
Least squares method

Used to approximate solutions of overdetermined systems of equations,
i.e., systems where the number of equations is bigger than the number of
unknowns:

Ax = b, A ∈ Rm×n, b ∈ Rm, m > n

Standard approach in regression analysis, and is widely used for “data
fitting”. The name “least squares” means that the solution minimises the
sum of the squares of the errors made in every single equation.

In data fitting, the best fit in the least square sense minimises the sum of
the squares of the residuals, each residual being the difference between the
observed value and the value provided by the model used.
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most popular example: linear regression
We have a set of data (x1, y1), (x2, y2), · · · , (xm, ym), where xi are the
independent variables, (all distinct), and yi are the observations; m is big.

We want to fit the data with a straight line p(x) = a1 + a2x ; finding a
straight line such that p(xi ) = yi , i = 1, · · · ,m is impossible, unless all
the yi are aligned. Then we look for the straight line that minimises

S =
m∑
i=1

(yi − p(xi ))
2.

Each quantity yi − p(xi ) is a residual, that is, the difference between the
observed value yi and the value p(xi ) predicted by our model (a straight
line in this case). By using the expression of p(x) in S , we see that we
have to minimise a function of two unknowns, a1, and a2:

F (a1, a2) =
m∑
i=1

(yi − (a1 + a2xi ))
2.
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F (a1, a2) =
∑m

i=1(yi − (a1 + a2xi ))
2

F , as a function of a1 and a2, is a second degree polynomial:

F (a1, a2) =
m∑
i=1

(y2i + a21 + x2i a
2
2 + 2xia1a2 − 2yia1 − 2yixia2)

= ma21+
( m∑

i=1

x2i

)
a22+2

( m∑
i=1

xi

)
a1a2−2

( m∑
i=1

yi

)
a1−2

( m∑
i=1

yixi

)
a2+

m∑
i=1

y2i .

F (a1, a2) =

=
[
a1 a2

]


m
m∑
i=1

xi

m∑
i=1

xi

m∑
i=1

(xi )
2


[
a1
a2

]
+

[
−2

∑m
i=1 yi −2

∑m
i=1 yixi

] [a1
a2

]
+

m∑
i=1

y 2
i
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The Hessian of F is

HF (a1, a2) = 2


m

m∑
i=1

xi

m∑
i=1

xi

m∑
i=1

(xi )
2


Now, we show that HF (a1, a2) is positive definite. Let us start by
observing that:

trace(HF ) = 2

(
m +

m∑
i=1

(xi )
2

)
> 0

and

det(HF ) = 2

(
m

m∑
i=1

(xi )
2 −

( m∑
i=1

xi

)2)
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We use the Cauchy-Schwarz inequality to obtain

m∑
i=1

xi ≡
m∑
i=1

xi · 1 ≤
( m∑

i=1

(xi )
2
)1/2( m∑

i=1

12
)1/2

,

((x , 1) ≤ ∥x∥∥1∥). In our case, since xi are distinct, (x , 1) < ∥x∥∥1∥ and
we square it to obtain:(

m∑
i=1

xi

)2

< m

(
m∑
i=1

(xi )
2

)
.

Thus also det(HF ) > 0. Recalling that:

λ1(HF ) + λ2(HF ) = trace(HF ) > 0

λ1(HF ) · λ2(HF ) = det(HF ) > 0,

it follows λ1(HF ) > 0 and λ2(HF ) > 0, which means that HF is positive
definite. Hence F is strictly convex. As a consequence, F has a unique
minimum point.
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To find the minimum point, we look for stationary points, which are points
(a1, a2) where ∇F (a1, a2) = 0. It holds:

∇F (a1, a2) = 2


m

m∑
i=1

xi

m∑
i=1

xi

m∑
i=1

(xi )
2


[
a1
a2

]
+

[
−2
∑m

i=1 yi
−2
∑m

i=1 yixi

]

By imposing ∇F = 0 we obtain a system of two equations in the two
unknowns a1, a2:

(LS1)


m

m∑
i=1

xi

m∑
i=1

xi

m∑
i=1

(xi )
2



a1

a2

 =


m∑
i=1

yi

m∑
i=1

xiyi


Let a1, a2 be the solution, then

p(x) = a1 + a2x is the linear regression line

November 13, 2024 6 / 15



November 13, 2024 7 / 15



Other models

Least square method is widely applied in many fields (economics,
statistics, stock-market and the like) to predict the behaviour of a
phenomenon for which the values (xi , yi ), for i = 1, ...,m) are samples (or
experimental data).

