We also have a convergence results for the approximation of the eigenvalue λ_1 .

Corollary

Let $A \in \mathbb{C}^{n \times n}$ be a diagonalizable matrix. Assume $|\lambda_1| > |\lambda_2|$ and $v_0 = \sum_{i=1}^n \alpha_i u_i$, with $\alpha_1 \neq 0$. Then it holds

$$
|\mu_k - \lambda_1| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)
$$
, for $k \to +\infty$.

For symmetric real matrices, we have a better convergence results:

Corollary

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Assume $|\lambda_1| > |\lambda_2|$ and $v_0 = \sum_{i=1}^n \alpha_i u_i$, with $\alpha_1 \neq 0$. Then it holds

$$
|\mu_k - \lambda_1| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right)
$$
, for $k \to +\infty$.

Some observations

One of the hypothesis of the previous results is $\alpha_1 \neq 0$, where α_i are defined such that $\mathsf{v}_0 = \sum_{i=1}^n \alpha_i \mathsf{u}_i$. Clearly, $\mathsf{u}_1, \ldots, \mathsf{u}_n$ are unknown and we cannot check if v_0 satisfies this hypothesis.

Practically this is not a real obstacle. If unfortunately we choose v_0 s.t $\alpha_1 = 0$, there are two possible cases:

- in exact arithmetic, we get $\lim_{k\to+\infty} \tilde{v}_k = u_2$ and $\lim_{k\to+\infty} \mu_k = \lambda_2$, as long as $|\lambda_2| > |\lambda_3|$ and $\alpha_2 \neq 0$.
- in *finite arithmetic*, during the iterations of the Power Method, round-off errors can cause the appearance of a non-zero component in the direction of u_1 in a certain v_k . If this happens, the method immediately starts to converge towards the dominant eigenvalue λ_1 and its corresponding eigenvector u_1 .

Stopping criterion

A simple stopping criterion for the power method is based on the residual:

$$
\text{Stop when } \|Av_k - \mu_k v_k\| \leq \text{tol}
$$

How can we compute other eigenvalues and eigenvectors?

Let $\mu \in \mathbb{C}$ a user-specified parameter that is not an eigenvalue of A, we want to approximate the closest eigenvalue of A to μ , i.e.

$$
\lambda_J = \underset{i}{\text{argmin}} \left| \mu - \lambda_i \right|
$$

Inverse Power method

Input: $A \in \mathbb{C}^{n \times n}$, $v_0 \in \mathbb{C}^n$ with $||v_0|| = 1$, MAXITER $\in \mathbb{N}$, tol $\in \mathbb{R}^+$. for $k = 1, 2, \ldots$, MAXITER $w = (A - \mu I)^{-1} v_{k-1}$ (equivalently, solve $(A - \mu I) w = v_{k-1}$) $v_k = w / ||w||$ $\mu_k = (v_k)^H A v_k$ (Rayleigh quotient with A) Check the Stopping criterion end Output: μ_k and v_k .

Beware

Since μ is not an eigenvalue of A, the matrix $A - \mu I$ is non singular.

Since $Au_i = \lambda_i u_i$, then $(A - \mu I)u_i = (\lambda_i - \mu)u_i$, and then $\frac{1}{\lambda_i-\mu}u_i=(A-\mu I)^{-1}u_i$. Let λ_J be the eigenvalue of A closest to μ , the largest (in module) eigenvalue of $(A - \mu I)^{-1}$ is then $\frac{1}{\lambda_J - \mu}$, and the relative eigenvector is u_1 . The inverse power method is just a power method applied to $(A - \mu I)^{-1}$, and the previous results apply: \widetilde{v}_k converges to u_j .
Since the Payleigh quotient u_k is computed with A instead of $(A - \mu I)^{-1}$. Since the Rayleigh quotient μ_k is computed with A instead of $\left(A-\mu I\right)^{-1}$, it converges to λ_1 .

Theorem

Assume $|\mu - \lambda_J| < |\mu - \lambda_i|$ $\forall i = 1, \ldots, n$, $i \neq J$ and $v_0 = \sum_{i=1}^n \alpha_i u_i$, with α , \neq 0. Then

$$
\lim_{k \to +\infty} \mu_k = \lambda_j
$$

and

$$
\lim_{k \to +\infty} \|\widetilde{v}_k - u_J\|_2 = 0, \qquad \text{where } \widetilde{v}_k = \frac{\|A^k v_0\|}{\alpha_1 \lambda_1^k} v_k.
$$

Note that if $\mu = 0$, the method approximates the eigenvalue of A that is smallest in module.