Corrigendum to "Determining a sound-soft polyhedral scatterer by a single far-field measurement"

Giovanni Alessandrini and Luca Rondi
alessang@units.it rondi@units.it
Dipartimento di Matematica e Informatica
Università degli Studi di Trieste, Italy

In the paper, [1], on the determination of a sound-soft polyhedral scatterer by a single far-field measurement, the proof of Proposition 3.2 is incomplete. In this corrigendum we provide a new proof of the same proposition which fills the previous gap. In order to introduce it, we recall some definitions from [1].

Let v be a nontrivial real valued solution to the Helmholtz equation

$$
\begin{equation*}
\Delta v+k^{2} v=0 \text { in } G \tag{1}
\end{equation*}
$$

in a connected open set $G \subset \mathbb{R}^{N}, N \geq 2$. We denote the nodal set of v as

$$
\mathcal{N}_{v}=\{x \in G: v(x)=0\}
$$

and we let \mathcal{C}_{v} be the set of nodal critical points, that is

$$
\mathcal{C}_{v}=\{x \in G: v(x)=0 \text { and } \nabla v(x)=0\} .
$$

We say that $\Sigma \subset \mathcal{N}_{v}$ is a regular portion of \mathcal{N}_{v} if it is an analytic open and connected hypersurface contained in $\mathcal{N}_{v} \backslash \mathcal{C}_{v}$. Let us denote by $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ the nodal domains of v in G, that is the connected components of $\{x \in G$: $v(x) \neq 0\}=G \backslash \mathcal{N}_{v}$. Let us recall the statement of Proposition 3.2 in [1].

Proposition 3.2 ([1]) We can order the nodal domains $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ in such a way that for any $j \geq 2$ there exist $i, 1 \leq i<j$, and a regular portion Σ_{j} of \mathcal{N}_{v} such that

$$
\begin{equation*}
\Sigma_{j} \subset \partial A_{i} \cap \partial A_{j} \tag{2}
\end{equation*}
$$

The gap in the proof given in [1] stands in the fact that the ordering $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ obtained with that method might not ensure that all the nodal domains are contained in the sequence. We base the new proof on the following theorem.

Theorem 1 The set \mathcal{C}_{v} has Hausdorff dimension not exceeding $N-2$.

A proof can be found in [5] Theorem 2.1]. Further developments of the theory on the structure of zero sets of solutions to elliptic equations can be found, for instance, in [2, 3] and in their references.

Let $G^{\prime}=G \backslash \mathcal{C}_{v}$. By the property of \mathcal{C}_{v} described in the previous theorem, and by using [4, Chapter VII, Section 4] and [4, Theorem IV 4, Corollary 2], we can conclude that G^{\prime} is an open and connected set. We also remark that, for every $x \in \mathcal{N}_{v} \backslash \mathcal{C}_{v}$, there are exactly two nodal domains, A and B, of v such that $x \in \partial A \cap \partial B$. Finally, let us note that the nodal domains of v in G coincide with the nodal domains of v in G^{\prime}.

We shall also make use of the following elementary lemma.
Lemma 2 For any connected open set $G \subset \mathbb{R}^{N}$, there exists an increasing sequence $\left\{G_{m}\right\}_{m=1}^{\infty}$ of bounded, connected open sets such that $G=\bigcup_{m=1}^{\infty} G_{m}$ and $G_{m} \subset \subset G$ for every m.

Proof. For every $k=1,2, \ldots$, we denote

$$
D_{k}=\{x \in G: \operatorname{dist}(x, \partial G)>1 / k,|x|<k\}
$$

Let us assume, without loss of generality, that $D_{1} \neq \emptyset$ and let us fix $y \in D_{1}$. For every $x \in \overline{D_{k}}$, let γ_{x} be a path in G joining y to x. For every $h>0$, let $\mathcal{U}_{x}^{h}=\left\{z \in \mathbb{R}^{N}: \operatorname{dist}\left(z, \gamma_{x}\right)<h\right\}$. We obviously have that \mathcal{U}_{x}^{h} is a connected open set. Let $h(x)>0$ be such that $\underline{\mathcal{U}_{x}^{h(x)}} \subset \subset G$. We have that $\left\{\mathcal{U}_{x}^{h(x)}\right\}_{x \in \overline{D_{k}}}$ is an open covering of the compact set $\overline{D_{k}}$. Therefore, we can find $x_{1}, \ldots, x_{l} \in \overline{D_{k}}$ such that $\overline{D_{k}} \subset \bigcup_{j=1}^{l} \mathcal{U}_{x_{j}}^{h\left(x_{j}\right)}$. We observe that $E_{k}=\bigcup_{j=1}^{l} \mathcal{U}_{x_{j}}^{h\left(x_{j}\right)}$ is an open connected set such that $\overline{D_{k}} \subset E_{k} \subset \subset G$. Therefore the lemma follows choosing $G_{m}=\bigcup_{k=1}^{m} E_{k}$.

