Eigenvalues and eigenvectors

Let $A \in \mathbb{R}^{n \times n}$. If $0 \neq v \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$ satisfy

 $Av = \lambda v$

then λ is called **eigenvalue**, and v is called **eigenvector**.

Given a matrix, we want to approximate its eigenvalues and eigenvectors. Some applications:

- Structural engineering (natural frequency, heartquakes)
- Electromagnetics (resonance cavity)
- Google's Pagerank algorithm

 \bullet ...

The eigenvalues of a matrix are the roots of the characteristic polynomial

$$
p(\lambda):=\det\left(\lambda I-A\right)=0
$$

However, computing the roots of a polynomial is a very ill-conditioned problem! We cannot use this approach to compute the eigenvalues.

Algorithms that compute the eigenvalues/eigenvectors of a matrix are divided into two categories:

- **1** Methods that compute all the eigenvalues/eigenvectors at once.
- 2 Methods that compute only a few (possibly one) eigenvalues/eigenvectors.

The methods are also different whether the matrix is symmetric or not. In this lesson we will discuss methods of type [2.](#page-2-0)

Diagonalizable matrices

Definition

We say that a matrix $A \in \mathbb{C}^{n \times n}$ is diagonalizable if there exists a non singular matrix U and a diagonal matrix D such that $U^{-1}AU=D.$

The diagonal element of D are the eignevalue of A and the column u_i of U is an eigenvector of A relative to the eigenvalue $D_{i,i}.$

Since a scalar multiple of an eigenvector is still an eigenvector, we can choose U such that $||u_i||_2 = 1$ for $i = 1, \ldots, n$.

Finally, we observe that if A is diagonalizable, since U is non singular, then the vectors $\{u_1, \ldots, u_n\}$ form a basis of \mathbb{C}^n .

From now on, we assume that the eigenvalues are numbered in decreasing order (in module), i.e.

$$
|\lambda_1|\geq |\lambda_2|\geq \ldots \geq |\lambda_n|
$$

Eigenvalues/eigenvectors of a symmetric matrix (refresh)

Theorem

All the eigenvalues of a real symmetric matrix are real. Moreover, there exists a basis of eigenvectors u_1, \ldots, u_n , i.e.

$$
Au_i=\lambda_i u_i
$$

that are orthonormal, i.e.

$$
(u_i,u_j)=\delta_{ij}
$$

The power method

To approximate the eigenvalue of A largest in module, and its eigenvector.

Power method

 v_0 = some vector with $||v_0|| = 1$. for $k = 1, 2, \ldots$ (requires a stopping criterion) $w = Av_{k-1}$ apply A

 $\mu_k = (v_k)^H A v_k$

 $v_k = w / ||w||$ normalize Reyleigh quotient

end

Theorem

There is a constant $C > 0$ such that given a diagonalizable matrix $A\in \mathbb{C}^{n\times n}$, assuming $|\lambda_1|>|\lambda_2|$ and $v_0=\sum_{i=1}^n\alpha_iu_i$, with $\alpha_1\neq 0$, then there is a sequence $c_k \in \mathbb{C}$ such that

$$
\|c_k v_k - u_1\|_2 \leq C \left|\frac{\lambda_2}{\lambda_1}\right|^k.
$$
 (1)

Proof

We expand v_0 on the eigenvector basis $\{u_1, \ldots, u_n\}$ choosen s.t. $||u_i|| = 1$ for $i=1,\ldots,n$:

> $v_0 = \sum_{n=1}^{n}$ $i=1$ with $\alpha_1 \neq 0$

It holds

$$
A^k v_0 = \sum_{i=1}^n \alpha_i \lambda_i^k u_i \qquad \text{and} \qquad \qquad v_k = \frac{A^k v_0}{\|A^k v_0\|}
$$

We then define

$$
\widetilde{v}_k = \frac{A^k v_0}{\alpha_1 \lambda_1^k} = u_1 + \sum_{i=2}^n \frac{\alpha_i}{\alpha_1} \left(\frac{\lambda_i}{\lambda_1}\right)^k u_i
$$

At this point, it holds

$$
\left\|\widetilde{v}_{k}-u_{1}\right\|_{2}=\left\|\sum_{i=2}^{n}\frac{\alpha_{i}}{\alpha_{1}}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}u_{i}\right\|_{2}\le\sum_{i=2}^{n}\left\|\frac{\alpha_{i}}{\alpha_{1}}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}u_{i}\right\|_{2}=\sum_{i=2}^{n}\left|\frac{\alpha_{i}}{\alpha_{1}}\right|\left|\frac{\lambda_{i}}{\lambda_{1}}\right|^{k}
$$

So, we obtain

$$
\left\|\widetilde{v}_k-u_1\right\|_2\leq \sum_{i=2}^n\left\|\frac{\alpha_i}{\alpha_1}\right\|\frac{\lambda_i}{\lambda_1}\right\|^k\leq (n-1)\cdot \max_{i=2,\ldots,n}\left(\left\|\frac{\alpha_i}{\alpha_1}\right\|\right)\left\|\frac{\lambda_2}{\lambda_1}\right\|^k=C\left\|\frac{\lambda_2}{\lambda_1}\right\|^k,
$$

where we have defined $C = (n-1) \cdot \max_{i=2,...,n} \left(\Big| \right)$ α _i α_1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$). Observing that C does not depend on k , and that $\widetilde{v}_k = \frac{\|A^k v_0\|}{\alpha_1 \lambda_1^k}$ $\frac{A - v_{0||}}{\alpha_1 \lambda_1^k}$ v_k the estimate (1) follows.

