
Eigenvalues and eigenvectors

Let A ∈ Rn×n. If 0 ̸= v ∈ Cn and λ ∈ C satisfy

Av = λv

then λ is called eigenvalue, and v is called eigenvector.

Given a matrix, we want to approximate its eigenvalues and eigenvectors.
Some applications:

Structural engineering (natural frequency, heartquakes )

Electromagnetics (resonance cavity)

Google’s Pagerank algorithm

...
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The characteristic polynomial

The eigenvalues of a matrix are the roots of the characteristic
polynomial

p(λ) := det (λI − A) = 0

However, computing the roots of a polynomial is a very ill-conditioned
problem! We cannot use this approach to compute the eigenvalues.
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Eigenvalues and eigenvectors

Algorithms that compute the eigenvalues/eigenvectors of a matrix are
divided into two categories:

1 Methods that compute all the eigenvalues/eigenvectors at once.

2 Methods that compute only a few (possibly one)
eigenvalues/eigenvectors.

The methods are also different whether the matrix is symmetric or not. In
this lesson we will discuss methods of type 2.
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Diagonalizable matrices

Definition

We say that a matrix A ∈ Cn×n is diagonalizable if there exists a non
singular matrix U and a diagonal matrix D such that U−1AU = D.

The diagonal element of D are the eignevalue of A and the column ui of U
is an eigenvector of A relative to the eigenvalue Di ,i .

Since a scalar multiple of an eigenvector is still an eigenvector, we can
choose U such that ∥ui∥2 = 1 for i = 1, . . . , n.

Finally, we observe that if A is diagonalizable, since U is non singular, then
the vectors {u1, . . . , un} form a basis of Cn.

From now on, we assume that the eigenvalues are numbered in decreasing
order (in module), i.e.

|λ1| ≥ |λ2| ≥ . . . ≥ |λn|
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Eigenvalues/eigenvectors of a symmetric matrix (refresh)

Theorem

All the eigenvalues of a real symmetric matrix are real. Moreover, there
exists a basis of eigenvectors u1, . . . , un, i.e.

Aui = λiui

that are orthonormal, i.e.
(ui , uj) = δij
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The power method
To approximate the eigenvalue of A largest in module, and its eigenvector.

Power method

v0 = some vector with ∥v0∥ = 1.
for k = 1, 2, . . . (requires a stopping criterion)

w = Avk−1 apply A
vk = w/ ∥w∥ normalize
µk = (vk)

H Avk Reyleigh quotient
end

Theorem

There is a constant C > 0 such that given a diagonalizable matrix
A ∈ Cn×n, assuming |λ1| > |λ2| and v0 =

∑n
i=1 αiui , with α1 ̸= 0, then

there is a sequence ck ∈ C such that

∥ckvk − u1∥2 ≤ C

∣∣∣∣λ2

λ1

∣∣∣∣k . (1)
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Proof
We expand v0 on the eigenvector basis {u1, . . . , un} choosen s.t. ∥ui∥ = 1 for
i = 1, . . . , n:

v0 =
n∑

i=1

αiui , with α1 ̸= 0

It holds

Akv0 =
n∑

i=1

αiλ
k
i ui and vk =

Akv0
∥Akv0∥

We then define

ṽk =
Akv0
α1λk

1

= u1 +
n∑

i=2

αi

α1

(
λi

λ1

)k

ui

At this point, it holds

∥ṽk − u1∥2 =

∥∥∥∥∥
n∑

i=2

αi

α1

(
λi

λ1

)k

ui

∥∥∥∥∥
2

≤
n∑

i=2

∥∥∥∥∥αi

α1

(
λi

λ1

)k

ui

∥∥∥∥∥
2

=
n∑

i=2

∣∣∣∣αi

α1

∣∣∣∣ ∣∣∣∣ λi

λ1

∣∣∣∣k
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So, we obtain

∥ṽk − u1∥2 ≤
n∑

i=2

∣∣∣∣αi

α1

∣∣∣∣ ∣∣∣∣ λi

λ1

∣∣∣∣k ≤ (n − 1) · max
i=2,...,n

(∣∣∣∣αi

α1

∣∣∣∣) ∣∣∣∣λ2

λ1

∣∣∣∣k = C

∣∣∣∣λ2

λ1

∣∣∣∣k ,
where we have defined C = (n − 1) ·maxi=2,...,n

(∣∣∣ αi
α1

∣∣∣). Observing that C

does not depend on k, and that ṽk = ∥Akv0∥
α1λk

1
vk the estimate (1) follows.

