution of a non-linear system!
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Y (n+1) = Y (n) + ∆tF (tn+1,Y
(n+1))

find X such that

G (X ) := X −∆tF (tn+1,X )− Y (n) = 0,

and set Y (n+1) := X
One Newton would give:

X (0) given

JG[X (0)]δX = −G (X (0))

X (1) = X (0) + δX

X (0) =??

for example: X (0) = Y (n) + ∆tF (tn,Y
(n)) (EE )
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Or you could use PECE with a few cycles of CE :

P : X (0) = Y (n) + ∆tF (tn,Y
(n)) (EE )

E : F (0)(tn+1,X
(0))

C : X (1) = Y (n) + ∆tF (0)(tn+1,X
(0))

E : F (1)(tn+1,X
(1))

C : X (2) = Y (n) + ∆tF (1)(tn+1,X
(1))

E : F (2)(tn+1,X
(2))

Then set:

Y (n+1) = Y (n) + ∆tF (2)(tn+1,X
(2))
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Study of convergence

So we have two classes: explicit methods, and implicit methods.

In all cases we want the sequence {y0, y1, · · · , yN} to converge to the
sequence {y0, y(t1), · · · , y(T )}.

If, given a method, we can prove that

∃C > 0 such that max
n
|yn − y(tn)| ≤ C∆tp

with C independent of ∆t and p > 0, then we say that the method is
convergent, and the order of convergence is p (the bigger p, the faster the
convergence).

Theorem 1 (Lax)

If a scheme is consistent and stable, then it is convergent, and the order
of convergence is the order of consistency.

We have however yet to define what consistency and stability are....
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Intuitive explanation of consistency and stability

consistency is a measure of how much the discrete scheme resembles
the differential problem: the consistency error at a given time step
measures the error which is created at that step; it is defined as the
error made when the scheme is applied to the exact solution of the
problem.

stability measures how the error, created and accumulated during the
previous steps, goes to the next step (is it amplified? does it
decay?...)

The detailed definition is given at the end of these slides for the methods
introduced, but is not a topic for the final exam.
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Consistency of a scheme

Consistency is a measure of how much the discrete scheme resembles the
differential problem: the consistency error is the error made when the
scheme is applied to the exact solution of the problem.

Denoting by τ the consistency error of a given scheme, if we have

τ ≤ C∆tp

for some positive constant C independent of ∆t and p positive, we say
that the scheme is consistent (i.e., τ → 0 for ∆t → 0) and the order of
consistency is p.

Let us see how to check consistency for the simplest scheme, Explicit
Euler

.
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Consistency of Explicit Euler

the exact solution fulfils: y ′(tn)− f (tn, y(tn)) = 0, n = 0, 1, 2, ...
the discrete solution fulfils: yn+1−yn

∆t − f (tn, yn) = 0, n = 0, 1, 2, ...

If we apply the EE scheme to the exact solution we will have

τn =
y(tn+1)− y(tn)

∆t
− f (tn, y(tn)) 6= 0 n = 0, 1, 2, ....

The quantity τn is called the local truncation error at the step n, and
the consistency error will be τ = maxn |τn|.
Since y ′(tn) = f (tn, y(tn)) by Taylor expansion at tn we have, for z such

that tn < z < tn+1, that y(tn+1) = y(tn) + ∆t f (tn, y(tn)) + ∆t2

2 y ′′(z)

τn =
y(tn+1)− y(tn)

∆t
− f (tn, y(tn)) =

∆t

2
y ′′(z),

τ = max |τn| ≤
∆t

2
max

t∈[t0,T ]
|y ′′(t)| = C∆t.

Thus, Explicit Euler scheme is consistent with order of consistency 1.
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Consistency of Implicit Euler method

yn+1 − yn
∆t

− f (tn+1, yn+1) = 0 n = 0, 1, 2, .....

Applying this scheme to the exact solution y(·) we will have

τn =
y(tn+1)− y(tn)

∆t
− f (tn+1, y(tn+1)) 6= 0 n = 0, 1, 2, ....

Since f (tn+1, y(tn+1)) = y ′(tn+1), we use Taylor expansion at tn+1:

y(tn)− y(tn+1)

∆t
= −y ′(tn+1) +

∆t

2
y ′′(z) tn < z < tn+1.

