Eigenvalues and eigenvectors

Let $A \in \mathbb{R}^{n \times n}$. If $0 \neq v \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$ satisfy

$$Av = \lambda v$$

then λ is called **eigenvalue**, and v is called **eigenvector**.

Given a matrix, we want to approximate its eigenvalues and eigenvectors. Some applications:

- Structural engineering (natural frequency, heartquakes)
- Electromagnetics (resonance cavity)
- Google's Pagerank algorithm
- ...

The characteristic polynomial

The eigenvalues of a matrix are the roots of **the characteristic polynomial**

$$p(\lambda) := \det(\lambda I - A) = 0$$

However, computing the roots of a polynomial is a very ill-conditioned problem! We cannot use this approach to compute the eigenvalues.

Eigenvalues and eigenvectors

Algorithms that compute the eigenvalues/eigenvectors of a matrix are divided into two categories:

- Methods that compute all the eigenvalues/eigenvectors at once.
- Methods that compute only a few (possibly one) eigenvalues/eigenvectors.

The methods are also different whether the matrix is symmetric or not. In this lesson we will discuss methods of type 2.

Diagonalizable matrices

Definition

We say that a matrix $A \in \mathbb{C}^{n \times n}$ is diagonalizable if there exists a non singular matrix U and a diagonal matrix D such that $U^{-1}AU = D$.

The diagonal element of D are the eigenvalue of A and the column u_i of U is an eigenvector of A relative to the eigenvalue $D_{i,i}$.

Since a scalar multiple of an eigenvector is still an eigenvector, we can choose U such that $||u_i||_2 = 1$ for i = 1, ..., n.

Finally, we observe that if A is diagonalizable, since U is non singular, then the vectors $\{u_1, \ldots, u_n\}$ form a basis of \mathbb{C}^n .

From now on, we assume that the eigenvalues are numbered in decreasing order (in module), i.e.

$$|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|$$

Eigenvalues/eigenvectors of a symmetric matrix (refresh)

Theorem

All the eigenvalues of a real symmetric matrix are **real**. Moreover, there exists a basis of eigenvectors u_1, \ldots, u_n , i.e.

$$Au_i = \lambda_i u_i$$

that are orthonormal, i.e.

$$(u_i, u_j) = \delta_{ij}$$

The power method

To approximate the eigenvalue of A largest in module, and its eigenvector.

Power method

$$\begin{array}{ll} v_0 = \text{some vector with } \|v_0\| = 1. \\ \text{for } \mathbf{k} = 1, 2, \dots \text{(requires a stopping criterion)} \\ w = Av_{k-1} & \text{apply } A \\ v_k = w/\|w\| & \text{normalize} \\ \mu_k = \left(v_k\right)^H Av_k & \text{Reyleigh quotient} \end{array}$$

end

Theorem

There is a constant C>0 such that given a diagonalizable matrix $A\in\mathbb{C}^{n\times n}$, assuming $|\lambda_1|>|\lambda_2|$ and $v_0=\sum_{i=1}^n\alpha_iu_i$, with $\alpha_1\neq 0$, then there is a sequence $c_k\in\mathbb{C}$ such that

$$\left\|c_k v_k - u_1\right\|_2 \le C \left|\frac{\lambda_2}{\lambda_1}\right|^k. \tag{1}$$

Proof

We expand v_0 on the eigenvector basis $\{u_1, \ldots, u_n\}$ choosen s.t. $||u_i|| = 1$ for $i = 1, \ldots, n$:

$$v_0 = \sum_{i=1}^{n} \alpha_i u_i,$$
 with $\alpha_1 \neq 0$

It holds

$$A^k v_0 = \sum_{i=1}^n \alpha_i \lambda_i^k u_i$$
 and $v_k = \frac{A^k v_0}{\|A^k v_0\|}$

We then define

$$\widetilde{v}_k = \frac{A^k v_0}{\alpha_1 \lambda_1^k} = u_1 + \sum_{i=2}^n \frac{\alpha_i}{\alpha_1} \left(\frac{\lambda_i}{\lambda_1}\right)^k u_i$$

At this point, it holds

$$\left\|\widetilde{v}_{k}-u_{1}\right\|_{2}=\left\|\sum_{i=2}^{n}\frac{\alpha_{i}}{\alpha_{1}}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}u_{i}\right\|_{2}\leq\sum_{i=2}^{n}\left\|\frac{\alpha_{i}}{\alpha_{1}}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}u_{i}\right\|_{2}=\sum_{i=2}^{n}\left|\frac{\alpha_{i}}{\alpha_{1}}\right|\left|\frac{\lambda_{i}}{\lambda_{1}}\right|^{k}$$

So, we obtain

$$\left\|\widetilde{v}_{k}-u_{1}\right\|_{2} \leq \sum_{i=2}^{n} \left|\frac{\alpha_{i}}{\alpha_{1}}\right| \left|\frac{\lambda_{i}}{\lambda_{1}}\right|^{k} \leq (n-1) \cdot \max_{i=2,\dots,n} \left(\left|\frac{\alpha_{i}}{\alpha_{1}}\right|\right) \left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k} = C \left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k},$$

where we have defined $C=(n-1)\cdot\max_{i=2,\dots,n}\left(\left|\frac{\alpha_i}{\alpha_1}\right|\right)$. Observing that C does not depend on k, and that $\widetilde{v}_k=\frac{\|A^kv_0\|}{\alpha_1\lambda_1^k}v_k$ the estimate (1) follows.