The previous theorem implies that the ckvk converges to u1 when k → ∞.
Since ckvk is just a scalar multiple of vk , it means that the linear space
spanned by vk (the so-called autospace) “converges” to the linear space
spanned by u1. Thus vk tends to be an eigenvector for the eigenvalue λ1.
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In order to better understand (1), assume A ∈ Rn×n is a (real) symmetric
matrix. In such a case, the eigenvalues, eigenvectors and also the ck in the
previous proof are real valued. Further inspecting the proof, |ck | tends
towards 1 as k → +∞. In particular ck = ∥Akv0∥

α1λk
1

either tends towards 1, or

towards −1, or when λ1 < 0 oscillates between +1 and −1.
Then one of the following four statements holds true:

vk
k→+∞−→ u1

vk
k→+∞−→ −u1

(−1)kvk
k→+∞−→ u1

(−1)kvk
k→+∞−→ −u1
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We also have a convergence results for the approximation of λ1.

Theorem

There is a constant C > 0 such that given a diagonalizable matrix
A ∈ Cn×n, if |λ1| > |λ2| and v0 =

∑n
i=1 αiui , with α1 ̸= 0, then

|µk − λ1| ≤ C

(∣∣∣∣λ2

λ1

∣∣∣∣k
)
, for k → +∞.

Furthermore, if A ∈ Rn×n is a (real) symmetric matrix, then it holds

|µk − λ1| ≤ C

(∣∣∣∣λ2

λ1

∣∣∣∣2k
)
, for k → +∞.

Remark

if |λ2| ≪ |λ1| the convergence will be fast. On the other hand, if λ2 ≈ λ1

the convergence will be slow.
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Some observations

One of the hypothesis of the previous results is α1 ̸= 0, where αi are
defined such that v0 =

∑n
i=1 αiui . Clearly, u1, . . . , un are unknown and we

cannot check if v0 satisfies this hypothesis.
Practically this is not a real obstacle. If unfortunately we choose v0 s.t
α1 = 0, there are two possible cases:

in exact arithmetic, we get limk→+∞ ṽk = u2 and limk→+∞ µk = λ2,
as long as |λ2| > |λ3|.
in finite arithmetic, during the iterations of the Power Method,
round-off errors can cause the appearance of a non-zero component in
the direction of u1 in a certain vk . If this happens, the method
immediately starts to converge towards the dominant eigenvalue λ1

and its corresponding eigenvector u1.
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Stopping criterion

A simple stopping criterion for the power method is based on the residual:

Stop when ∥Avk − µkvk∥ ≤ tol
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How can we compute other eigenvalues and eigenvectors?
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Inverse power method (with shift µ)
Let µ ∈ C a user-specified parameter that is not an eigenvalue of A, we
want to approximate the closest eigenvalue of A to µ, which is λJ such
that

|µ− λJ | < |µ− λi | , ∀ i ̸= J

Inverse Power method

Input: A ∈ Cn×n, v0 ∈ Cn with ∥v0∥ = 1, MAXITER, tol ∈ R+, µ ∈ C.
for k = 1, 2, . . . ,MAXITER

Check the Stopping criterion
w = (A− µI )−1 vk−1 (equivalently, solve (A− µI )w = vk−1)
vk = w/ ∥w∥
µk = (vk)

H Avk (Rayleigh quotient with A)
end
Output: µk and vk .

If µ is not an eigenvalue of A (this is excluded by the stopping criterion
indeed), the matrix A− µI is non singular.
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Theorem

Assume |µ− λJ | < |µ− λi | ∀ i = 1, . . . , n, i ̸= J, and v0 =
∑n

i=1 αiui ,
with αJ ̸= 0. Then

lim
k→+∞

µk = λJ

and there is a sequence ck ∈ C such that

lim
k→+∞

∥ckvk − uJ∥2 = 0,

proof

The inverse power method is just a power method applied to (A− µI )−1,
and the previous results apply. Indeed, given µ and since Aui = λiui , then
(A− µI )ui = (λi − µ)ui , and then 1

λi−µui = (A− µI )−1ui . For the

assumption, the largest (in module) eigenvalue of (A− µI )−1 is 1
λJ−µ , and

the relative eigenvector is uJ .

Note that if µ = 0, the method approximates the eigenvalue of A that is
smallest in module.
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