
So we have two classes: explicit methods, and implicit methods.
In all cases we want the sequence {y0, y1, · · · , yN} to converge to the
sequence {y0, y(t1), · · · , y(T )}.

If, given a method, we can prove that

∃C > 0 such that max
n

|yn − y(tn)| ≤ C∆tp

with C independent of ∆t and p > 0, then we say that the method is
convergent, and the order of convergence is p (the bigger p, the faster the
convergence).

Theorem 1 (Lax)

If a scheme is consistent and stable, then it is convergent, and the order
of convergence is the order of consistency.

We have however yet to define what consistency and stability are....
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Intuitive explanation of consistency and stability

the consistency error at a given time step measures the error which is
created at that step; it is defined as the error made when the scheme
is applied to the exact solution of the problem. It can be seen that
the consistency error measures of how much the discrete scheme
resembles the differential problem.

stability measures how the error, created and accumulated during the
previous steps, goes to the next step (is it amplified? does it
decay?...)
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Consistency of a scheme
Consistency is a measure of how much the discrete scheme resembles the
differential problem: the consistency error is the error made when the
scheme is applied to the exact solution of the problem.

The consistency error of a given scheme is defined as

τ = max
n=1,...,N

|τn|

where τn is the local truncation error at the step n, that is defined as:

τn =
y(tn+1)− ỹn+1

∆t

where ỹn+1 is obtained applying one step of the method to the exact
solution at the previous time instant y(tn). We say that the scheme is
consistent of order p if:

∃C > 0, independent of ∆t, s. t. τ ≤ C∆tp

We observe that if the numerical scheme is consistent, then τ → 0 for
∆t → 0.
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Consistency of Explicit Euler
The exact solution fulfils: y ′(tn)− f (tn, y(tn)) = 0, n = 0, 1, 2, ....
If we apply the Explicit Euler scheme to the exact solution we will have:

ỹn+1 = y(tn) + ∆t f (tn, y(tn))

Since y ′(tn) = f (tn, y(tn)), by Taylor expansion centered in tn, there exists
z ∈ [tn, tn+1] such that

y(tn+1) = y(tn)+∆t y ′(tn)+
∆t2

2
y ′′(z) = y(tn)+∆t f (tn, y(tn))+

∆t2

2
y ′′(z)

Thus, the local truncation error becomes

τn =
y(tn+1)− ỹn+1

∆t
=

y(tn+1)− y(tn)

∆t
− f (tn, y(tn)) =

∆t

2
y ′′(z),

and the consistency error is then

τ = max |τn| ≤
∆t

2
max

t∈[t0,T ]
|y ′′(t)| = C∆t.

Thus, Explicit Euler scheme is consistent with order of consistency 1.
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Consistency of the Heun method
We apply the Heun scheme again to the exact solution ỹn = y(tn):

ỹn+1 = y(tn) +
∆t

2

(
f (tn, y(tn)) + f (tn+1, y(tn) + ∆t f (tn, y(tn))

)
Since f (tn, y(tn)) = y ′(tn), by Taylor expansion centered in tn, there exists
z1 ∈ [tn, tn+1] such that

y(tn+1) = y(tn) + (tn+1 − tn) y
′(tn) +

∆t2

2
y ′′(z1)

= y(tn) + ∆t y ′(tn) +
∆t2

2
y ′′(z1)

(1)

and, by Taylor expansion centered in tn+1, there exists z2 ∈ [tn, tn+1] such
that

y(tn) = y(tn+1) + (tn − tn+1) y
′(tn+1) +

∆t2

2
y ′′(z2)

= y(tn+1)−∆t y ′(tn+1) +
∆t2

2
y ′′(z2)

(2)
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The local truncation error, setting ŷn+1 = y(tn) + ∆t f (tn, y(tn)) and
using again that y ′(tn+1) = f (tn+1, y(tn+1)) is:

