EXERCISE 1

- Write a Matlab function $c=$ linear_regression(x, y) that computes the coefficients of the line that fits the input points $\left(x_{i}, y_{i}\right)$, $i=1, \ldots$, in the least squares sense. Compute the coefficient vector c by solving the system of normal equations.
- Test the above function on the data in the file least_squares_data.mat. Make a graph that representing the data points and the line.
- Write another function $c=$ quadratic_regression (x, y), similar to the previous one but where a polynomial of degree 2 is used for the fitting. Plot again the results for the data points above.

