EXERCISE 1

- Write a Matlab function [x, mu]=power(A, maxit, tol) that implements the power method to approximate the dominant eigenvalue of a matrix (use a random vector as initial guess). Test it on the matrix

$$
A=Q * \operatorname{diag}(1: 10) * \operatorname{inv}(Q), \text { with } Q=\operatorname{orth}(\operatorname{randn}(10,10))
$$

Note that the spectrum of A is $\{1, \ldots, 10\}$. Modify the function to be able to plot the relative error $\left|\lambda_{1}-\mu_{k}\right| /\left|\lambda_{1}\right|$ and also $\left(\left|\lambda_{2} / \lambda_{1}\right|\right)^{k}, k=1,2 \ldots$. What do you observe?

- Same as above, but test on the nonsymmetric matrix obtained using $\mathrm{Q}=$ randn $(10,10)$. Compare the results with the previous case.
- Write another function, inverse_power, that implements the inverse power method (use "backslash" to solve the linear system), and test it on the matrix used in the previous point to approximate $\lambda_{9}=2$ using

$$
\mu=1.55,1.65,1.75,1.85,1.95
$$

Plot the number of iterations required to converge vs. the value $\left|\lambda_{9}-\mu\right| /\left|\lambda_{10}-\mu\right|$ and comment.