Hence we obtain

τn = −∆t

2
y ′′(z) =⇒ τ = max |τn| ≤

∆t

2
max

t∈[t0,T ]
|y ′′(t)| = C∆t.

Thus, Implicit Euler scheme is consistent with order of consistency 1.
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∆t
= −y ′(tn+1) +

∆t

2
y ′′(z) tn < z < tn+1.

Hence we obtain

τn = −∆t

2
y ′′(z) =⇒ τ = max |τn| ≤

∆t

2
max

t∈[t0,T ]
|y ′′(t)| = C∆t.

Thus, Implicit Euler scheme is consistent with order of consistency 1.

22 / 59



Consistency of the Crank-Nicolson method

yn+1 − yn
∆t

− 1

2

(
f (tn, yn) + f (tn+1, yn+1)

)
= 0 n = 0, 1, 2, .....

Applying this scheme to the exact solution y(·) we will have

τn =
y(tn+1)− y(tn)

∆t
− 1

2

(
f (tn, y(tn)) + f (tn+1, y(tn+1))

)

=
1

2

(y(tn+1)− y(tn)

∆t
− y ′(tn)

)
+

1

2

(y(tn+1)− y(tn)

∆t
− y ′(tn+1)

)
.

Taylor expansion centered at tn for the first term, at tn+1 for the second:

τn =
1

2
(

∆t

2
y ′′(z1)) +

1

2
(−∆t

2
y ′′(z2)) =

1

4
∆t(z1−z2)y ′′′(z3) ≤ ∆t2

4
y ′′′(z3)
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where above we used the mean value theorem: y ′′(z1)−y ′′(z2)
z1−z2

= y ′′′(z3)
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A closer look at consistency error

We found that:

for the two Euler methods, the consistency error is zero whenever
y ′′ ≡ 0, that is, whenever the solution of (1) is a polynomial of degree
up to 1.

the consistency error for Crank-Nicolson is zero whenever y ′′′ ≡ 0,
that is, whenever the solution of (1) is a polynomial of degree up to 2.

This suggests that to have order of consistency p means that the scheme
computes exactly the solution of (1) whenever this solution is a
polynomial of degree up to p.

This is another way of checking consistency of a scheme, less rigorous but
practical, and this is how we will check consistency for Heun scheme.
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Consistency of Heun method

yn+1 − yn
∆t

− 1

2

(
f (tn, yn) + f (tn+1, yn + ∆tf (tn, yn))

)
= 0 ∀n

Applying this scheme to the exact solution of (1) we will have

τn =
y(tn+1)− y(tn)

∆t
− 1

2

(
y ′(tn) + f (tn+1, y(tn) + ∆t y ′(tn))

)
6= 0.

This scheme originated from Crank-Nicolson, by making explicit the
implicit part. Is the order of consistency still 2? For this we should have
τn ≡ 0 when the solution of (1) is 1, t, t2.

When y(t) = 1, y ′ = 0 = f ,=⇒ τn =
1− 1

∆t
− 1

2
(0 + 0) = 0;

When y(t) = t, y ′ = 1 = f ,=⇒ τn =
tn+1 − tn

∆t
− 1

2
(1 + 1) = 1− 1 = 0;

When y(t) = t2, y ′ = 2t = f ,=⇒ τn =
t2
n+1 − t2

n

∆t
− 1

2
(2tn + 2tn+1) = 0

Hence, the order of consistency of Heun method is 2.
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Stability

The concept of stability is a very important and useful concept whose
precise definition has to be made precise at various occurrences. Roughly
speaking, stability is what guarantees that the errors generated during a
numerical procedure do not grow too much.

With Ode’s stability is a delicate issue, especially when the phenomenon
under study has to be followed for a long time. To better see what
happens, let us consider a simple model problem, for which we know the
exact solution:{

y ′(t) = ay(t) t > 0

exact solution: y(t) = y0e
at

y(0) = y0
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If a > 0 (or Re a > 0 if a ∈ C) the exact solution grows exponentially. We
cannot expect (and we do not want!) that the discrete scheme remains
bounded, and it is not even the case to discuss “stability”.

