
Eigenvalues and eigenvectors

Let A ∈ Rn×n. If 0 ̸= v ∈ Cn and λ ∈ C satisfy

Av = λv

then λ is called eigenvalue, and v is called eigenvector.

Given a matrix, we want to approximate its eigenvalues and eigenvectors.
Some applications:

Structural engineering (natural frequency, heartquakes )

Electromagnetics (resonance cavity)

Google’s Pagerank algorithm

...
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The characteristic polynomial

The eigenvalues of a matrix are the roots of the characteristic
polynomial

p(λ) := det (λI − A) = 0

However, computing the roots of a polynomial is a very ill-conditioned
problem! We cannot use this approach to compute the eigenvalues.
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Eigenvalues and eigenvectors

Algorithms that compute the eigenvalues/eigenvectors of a matrix are
divided into two categories:

1 Methods that compute all the eigenvalues/eigenvectors at once.

2 Methods that compute only a few (possibly one)
eigenvalues/eigenvectors.

The methods are also different whether the matrix is symmetric or not. In
this lesson we will discuss methods of type 2.
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Diagonalizable matrices

Definition

We say that a matrix A ∈ Cn×n is diagonalizable if there exists a non
singular matrix U and a diagonal matrix D such that U−1AU = D.

The diagonal element of D are the eignevalue of A and the column ui of U
is an eigenvector of A relative to the eigenvalue Di ,i .

Since a scalar multiple of an eigenvector is still an eigenvector, we can
choose U such that ∥ui∥2 = 1 for i = 1, . . . , n.

Finally, we observe that if A is diagonalizable, since U is non singular, then
the vectors {u1, . . . , un} form a basis of Cn.

From now on, we assume that the eigenvalues are numbered in decreasing
order (in module), i.e.

|λ1| ≥ |λ2| ≥ . . . ≥ |λn|
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Eigenvalues/eigenvectors of a symmetric matrix

Theorem

All the eigenvalues of a real symmetric matrix are real. Moreover, there
exists a basis of eigenvectors u1, . . . , un, i.e.

Aui = λiui

that are orthonormal, i.e.
(ui , uj) = δij
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The power method

We want to approximate the eigenvalue of A that is largest in module.

v0 = some vector with ∥v0∥ = 1.
for k = 1, 2, . . .

w = Avk−1 apply A
vk = w/ ∥w∥ normalize
µk = (vk)

H Avk Reyleigh quotient
end

Theorem

Let A ∈ Cn×n be a diagonalizable matrix. Assume |λ1| > |λ2| and
v0 =

∑n
i=1 αiui , with α1 ̸= 0. Then there exists C > 0, independent of k ,

such that

∥ṽk − u1∥2 ≤ C

∣∣∣∣λ2

λ1

∣∣∣∣k , where ṽk =
∥Akv0∥
α1λk

1

vk .
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Proof
We expand v0 on the eigenvector basis {u1, . . . , un} choosen s.t. ∥ui∥ = 1 for
i = 1, . . . , n:

v0 =
n∑

i=1

αiui , with α1 ̸= 0

It holds

Akv0 =
n∑

i=1

αiλ
k
i ui and vk =

Akv0
∥Akv0∥

Hence, we can write

ṽk =
Akv0
α1λk

1

= u1 +
n∑

i=2

αi

α1

(
λi

λ1

)k

ui

At this point, it holds

∥ṽk − u1∥2 =

∥∥∥∥∥
n∑

i=2

αi

α1

(
λi

λ1

)k

ui

∥∥∥∥∥
2

≤
n∑

i=2

∥∥∥∥∥αi

α1

(
λi

λ1

)k

ui

∥∥∥∥∥
2

=
n∑

i=2

∣∣∣∣αi

α1

∣∣∣∣ ∣∣∣∣ λi

λ1

∣∣∣∣k
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So, we obtain

∥ṽk − u1∥2 ≤
n∑

i=2

∣∣∣∣αi

α1

∣∣∣∣ ∣∣∣∣ λi

λ1

∣∣∣∣k ≤ (n − 1) · max
i=2,...,n

(∣∣∣∣αi

α1

∣∣∣∣) ∣∣∣∣λ2

λ1

∣∣∣∣k = C

∣∣∣∣λ2

λ1

∣∣∣∣k ,
where we have defined C = (n − 1) ·maxi=2,...,n

(∣∣∣ αi
α1

∣∣∣). Since C does not

depend on k , this concludes the proof.

The previous theorem implies that the sequence {ṽk} converges to the
eigenvector u1. Since ṽk is a scalar multiple of vk , they have the same
direction and this direction converges to the direction of u1. As a result,
for k that goes to +∞ the vector vk tends to have the same direction of
u1,. Thus vk tends to be an eigenvector relaltive to λ1.

Remark

if |λ2| ≪ |λ1| the convergence will be fast. On the other hand, if λ2 ≈ λ1

the convergence will be slow.
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