τn =
y(tn+1)− ỹn+1

∆t

=

(
y(tn+1)− y(tn)− ∆t

2
y ′(tn)− ∆t

2
f (tn+1, ŷn+1))

)
∆t

=

(
y(tn+1)− y(tn)− ∆t

2
y ′(tn)− ∆t

2
y ′(tn+1) +

∆t
2
f (tn+1, y(tn+1))− ∆t

2
f (tn+1, ŷn+1))

)
∆t

=

(
y(tn+1)− y(tn)− ∆t

2
y ′(tn)− ∆t

2
y ′(tn+1)

)
∆t

+
1

2
(f (tn+1, y(tn+1))− f (tn+1, ŷn+1))

= A+ B,

where

A =

(
y(tn+1)− y(tn)− ∆t

2
y ′(tn)− ∆t

2
y ′(tn+1)

)
∆t

and

B =
1

2
(f (tn+1, y(tn+1))− f (tn+1, ŷn+1))
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For the first term we have

A =
1

2

(
y(tn+1)− y(tn)

∆t
− y ′(tn)

)
+

1

2

(
y(tn+1)− y(tn)

∆t
− y ′(tn+1)

)
=

1

2
(
∆t

2
y ′′(z1)) +

1

2
(−∆t

2
y ′′(z2)) =

1

4
∆t(z1 − z2)

y ′′(z1)− y ′′(z2)

z1 − z2

where we have used the (1) for the first parenthesis and (2) for the second
ones. We then apply the Mean Value Theorem to y ′′, which states that

there exists z3 between z1 and z2 such that: y ′′(z1)−y ′′(z2)
z1−z2

= y ′′′(z3), and
get:

|A| = |1
4
∆t(z1 − z2)y

′′′(z3)| ≤
∆t2

4
|y ′′′(z3)|
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For the second term we have

|B| = 1

2
|f (tn+1, y(tn+1))− f (tn+1, ŷn+1)|

≤ L

2
|y(tn+1)− ŷn+1|

≤ L

2

∆t2

2
|y ′′(z1)|

where we have assumed and used the Lipschitzianity of f with respect to
its second argument, that is, |f (t, η1)− f (t, η2)| ≤ L|η1 − η2|, and then
(1) again. In conclusion

τ = max |τn| ≤ (1 + L)
∆t2

4
max

t∈[t0,T ]
|y ′′′(t)| = C∆t2

Thus, Crank-Nicolson scheme is consistent with order of consistency 2.
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A closer look at consistency error

We found that:

for the explicit Euler methods, the consistency error is zero whenever
y ′′ ≡ 0, that is, whenever the solution of the Cauchy Problem is a
polynomial of degree up to 1.

the consistency error for Heun method is zero whenever y ′′′ ≡ 0, that
is, whenever the solution of the Cauchy Problem is a polynomial of
degree up to 2.

This suggests that to have order of consistency p means that the scheme
computes exactly the solution of the Cauchy Problem whenever this
solution is a polynomial of degree up to p.

This is true in general (no proof provided in this course) and is indeed
another easier way of checking consistency of a scheme.
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Consistency of implicit methods: implicit Euler

yn+1 − yn
∆t

− f (tn, yn) = 0 ∀n

Applying this scheme to the exact solution of the Cauchy Problem means
considering

τn =
y(tn+1)− y(tn)

∆t
− y ′(tn)

which is in general ̸= 0. Is the order of consistency 1? For this we should
have the above = 0 when the solution of the Cauchy Problem is 1, t, t2.