Instead, if a < 0 the exact solution not only is bounded, but decays
exponentially:

a < 0 −→ |y(t)| ≤ |y0| and lim
t→∞

|y(t)| = 0.

When a is a complex number, the exact solution is given by
y(t) = y0e

(Re a)t(cos((Im a)t) + i sin((Im a)t)), and has the same
behaviour if Re a < 0:

a ∈ C with Re a < 0 −→ |y(t)| ≤ |y0| and lim
t→∞

|y(t)| = 0.

In this case we need to analyse the discrete schemes, and see whether
the discrete solution decays too, and behaves like the exact solution.
Hence, let a < 0 (or Re a < 0 if a ∈ C), and let {yn} be the sequence
generated by a numerical scheme. Does {yn} satisfy the following relation?

a ∈ C with Re a < 0 −→ |yn| ≤ |y0| and lim
n→∞

|yn| = 0?

If this happens, the scheme is called Absolutely stable, or A-stable.
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Checking stability for Explicit Euler

By applying Explicit Euler method to the model problem, we get
(yn+1 = yn + ∆tf (tn, yn) with f (tn, yn) = ayn)

yn+1 = (1 + a∆t)yn n = 0, 1, .... =⇒ yn = y0(1 + a∆t)n.

The exact solution decays exponentially from the initial value y0, while the
growth-decay factor for the discrete scheme is G = 1 + a∆t.
For having limn→∞ |yn| = 0 we need |G | < 1. Since a is negative, we
always have G = 1 + a∆t < 1, but to have G > −1 we need to satisfy the
condition

1 + a∆t > −1, that is, ∆t <
(

2/|a|
)

=: stability condition for EE

This is the drawback of Explicit Euler scheme, and of all the explicit
schemes: for small enough time steps the stability condition is satisfied,
but when a is strongly negative (exactly the case of rapid decay in the true
solution) we are compelled to keep ∆t small.
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Stability for Explicit Euler: the real setting
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Stability for Explicit Euler: the complex setting

Z  =
abt E fi

- 2
-

1

.

°

2-

-

EE is stable ⇒ I i t a att - I

⇐ s z E circle with radius I and center - I
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Checking stability for Implicit Euler

Applying Implicit Euler method to the model problem gives
(yn+1 = yn + ∆tf (tn+1, yn+1) with f (tn+1, yn+1) = ayn+1)

yn+1 = yn + a∆tyn+1 n = 0, 1, .... =⇒ yn+1 =
1

1− a∆t
yn = G yn.

For negative a the growth-decay factor G is positive, and the
denominator is always larger than 1. Therefore |G | < 1 and we always
have decay.

|G | < 1 holds also if a is any complex number in the left-half plane

Then we say that Implicit Euler is A-stable: the A-stability condition can
be written as

If Re a < 0 then |G | < 1 =: A-stability
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Stability for Implicit Euler: the complex setting

Z  =
abt Efi

2

.

\

-

The scheme is A-stable:

|G | < 1⇔ |1− a∆t| > 1⇔ a∆t is outside the circle above⇐ Rea < 0
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Checking stability for Crank-Nicolson

Crank-Nicolson gives

yn+1 = yn+
a∆t

2
(yn+yn+1) n = 0, 1, .... =⇒ yn+1 =

1 + a∆t
2

1− a∆t
2

yn = G yn.

The scheme is A-stable:

|G | < 1⇔ |2 + a∆t| ≤ |2− a∆t| ⇔ (Rea)∆t < 0⇔ Rea < 0

Z  =
abt Efi

H k
.

a a
x sty

in

- 2
.

1 O 2
.

\

-

Heun method, being explicit, is not A-stable, only conditionally A-stable

like Explicit Euler. In fact, G = 1 + a∆t + (a∆t)2

2 , and the condition

|G | < 1 is satisfied if ∆t <
(

2/|a|
)

.
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Stability regions: comparison

For each of these methods we have defined the stability region in the
complex plane as

A := {a∆t ∈ C : lim
n→∞

|yn| = 0} ≡ {a∆t ∈ C : |G | < 1}

and compared it with the stability region of the continuous problem: the
half plane Re a < 0.