In different cases, our “guess” could be different from the linear case
discussed so far. Actually different models are used, in different
circumstances, in order to have a better fitting of the data.

For example, if the data show a quadratic distribution we might use a
parabola p(x) = a1 + a2x + a3x

2. In this case S would become

F (a1, a2, a3) =
m∑
i=1

(yi − (a1 + a2xi + a3x
2
i ))

2.
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Other models

F (a1, a2, a3) =
∑m

i=1(yi − (a1 + a2xi + a3x
2
i ))

2.

Proceeding as before, computing ∇F and imposing ∇F = 0 to find the
point of minimum we obtain a 3× 3 system in the 3 unknowns a1, a2, a3:

(LS2)



m
m∑
i=1

xi

m∑
i=1

(xi )
2

m∑
i=1

xi

m∑
i=1

(xi )
2

m∑
i=1

(xi )
3

m∑
i=1

(xi )
2

m∑
i=1

(xi )
3

m∑
i=1

(xi )
4





a1

a2

a3


=



m∑
i=1

yi

m∑
i=1

xiyi

m∑
i=1

(xi )
2yi


The solution of the system is the parabola that gives the best fit of the
given data.
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Example of a least square parabola
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More general models

More generally, least square method can be used to fit a set of data with a
linear combination of functions (not necessarily monomials) chosen to best
fit the distribution of a given cloud of data.

Let Sn (with n << m) be a finite dimensional space:

Sn = span{φ1, φ2, · · · , φn}. We look for a function p(x) =
n∑

j=1

ajφj(x)

such that

F (a1, a2, · · · , an) :=
m∑
i=1

(yi −
n∑

j=1

ajφj(xi ))
2 = minimum

November 13, 2024 11 / 15



More general models

As before, computing ∇F and imposing ∇F = 0, the point of minimum
will be the solution of the n × n linear system in the n unknowns
a1, a2, · · · , an:

m∑
i=1

(φ1(xi ))
2

m∑
i=1

φ1(xi )φ2(xi ) · · ·
m∑
i=1

φ1(xi )φn(xi )

m∑
i=1

(φ2(xi ))
2 · · ·

m∑
i=1

φ2(xi )φn(xi )

symm
. . .

...
m∑
i=1

(φn(xi ))
2





a1

a2

...

an


=



m∑
i=1

yiφ1(xi )

m∑
i=1

yiφ2(xi )

...
m∑
i=1

yiφn(xi )
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A different approach

The least square systems (LS1), (LS2), and the general one here above
can be obtained with a different procedure. Let us see how, in the simplest
case of the linear regression line.

We are looking for a line of equation p(x) = a1 + a2x such that
p(xi ) = yi , i = 1, · · · ,m: we have m equations in 2 unknowns which, in
matrix form, is the overdetermined system

1 x1
1 x2
...

...
1 xm


︸ ︷︷ ︸

A

[
a1
a2

]
=


y1
y2
...
ym


︸ ︷︷ ︸

b

(1)
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By left-multiplying the system by AT we obtain AT (Aa− b) = 0:

[
1 1 · · · 1
x1 x2 · · · xm

]
︸ ︷︷ ︸

AT


1 x1
1 x2
...

...
1 xm


︸ ︷︷ ︸

A

[
a1
a2

]
=

[
1 1 · · · 1
x1 x2 · · · xm

]
︸ ︷︷ ︸

AT


y1
y2
...
ym


︸ ︷︷ ︸

b

⇓

(LS1)


m

m∑
i=1

xi

m∑
i=1

xi

m∑
i=1

(xi )
2


︸ ︷︷ ︸

ATA


a1

a2

 =


m∑
i=1

yi

m∑
i=1

xiyi


︸ ︷︷ ︸

ATb
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This is the same 2× 2 system obtained with the least square approach.

The solution of (LS1) is called the least square solution of (1), and it
exists provided that ATA is non-singular. This is true if the matrix A has
full rank (rank 2 in this case). Indeed:

ATA is always symmetric and positive semidefinite, for every matrix A ̸≡ 0:

(ATAx , x) = ∥Ax∥2 ≥ 0

ATA is positive definite if A has full rank (that is: if Ax = 0 implies that
x = 0).
In fact, if Ax = 0 → x = 0 then

(ATAx , x) = ∥Ax∥2 = 0 ⇐⇒ x = 0.

Note: if A has full rank, (LS1) has always a solution, even if system (1)
has no solutions
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