When y(t) = 1, y ′ = 0 = f ,=⇒ 1− 1

∆t
− 0 = 0;

When y(t) = t, y ′ = 1 = f ,=⇒ tn+1 − tn
∆t

− 1 = 1− 1 = 0;

Hence, the order of consistency of IE method is 1. Note that

When y(t) = t2, y ′ = 2t = f ,=⇒
t2n+1 − t2n

∆t
− 2tn = tn+1 − tn ̸= 0
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Consistency of implicit methods: Crank-Nicolson

yn+1 − yn
∆t

− 1

2

(
f (tn, yn) + f (tn+1, yn+1)

)
= 0 ∀n

Applying this scheme to the exact solution means considering

y(tn+1)− y(tn)

∆t
− 1

2

(
y ′(tn) + y ′(tn+1)

)
.

Let’s check the above expression when the solution of the Cauchy
Problem is 1, t, t2:

When y(t) = 1, y ′ = 0 = f ,=⇒ 1− 1

∆t
− 1

2
(0 + 0) = 0;

When y(t) = t, y ′ = 1 = f ,=⇒ tn+1 − tn
∆t

− 1

2
(1 + 1) = 1− 1 = 0;

When y(t) = t2, y ′ = 2t = f ,=⇒
t2n+1 − t2n

∆t
− 1

2
(2tn + 2tn+1) = 0

Hence, the order of consistency of Crank-Nicolson is 2.
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Absolute Stability

The concept of stability is another very important and useful concept
whose precise definition has to be made precise at various occurrences.
Roughly speaking, stability is what guarantees that the errors generated
during a numerical procedure do not grow too much.

With Ode stability is a delicate issue, especially when the phenomenon
under study has to be followed for a long time. To better see what
happens, let us consider a simple model problem, for which we know the
exact solution: {

y ′(t) = ay(t) t > 0 a ∈ C
y(0) = y0

which exact solution is

y(t) = y0e
(Re a)t(cos((Im a)t) + i sin((Im a)t))
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If Re(a) > 0 the exact solution grows exponentially. We cannot expect
(and we do not want!) that the discrete scheme remains bounded, and it
is not even the case to discuss “stability”.
Instead, if Re(a) < 0 the exact solution not only is bounded, but decays
exponentially:

a < 0 −→ |y(t)| ≤ |y0| and lim
t→∞

|y(t)| = 0.

In this case we need to analyse the discrete schemes, and see whether the
discrete solution decays too, and behaves like the exact solution. Hence,
let Re(a) < 0, and let {yn} be the sequence generated by a numerical
scheme. Does {yn} satisfy the following relation?

a ∈ C with Re a < 0 −→ |yn| ≤ |y0| and lim
n→∞

|yn| = 0?

If this happens, the scheme is called Absolutely stable, or A-stable.
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Checking A-stability for Explicit Euler

By applying Explicit Euler method to the model problem, we get
(yn+1 = yn +∆tf (tn, yn) with f (tn, yn) = ayn)

yn+1 = (1 + a∆t)yn n = 0, 1, .... =⇒ yn = y0(1 + a∆t)n+1.

The exact solution decays exponentially from the initial value y0, while the
growth-decay factor for the discrete scheme is G = 1 + a∆t.
For having limn→∞ |yn| = 0 we need |G | < 1. We observe that |1 + a∆t|
is the distance between −1 and a∆t, so |G | < 1 if and only if a∆t is
contained in the unit circle centered in −1.
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Stability for Explicit Euler: the real setting
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Stability for Explicit Euler: the real setting
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Stability for Explicit Euler: the complex setting

Z  =
abt E fi
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It holds:

|1 + a∆t| < 1 ⇐⇒ |1 + a∆t|2 < 1

but we have

|1 + a∆t|2 = (1 + a∆t)(1 + ā∆t) = 1 + 2Re(a)∆t + |a|2∆t2

Thus

|1 + a∆t| < 1 ⇐⇒ 0 < ∆t < −2Re(a)

|a|2
=: A-Stability condition for EE

This is the drawback of Explicit Euler scheme, and of all the explicit
schemes: for small enough time steps the stability condition is satisfied,
but when Re(a) is strongly negative (exactly the case of rapid decay in the
true solution) we are compelled to keep ∆t small.
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