For Explicit Euler A = {a∆t ∈ C : |1 + a∆t| < 1} is a circle with center
(−1, 0) and radius 1 (too small!).

For Implicit Euler A = {a∆t ∈ C : |1− a∆t| > 1} is the whole plane
minus a circle with center (1, 0) and radius 1 (too big!)

For Crank-Nicolson the region is the left-half plane, exactly as for the true
solution (the best you can have).
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Stability regions

A-stability regions for EE (the region inside the red circle), Heun (the
region inside the blue ellipse), IE (green, the region outside the circle with
center (1, 0) and radius 1
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Conclusions (for the four basic methods)

In general, explicit schemes are never A-stable, only conditionally A-stable,
meaning that to satisfy the A-stability property they need to proceed by
small time steps. Some implicit schemes are A-stable.

For the method we have considered:

Method Consistency Stability

Explicit Euler yes, order 1 conditionally A-stable

Implicit Euler yes, order 1 A-stable

Crank-Nicolson yes, order 2 A-stable

Heun yes, order 2 conditionally A-stable
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Lack of A-stability ** NOT FOR THE EXAM **

For a single equation the lack of A-stability is not a major drawback: to
have a good accuracy small ∆t have to be used. Instead for systems it
could be more severe when the problem has different time scales.

Y ′(t) = AY (t)

the eigenvalues λj of the square matrix A take the place of the single
number a.

Explicit Euler would give

Y (n+1) = (I + ∆t A)Y (n) ∀n =⇒ Y (n+1) = (I + ∆t A)n+1Y (0)

The growth factor is now a matrix

G = (I + ∆t A) with eigenvalues gj = 1 + ∆t λj .
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Lack of A-stability ** NOT FOR THE EXAM **

Suppose that both A and G are diagonalised. Then,

each component of the discrete solution grows like gn
j ,

each component of the continuous solution grows like eλj t .

The continuous solution is stable if all the λj are negative (or Reλj < 0):
hence eλj t → 0 for t →∞.

The discrete solution is stable if all the |gj | < 1, so that gn
j → 0 for

n→∞.

If the problem has different time scales we are in trouble...

Since ∆t is the same for all the components, its size is controlled by the
most negative eigenvalue, which corresponds to the fastest decay and dies
out first in the true solution.
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Stiff systems ** NOT FOR THE EXAM **

When the matrix A has eigenvalues with very different magnitude, the
system is called stiff.

Let us see a simple example.

Y ′(t) =

[
−2 1
0 −100

]
Y (t) −→

y ′1(t) = −2y1(t) + y2(t)

y ′2(t) = −100y2(t)

solution: y1(t) ' e−2t , y2(t) ' e−100t .

If we use Explicit Euler method we need

∆t <
2

|λ1|
= 1 and ∆t <

2

|λ2|
=

1

50
.

Stability requires then ∆t < 1
50 even though it is e−2t that controls the

true solution: in fact, y2 decays like e−100t and dies out very fast, but its
presence forces us to proceed by small time steps even when it has virtually
disappeared and we are interested in following the e−2t component.
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Matlab functions

Most commonly used Matlab functions:

Non stiff problems:

ode23 (low order RK), ode45 (medium order RK), ode113 (variable order)

Stiff: ode15s (low to medium order), ode23s (low order RK)
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Generalizing Heun idea: Runge-Kutta methods

The celebrated Runge-Kutta methods are compound 1-step methods.

The basic idea is very simple: choose a high precision quadrature formula
for
∫
f on each interval [tn, tn+1]. Then, since the values at the

quadrature nodes are not known, we predict them someway (and this is
where the detailed description could become quite complicated).

The simplest explicit RK is Heun: the starting point is the trapezoidal
rule for

∫ tn+1

tn
f , and since we want to go explicit, instead of the value yn+1

(that would be needed in the trapezoidal rule) we use yn + ∆t f (tn, yn),
that is, the value predicted by Explicit Euler.
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Runge-Kutta methods

Heun scheme:
y0 given

y∗n+1 = yn + ∆t f (tn, yn)

yn+1 = yn +
∆t

2

(
f (tn, yn) + f (tn+1, y

∗
n+1)

)
n = 0, 1, · · · ,N − 1

Denoting by K1 and K2 the values of f at the two nodes tn and
tn+1 = tn + ∆t we can rewrite Heun method as:

K1 = f (tn, yn), K2 = f (tn + ∆t, yn + ∆t K1)

yn+1 = yn +
∆t

2

(
K1 + K2

)
n = 0, 1, · · ·
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Runge-Kutta methods

The more famous version of Runge-Kutta, RK4, is compounded four
times, it is based on Simpson rule, and achieves order p = 4. Let us see
how it is obtained.

