EXERCISE 1

- Write two Matlab functions:
- [x,its] = bisection(f,a,b,tol,maxits), that implements the bisection method.
- [x,its] = newton(f,derf, x0,tol,maxits), that implements the Newton method.
Implement suitable stopping criteria for the two methods. Use both functions to solve the equation $e^{x}+\cos (x)-2=0$, whose exact solution is $x=0$ (choose appropriately the initial guess $x_{0} \neq 0$ or the initial interval). Plot the error $\left|x_{k}-0\right|$ vs k. Repeat the same for solving $e^{x}-\cos (x)-2=0$ whose solution is not known analytically and can be approximated by the previous methods with small tolerance or by fsolve (@(x) $\exp (x)-\cos (x)-2,0)$ which calls the MATLAB solver.
- Use both methods to solve the equation $\sqrt[3]{x-\pi}=0$ (use the function nthroot to compute cubic roots). Plot the error $\left|x_{k}-\pi\right|$ vs k. Discuss the results.

