
Iterative methods

Consider the linear system
Ax = b

Iterative methods start from an initial guess x (0) and construct a sequence
of approximate solutions {x (k)} such that

x = lim
k→∞

x (k).
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Splitting methods

The matrix A is split as
A = M − N

Splitting methods go like

x (0) given solve Mx (k) = b + Nx (k−1) k = 1, 2, · · · (1)

With iterative methods we give up the idea of computing the exact
solution, but we want low operational costs. In particular:

the system (1) must be much easier to deal with than the original
system Ax = b, that is, the matrix M must be as simple as possible,
and of course non-singular;

the sequence {x (k)} must converge to x for any initial guess x (0);

the convergence must be fast.

Different choices for M give rise to different iterative methods.
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Jacobi method

take M = diag(A) (and hence N = M − A), applicable if aii ̸= 0 ∀i . At
each iteration k we have to solve a diagonal system

a11 0 · · · 0
0 a22 · · · 0

0 · · ·
. . . 0

0 · · · ann



x
(k)
1

x
(k)
2
...

x
(k)
n

 =


b1
b2
...
bn

−


0 a12 · · · a1n
a21 0 · · · a2n
...

...
. . .

...
an1 an2 · · · 0



x
(k−1)
1

x
(k−1)
2
...

x
(k−1)
n


Thus we obtain

x
(k)
i =

(
bi −

i−1∑
j=1

aijx
(k−1)
j −

n∑
j=i+1

aijx
(k−1)
j

)
/aii i = 1, · · · , n

The number of operations for each component is ∼ 2n, so that the cost
for one Jacobi iteration is ∼ 2n2.

October 23, 2023 3 / 12



Gauss-Seidel method

take M = tril(A), applicable if aii ̸= 0 ∀i . At each iteration k we have to
solve a lower triangular system

a11 0 · · · 0
a21 a22 · · · 0
...

...
. . .

...
an1 · · · ann



x
(k)
1

x
(k)
2
...

x
(k)
n

 =


b1
b2
...
bn

−


0 a12 · · · a1n
0 0 · · · a2n
...

...
. . .

...
0 0 · · · 0



x
(k−1)
1

x
(k−1)
2
...

x
(k−1)
n


Thus we obtain

x
(k)
i =

(
bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

)
/aii i = 1, · · · , n

The difference with respect to Jacobi method is in the first sum of the

formula, where the updated x
(k)
j are used instead of the old x

(k−1)
j . The

number of operations is exactly the same: for each component is ∼ 2n, so
that the cost for one Gauss-Seidel iteration is ∼ 2n2.
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Convergence analysis for splitting methods
In all cases we want convergence for any initial guess x (0). With paper and
pencil we study the error at each iteration.
Let e(k) = x − x (k) be the error at the kth iteration.
Since x and x (k) are solutions of

Mx = b + Nx , Mx (k) = b + Nx (k−1),

by subtracting we get

M(x − x (k)) = N(x − x (k−1)) =⇒ e(k) =M−1N︸ ︷︷ ︸ e(k−1)

B

where B = M−1N is the iteration matrix.

e(k) = Be(k−1) k = 1, 2, · · · , =⇒ e(k) = Bke(0).

If we want lim
k→∞

e(k) = 0 we need lim
k→∞

Bk = 0.
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Convergent matrices

A matrix B ∈ Rn×n is convergent if

lim
k→∞

Bk = 0,

where 0 is the matrix identically zero. Then:

Lemma 1

Let B ∈ Rn×n. We have

lim
k→∞

Bk = 0 ⇐⇒ max
i

|λi (B)| < 1.

The proof is not trivial for a generic B.
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A useful property of natural norm of matrices

Lemma 2

Let |||A||| be any natural norm of matrix. Then

max
i

|λi (A)| ≤ |||A||| ∀A ∈ Rn×n.

Proof.

Let λ be an eigenvalue of A, and let v ̸= 0 an eigenvector associated to λ,
that is Av = λv . From the properties of the norms we immediately have

|λ|∥v∥ = ∥λv∥ = ∥Av∥ ≤ |||A|||∥v∥,

then |λ|∥v∥ ≤ |||A|||∥v∥, and then |λ| ≤ |||A|||.

The quantity maxi |λi (A)| is called the spectral radius of A, and denoted
as ρ(A).
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The matrix ||| · |||∞ norm

Lemma 3

Given B ∈ Rn×n, the natural norm |||B|||∞ := supv∈Rn
∥Bv∥∞
∥v∥∞ can be

rewritten as

|||B|||∞ = max
i=1,...,n

n∑
j=1

|Bi ,j |

Proof.

Let us start by proving that |||B|||∞ ≤ maxi=1,...,n
∑n

j=1 |Bi ,j |. It holds:

∥Bv∥∞ = max
i=1,...,n

|(Bv)i | = max
i=1,...,n

|
n∑

j=1

Bi ,jvj | ≤ max
i=1,...,n

n∑
j=1

|Bi ,jvj |

≤ max
i=1,...,n

n∑
j=1

|Bi ,j ||vj | ≤ ∥v∥∞ max
i=1,...,n

n∑
j=1

|Bi ,j |

continue . . .
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Proof.

Therefore, for all v ∈ Rn, it holds

∥Bv∥∞
∥v∥∞

≤ max
i=1,...,n

n∑
j=1

|Bi ,j |

and finally

|||B|||∞ = sup
v∈Rn

∥Bv∥∞
∥v∥∞

≤ max
i=1,...,n

n∑
j=1

|Bi ,j |

It remains to prove that maxi=1,...,n
∑n

j=1 |Bi ,j | ≤ |||B|||∞. Let î be the
row index that realizes the maximum and let us define w ∈ Rn as
wj = sign(B

î ,j
). We observe that ∥w∥∞ = 1.

continue . . .
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Proof.

It holds

max
i=1,...,n

n∑
j=1

|Bi ,j | =
n∑

j=1

|Bî ,j | =
n∑

j=1

Bî ,jwj = |
n∑

j=1

Bî ,jwj |

≤ max
i=1,...,n

|
n∑

j=1

Bi ,jwj | = ∥Bw∥∞ =
∥Bw∥∞
∥w∥∞

≤ sup
v∈Rn

∥Bv∥∞
∥v∥∞

= |||B|||∞
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Classes of matrices for which we have convergence results

Lemma 4

If A is diagonally dominant, i.e.,

|aii | >
n∑

j=1
j ̸=i

|aij | ∀i = 1, 2, · · · , n

both Jacobi and Gauss-Seidel converge.
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Proof.

We shall prove the Lemma only for Jacobi method. The iteration matrix
BJ is given by

BJ =


0 −a12

a11
· · · −a1n

a11
−a21
a22

0 · · · −a2n
a22

...
...

. . .
...

−an1
ann

−an2
ann

· · · 0


Since A is diagonally dominant, |||BJ |||∞ = max

i

∑
j ̸=i

|
aij
aii

| < 1, and we

deduce (from Lemma 1) that maxi |λi (BJ)| < 1. Then BJ is convergent
and Jacobi method converges.

Lemma 5

If A is symmetric and positive definite Gauss-Seidel converges. Jacobi
might or might not converge.
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