Simpson rule uses on the interval [tn, tn+1] three nodes tn,
tn+1/2 = tn + ∆t/2, and tn+1 = tn + ∆t, and would give∫ tn+1

tn

f (t, y(t))dt ' ∆t

6

(
fn + 4fn+1/2 + fn+1

)
.

The value fn is known, so we set K1 = f (tn, yn); then write 4fn+1/2 as

2f
(1)
n+1/2 + 2f

(2)
n+1/2, and we choose two different “predictions” for yn+1/2:

f
(1)
n+1/2 = f (tn+1/2, yn +

∆t

2
K1) =: K2

f
(2)
n+1/2 = f (tn+1/2, yn +

∆t

2
K2) =: K3
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RK4

We had
K1 = f (tn, yn), K2 = f

(1)
n+1/2 = f (tn+1/2, yn + ∆t

2 K1),

K3 = f
(2)
n+1/2 = f (tn+1/2, yn + ∆t

2 K2)

For fn+1 we take here fn+1 = f (tn+1, yn + ∆t K3) (although other choices
could have been possible), so that the scheme is:

K1 = f (tn, yn), K2 = f (tn+1/2, yn +
∆t

2
K1)

K3 = f (tn+1/2, yn +
∆t

2
K2), K4 = f (tn+1, yn + ∆t K3)

yn+1 = yn +
∆t

6

(
K1 + 2K2 + 2K3 + K4

)
n = 0, 1, · · ·
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Explicit Runge-Kutta

The family of explicit Runge-Kutta methods is a generalisation of the RK4
scheme above:

y0 given yn+1 = yn + ∆t
s∑

i=1

biKi , n = 0, 1, · · · (7)

where

Ki = f (tn + ci∆t, yn + ∆t
i−1∑
j=1

aijKj)

To specify a particular method one needs to provide the integer s (the
number of stages), and the coefficients aij , bi , ci . The matrix [aij ] is called
Runge-Kutta matrix, while the bi and ci are called weights and nodes,
respectively. These coefficients are usually arranged in the Butcher tableau
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Butcher tableau

0
c2 a2,1

c3 a3,1 a3,2
...

...
. . .

cs as,1 as,2 · · · as,s−1

b1 b2 · · · bs−1 bs
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Consistency conditions

For consistency the coefficients must verify algebraic conditions;

a RK scheme is consistent iff
∑s

i=1 bi = 1.

(This condition is always verified since the bi are the weights of the
quadrature formula used, which has to be exact at least on constants).

For higher order of consistency, other relations must be satisfied. For
instance, for a 2 stage explicit RK to have order 2 we need, together with
b1 + b2 = 1, also b2c2 = 1/2 (check!)
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Accuracy and stages of RK ** NOT FOR THE EXAM **

Theorem 2

An explicit s-stages Runge-Kutta method cannot have order of accuracy p
greater than s. Moreover, there are no known explicit s-stages RK
methods with order p = s for s ≥ 5.

order p 1 2 3 4 5 6 7 8

smin 1 2 3 4 6 7 9 11

RK methods are very successful and widely used in the codes for their
ductility: the time step can easily be modified from one interval to another
if needed, the initial value y0 is all what is needed to start the method,
and they have high accuracy.
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A first multistep method

Let us start with an example. Let t0, t1, · · · , tN = T be a set of equally

spaced points in [t0,T ], and let ∆t =
T − t0

N
be the time step (this time

the points must be equally spaced).