The previous theorem implies that the $c_k v_k$ converges to u_1 when $k \to \infty$. Since $c_k v_k$ is just a scalar multiple of v_k , it means that the linear space spanned by v_k (the so-called autospace) "converges" to the linear space spanned by u_1 . Thus v_k tends to be an eigenvector for the eigenvalue λ_1 .

In order to better understand (1), assume $A \in \mathbb{R}^{n \times n}$ is a (real) symmetric matrix. In such a case, the eigenvalues, eigenvectors and also the c_k in the previous proof are real valued. Further inspecting the proof, $|c_k|$ tends towards 1 as $k \to +\infty$. In particular $c_k = \frac{\|A^k v_0\|}{\alpha_1 \lambda_1^k}$ either tends towards 1, or towards -1, or when $\lambda_1 < 0$ oscillates between +1 and -1. Then one of the following four statements holds true:

•
$$v_k \stackrel{k \to +\infty}{\longrightarrow} u_1$$

•
$$v_k \stackrel{k \to +\infty}{\longrightarrow} -u_1$$

$$\bullet \ (-1)^k v_k \stackrel{k \to +\infty}{\longrightarrow} u_1$$

$$\bullet \ (-1)^k v_k \stackrel{k \to +\infty}{\longrightarrow} -u_1$$

We also have a convergence results for the approximation of λ_1 .

Theorem

There is a constant C>0 such that given a diagonalizable matrix $A\in\mathbb{C}^{n\times n}$, if $|\lambda_1|>|\lambda_2|$ and $v_0=\sum_{i=1}^n\alpha_iu_i$, with $\alpha_1\neq 0$, then

$$|\mu_k - \lambda_1| \le C\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right), \quad \text{for } k \to +\infty.$$

Furthermore, if $A \in \mathbb{R}^{n \times n}$ is a (real) symmetric matrix, then it holds

$$|\mu_k - \lambda_1| \le C\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right), \quad \text{for } k \to +\infty.$$

Remark

if $|\lambda_2| \ll |\lambda_1|$ the convergence will be fast. On the other hand, if $\lambda_2 \approx \lambda_1$ the convergence will be slow.

Some observations

One of the hypothesis of the previous results is $\alpha_1 \neq 0$, where α_i are defined such that $v_0 = \sum_{i=1}^n \alpha_i u_i$. Clearly, u_1, \ldots, u_n are unknown and we cannot check if v_0 satisfies this hypothesis.

Practically this is not a real obstacle. If unfortunately we choose v_0 s.t $\alpha_1 = 0$, there are two possible cases:

- in exact arithmetic, we get $\lim_{k\to+\infty} \widetilde{v}_k = u_2$ and $\lim_{k\to+\infty} \mu_k = \lambda_2$, as long as $|\lambda_2| > |\lambda_3|$.
- in *finite arithmetic*, during the iterations of the Power Method, round-off errors can cause the appearance of a non-zero component in the direction of u_1 in a certain v_k . If this happens, the method immediately starts to converge towards the dominant eigenvalue λ_1 and its corresponding eigenvector u_1 .

Stopping criterion

A simple stopping criterion for the power method is based on the residual:

Stop when
$$||Av_k - \mu_k v_k|| \le \text{tol}$$

How can we compute other eigenvalues and eigenvectors?

Inverse power method (with shift μ)

Let $\mu \in \mathbb{C}$ a user-specified parameter that is not an eigenvalue of A, we want to approximate the closest eigenvalue of A to μ , which is λ_J such that

$$|\mu - \lambda_J| < |\mu - \lambda_i|, \quad \forall i \neq J$$

Inverse Power method

Input: $A \in \mathbb{C}^{n \times n}$, $v_0 \in \mathbb{C}^n$ with $\|v_0\| = 1$, MAXITER, tol $\in \mathbb{R}^+$, $\mu \in \mathbb{C}$. for $\mathbf{k} = 1, 2, \ldots$, MAXITER

Check the Stopping criterion $w = (A - \mu I)^{-1} v_{k-1} \qquad \text{(equivalently, solve } (A - \mu I) w = v_{k-1})$ $v_k = w / \|w\|$ $\mu_k = (v_k)^H A v_k \qquad \qquad \text{(Rayleigh quotient with } A)$

end

Output: μ_k and ν_k .

If μ is not an eigenvalue of A (this is excluded by the stopping criterion indeed), the matrix $A - \mu I$ is non singular.

Theorem

Assume $|\mu - \lambda_J| < |\mu - \lambda_i| \ \forall \ i = 1, ..., n$, $i \neq J$, and $v_0 = \sum_{i=1}^n \alpha_i u_i$, with $\alpha_J \neq 0$. Then

$$\lim_{k \to +\infty} \mu_k = \lambda_J$$

and there is a sequence $c_k \in \mathbb{C}$ such that

$$\lim_{k\to+\infty}\|c_kv_k-u_J\|_2=0,$$

proof

The inverse power method is just a power method applied to $(A - \mu I)^{-1}$, and the previous results apply. Indeed, given μ and since $Au_i = \lambda_i u_i$, then $(A - \mu I)u_i = (\lambda_i - \mu)u_i$, and then $\frac{1}{\lambda_i - \mu}u_i = (A - \mu I)^{-1}u_i$. For the assumption, the largest (in module) eigenvalue of $(A - \mu I)^{-1}$ is $\frac{1}{\lambda_J - \mu}$, and the relative eigenvector is u_J .

Note that if $\mu=0$, the method approximates the eigenvalue of A that is smallest in module.