The previous theorem implies that the $c_k v_k$ converges to u_1 when $k \to \infty$. Since $c_k v_k$ is just a scalar multiple of v_k , it means that the linear space spanned by v_k (the so-called autospace) "converges" to the linear space spanned by u_1 . Thus v_k tends to be an eigenvector for the eigenvalue λ_1 .

In order to better understand [\(1\)](#page-5-0), assume $A \in \mathbb{R}^{n \times n}$ is a (real) symmetric matrix. In such a case, the eigenvalues, eigenvectors and also the c_k in the previous proof are real valued. Further inspecting the proof, $|c_k|$ tends towards 1 as $k\to +\infty$. In particular $c_k = \frac{\|A^k v_0\|}{\alpha_k \lambda^k}$ $\frac{\mathcal{A} - \mathcal{V}_0 \|}{\alpha_1 \lambda_1^k}$ either tends towards 1, or towards -1 , or when $\lambda_1 < 0$ oscillates between $+1$ and -1 . Then one of the following four statements holds true:

 $v_k \stackrel{k\to+\infty}{\longrightarrow} u_1$ $v_k \stackrel{k\rightarrow+\infty}{\longrightarrow} -u_1$ $(-1)^k v_k \stackrel{k\rightarrow+\infty}{\longrightarrow} u_1$ $(-1)^k v_k \stackrel{k\rightarrow+\infty}{\longrightarrow} -u_1$ We also have a convergence results for the approximation of λ_1 .

Theorem

There is a constant $C > 0$ such that given a diagonalizable matrix $A\in \mathbb{C}^{n\times n}$, if $|\lambda_1|>|\lambda_2|$ and $v_0=\sum_{i=1}^n\alpha_iu_i$, with $\alpha_1\neq 0$, then

$$
|\mu_k - \lambda_1| \le C\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right), \quad \text{for } k \to +\infty.
$$

Furthermore, if $A \in \mathbb{R}^{n \times n}$ is a (real) symmetric matrix, then it holds

$$
|\mu_k - \lambda_1| \le C\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right), \quad \text{for } k \to +\infty.
$$

Remark

if $|\lambda_2| \ll |\lambda_1|$ the convergence will be fast. On the other hand, if $\lambda_2 \approx \lambda_1$ the convergence will be slow.

Some observations

One of the hypothesis of the previous results is $\alpha_1 \neq 0$, where α_i are defined such that $\mathsf{v}_0 = \sum_{i=1}^n \alpha_i \mathsf{u}_i$. Clearly, $\mathsf{u}_1, \ldots, \mathsf{u}_n$ are unknown and we cannot check if v_0 satisfies this hypothesis.

Practically this is not a real obstacle. If unfortunately we choose v_0 s.t $\alpha_1 = 0$, there are two possible cases:

- in exact arithmetic, we get $\lim_{k\to+\infty} \tilde{v}_k = u_2$ and $\lim_{k\to+\infty} \mu_k = \lambda_2$, as long as $|\lambda_2| > |\lambda_3|$.
- in *finite arithmetic*, during the iterations of the Power Method, round-off errors can cause the appearance of a non-zero component in the direction of u_1 in a certain v_k . If this happens, the method immediately starts to converge towards the dominant eigenvalue λ_1 and its corresponding eigenvector u_1 .

Stopping criterion

A simple stopping criterion for the power method is based on the residual:

$$
Stop when \t ||Av_k - \mu_k v_k|| \leq \text{tol}
$$

How can we compute other eigenvalues and eigenvectors?

Inverse power method (with shift μ)

Let $\mu \in \mathbb{C}$ a user-specified parameter that is not an eigenvalue of A, we want to approximate the closest eigenvalue of A to μ , which is λ_1 such that

$$
|\mu - \lambda_J| < |\mu - \lambda_i|, \qquad \forall \ i \neq J
$$

Inverse Power method

Input: $A \in \mathbb{C}^{n \times n}$, $v_0 \in \mathbb{C}^n$ with $||v_0|| = 1$, MAXITER, tol $\in \mathbb{R}^+$, $\mu \in \mathbb{C}$. for $k = 1, 2, \ldots, MAXITER$ Check the Stopping criterion $w = (A - \mu I)^{-1} v_{k-1}$ (equivalently, solve $(A - \mu I) w = v_{k-1}$) $v_k = w / ||w||$ $\mu_{k} = (v_{k})^{H} A v_{k}$ (Rayleigh quotient with A) end Output: μ_k and v_k .

If μ is not an eigenvalue of A (this is excluded by the stopping criterion indeed), the matrix $A - \mu I$ is non singular.

Theorem

Assume $|\mu - \lambda_j| < |\mu - \lambda_i| \; \forall \; i = 1, \ldots, n, \; i \neq J$, and $v_0 = \sum_{i=1}^n \alpha_i u_i$, with α \neq 0. Then

$$
\lim_{k \to +\infty} \mu_k = \lambda_j
$$

and there is a sequence $c_k \in \mathbb{C}$ such that

$$
\lim_{k\to+\infty}||c_kv_k-u_J||_2=0,
$$

proof

The inverse power method is just a power method applied to $(A - \mu I)^{-1}$, and the previous results apply. Indeed, given μ and since $A u_i = \lambda_i u_i,$ then $(A - \mu I)u_i = (\lambda_i - \mu)u_i$, and then $\frac{1}{\lambda_i - \mu}u_i = (A - \mu I)^{-1}u_i$. For the assumption, the largest (in module) eigenvalue of $(A - \mu I)^{-1}$ is $\frac{1}{\lambda_J - \mu}$, and the relative eigenvector is u_1 .

Note that if $\mu = 0$, the method approximates the eigenvalue of A that is smallest in module.