We want to construct an explicit scheme of order 2 going back two steps:

yn+1 = yn + ∆t
(
αf (tn, yn) + βf (tn−1, yn−1)

)
, n = 1, 2, · · ·

This requires values at time tn−1 = t0 + (n − 1)∆t as well as at time tn.
Therefore the initial value y0 is not enough to start the procedure and we
need to compute y1 with a 1-step method. Then we have to find α and β
such that the scheme has order 2.
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Choosing the parameters in a multistep scheme....

The starting point is the same as for 1-step methods:

y(tn+1)− y(tn) =

∫ tn+1

tn

y ′(t)dt =

∫ tn+1

tn

f (t, y(t))dt. (∗)

The function f is then approximated by its Lagrange interpolant
polynomial of degree ≤ 1 with respect to the nodes tn−1 and tn:

f (t, y(t)) ' Π1(t) :=
t − tn−1

tn − tn−1
f (tn, yn) +

tn − t

tn − tn−1
f (tn−1, yn−1)

Consequently,∫ tn+1

tn

f (t, y(t))dt ∼
∫ tn+1

tn

Π1(t)dt =
3

2
∆t f (tn, yn)− 1

2
∆t f (tn−1, yn−1)

The order accuracy is 2: if f ∈ P1, then f ≡ Π1 and
∫
f is computed

exactly. On the other hand, f ∈ P1 implies y ∈ P2.
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Integral of Π1

n+1
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t tn−1

tn
_

t n−1
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t tn

t tn n−1
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t tnn−1
t
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Generalization

With the same approach we can design schemes that use values computed
at p previous steps and are p-accurate:

on each interval [tn, tn+1] the function f is replaced by its Lagrange
interpolant polynomial (of degree ≤ p − 1) with respect to the p points
tn, tn−1, · · · , tn+1−p:

f (t, y(t)) ' Πp−1(t) with Πp−1 ∈ Pp−1 verifying

Πp−1(tn) = f (tn, yn),

Πp−1(tn−1) = f (tn−1, yn−1),

· · ·
Πp−1(tn+1−p) = f (tn+1−p, yn+1−p).

The
∫ tn+1

tn
Πp−1(t)dt is then computed exactly; to complete the p-step

scheme we will need to compute p − 1 “initial values” y1, y2, · · · , yp−1 in
addition to y0 (for instance with a 1-step method).

53 / 59



Generalization

With the same approach we can design schemes that use values computed
at p previous steps and are p-accurate:

on each interval [tn, tn+1] the function f is replaced by its Lagrange
interpolant polynomial (of degree ≤ p − 1) with respect to the p points
tn, tn−1, · · · , tn+1−p:

f (t, y(t)) ' Πp−1(t) with Πp−1 ∈ Pp−1 verifying

Πp−1(tn) = f (tn, yn),

Πp−1(tn−1) = f (tn−1, yn−1),

· · ·
Πp−1(tn+1−p) = f (tn+1−p, yn+1−p).

The
∫ tn+1

tn
Πp−1(t)dt is then computed exactly; to complete the p-step

scheme we will need to compute p − 1 “initial values” y1, y2, · · · , yp−1 in
addition to y0 (for instance with a 1-step method).

53 / 59



Generalization

With the same approach we can design schemes that use values computed
at p previous steps and are p-accurate:

on each interval [tn, tn+1] the function f is replaced by its Lagrange
interpolant polynomial (of degree ≤ p − 1) with respect to the p points
tn, tn−1, · · · , tn+1−p:

f (t, y(t)) ' Πp−1(t) with Πp−1 ∈ Pp−1 verifying

Πp−1(tn) = f (tn, yn),

Πp−1(tn−1) = f (tn−1, yn−1),

· · ·
Πp−1(tn+1−p) = f (tn+1−p, yn+1−p).

The
∫ tn+1

tn
Πp−1(t)dt is then computed exactly; to complete the p-step

scheme we will need to compute p − 1 “initial values” y1, y2, · · · , yp−1 in
addition to y0 (for instance with a 1-step method).

53 / 59



Generalization

With the same approach we can design schemes that use values computed
at p previous steps and are p-accurate:

on each interval [tn, tn+1] the function f is replaced by its Lagrange
interpolant polynomial (of degree ≤ p − 1) with respect to the p points
tn, tn−1, · · · , tn+1−p:

f (t, y(t)) ' Πp−1(t) with Πp−1 ∈ Pp−1 verifying

Πp−1(tn) = f (tn, yn),

Πp−1(tn−1) = f (tn−1, yn−1),

· · ·
Πp−1(tn+1−p) = f (tn+1−p, yn+1−p).