Proof of Proposition 3.2. We apply Lemma 2 to the connected set $G^{\prime}=$ $G \backslash \mathcal{C}_{v}$. We choose A_{1} such that $A_{1} \cap G_{1} \neq \emptyset$ and we proceed by induction.

Let us assume that we have ordered A_{1}, \ldots, A_{n} in such a way that there exist $\Sigma_{2}, \ldots, \Sigma_{n}$ regular portions of \mathcal{N}_{v} such that (2) holds for any $j=2, \ldots, n$ and for some $i<j$.

Let $\hat{A}_{n}=\overline{A_{1} \cup \ldots \cup A_{n}}$. If $G^{\prime} \backslash \hat{A}_{n}=\emptyset$, then we are done. Otherwise, let $m \geq 1$ be the smallest number such that $G_{m} \backslash \hat{A}_{n} \neq \emptyset$. Since G_{m} is connected, we can find $y \in \partial \hat{A}_{n} \cap G_{m}$ and $r>0$ such that $B_{r}(y) \cap \partial \hat{A}_{n}$ is a regular portion of \mathcal{N}_{v} and there exist exactly two nodal domains, $\tilde{A}_{1} \subset \hat{A}_{n}$ and \tilde{A}_{2} with $\tilde{A}_{2} \cap \hat{A}_{n}=\emptyset$, whose intersections with $B_{r}(y)$ are not empty. Clearly, \tilde{A}_{1} coincides with A_{i}, for some $i=1, \ldots, n$, and if we pick $A_{n+1}=\tilde{A}_{2}$ and $\Sigma_{n+1}=B_{r}(y) \cap \mathcal{N}_{v}$, then (2) holds for $j=n+1$, too.

If G contains only finitely many nodal domains, then we can iterate this construction and after a finite number of steps we recover all the nodal domains, that is for some $l \in \mathbb{N}$ we have $G^{\prime} \backslash \hat{A}_{l}=\emptyset$ and we are done. Otherwise, we argue in the following way. Since $\overline{G_{m}}$ is contained in G^{\prime}, for every $x \in \overline{G_{m}}$ there is a neighbourhood of x intersecting at most two different nodal domains. By compactness, we obtain that $\overline{G_{m}}$ intersects at most finitely many different nodal domains. Hence, if we iterate the previous construction, after a finite number of steps we find $l \in \mathbb{N}$ such that $G_{m} \backslash \hat{A}_{l}=\emptyset$. By repeating the argument for the smallest $m^{\prime}>m$ such that $G_{m^{\prime}} \backslash \hat{A}_{l} \neq \emptyset$, we conclude that for any $m \in \mathbb{N}$ there exists $l \in \mathbb{N}$ such that $G_{m} \backslash \hat{A}_{l}=\emptyset$. Therefore the infinite sequence $\left\{A_{i}\right\}$ comprises all the nodal domains of v in G.

Acknowledgements

The authors wish to express their gratitude to Hongyu Liu and Jun Zou for pointing out to them the gap in the proof of Proposition 3.2 in (1) and for kindly sending them their preprint [6].

References

[1] G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Amer. Math. Soc. 133 (2005), pp. 1685-1691.
[2] Q. Han, R. Hardt and F. Lin, Geometric measure of singular sets of elliptic equations, Comm. Pure Appl. Math. 51 (1998), pp. 1425-1443.
[3] R. Hardt, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and N. Nadirashvili, Critical sets of solutions to elliptic equations, J. Differential Geometry 51 (1999), pp. 359-373.
[4] W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton N.J., 1948.
[5] F.-H. Lin, Nodal sets of solutions of elliptic and parabolic equations, Comm. Pure Appl. Math. 44 (1991), pp. 287-308.
[6] H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, preprint (2005).