The
∫ tn+1

tn
Πp−1(t)dt is then computed exactly; to complete the p-step

scheme we will need to compute p − 1 “initial values” y1, y2, · · · , yp−1 in
addition to y0 (for instance with a 1-step method).

53 / 59



Adams-Bashforth schemes

The resulting scheme will be:
y0 given, y1, y2, · · · , yp−1 to be computed

yn+1 = yn + ∆t
(
c1fn + c2fn−1 + · · ·+ cpfn+1−p

)
,

n = p − 1, p, p + 1, · · ·

(8)

where ∆t c1,∆t c2, · · · are the integrals of the characteristic Lagrange
polynomials, and fn = f (tn, yn), fn−1 = f (tn−1, yn−1) and so on.

The multistep methods obtained in this way are “Adams-Bashforth’’
methods: they are explicit, p-accurate. In Table 1 below the coefficients
of the first four schemes.
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Adams-Bashforth schemes ** NOT FOR THE EXAM **

c1 c2 c3 c4

p = 1 1

p = 2 3/2 −1/2

p = 3 23/12 −16/12 5/12

p = 4 55/24 −59/24 37/24 −9/24

Table: First Adams-Bashforth schemes of order p
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Adams-Moulton

Note: A similar construction gives implicit methods, called
“Adams-Moulton. Compared with (8) they have an extra term c0fn+1 at
the new time level. Properly chosen, that adds one extra order of accuracy
(as it did for the Crank-Nicolson scheme).

c1 c2 c3 c4 A-stability1 order

p = 0 1 yes ∆t

p = 1 1/2 1/2 yes ∆t2

p = 2 5/12 8/12 −1/12 no ∆t3

p = 3 9/24 19/24 −5/24 1/24 no ∆t4

Table: First four Adams-Moulton schemes: order p + 1 ** NOT FOR THE EXAM
**

1see the last part of these slides for the definition
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Consistency of multistep meth.s ** NOT FOR EXAM **

As we have already seen, consistency amounts to impose that the local
truncation error is zero when the exact solution of (1) is a polynomial of
degree up to 2: hence we must require that τn ≡ 0 when the solution of
(1) is 1, t, t2.

τn = y(tn+1)−y(tn)
∆t −

(
αf (tn, y(tn)) + βf (tn−1, y(tn−1))

)
n = 1, 2, · · ·
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Consistency of multistep meth.s ** NOT FOR EXAM **

β = 1− α, αtn + βtn−1 = tn+1+tn
2

Inserting β = 1− α in the second equation we have

α(tn − tn−1) =
tn + tn+1 − 2tn−1

2

=
n∆t + (n + 1)∆t − 2(n − 1)∆t

2
=

3∆t

2
.

Therefore we obtain α =
3

2
and β = −1

2
. The 2-step scheme is theny0 given, y1 to be computed

yn+1 = yn + ∆t
(3

2
f (tn, yn)− 1

2
f (tn−1, yn−1)

)
, n = 1, 2, · · ·

By construction the scheme is consistent of order 2. Being explicit, it will
not be A-stable, only conditionally A-stable.
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More schemes ** NOT FOR THE EXAM **

Another way of constructing explicit methods with a good accuracy is to
choose an implicit scheme, and make it explicit with a very simple and
successful trick:

P: use the explicit formula to predict a new y∗n+1

E: use y∗n+1 to evaluate f ∗n+1 = f (tn+1, y
∗
n+1)

C: use f ∗n+1 in the implicit formula to correct the new yn+1

This is the predictor-corrector method (see Heun method). The stability
is much improved if there is another E step to evaluate fn+1 with the
corrected yn+1. So PECE is the basic sequence
continue the correction repeating the CE steps until yn+1 no longer
changes: it has reached its final value for the implicit formula. Often two
or three corrections are enough, and this is faster than using Newton’s
method in solving a single step of the implicit method.
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or three corrections are enough, and this is faster than using Newton’s
method in solving a single step of the implicit method.
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