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We discuss here a new approach to phase transitions
with thermal memory based on a new formulation of the
internal energy balance by means of the entropy leading
to a nonlinear and possibly singular PDE system. We
proceed as follows:

I we explain how this formulation turns out to be
convenient in order to prove thermodynamical
consistency of the model

I we point out the existence (of solutions) result for the
general PDE system
E. Bonetti, M. Frémond, E.R., work in progress

I we state the long-time behaviour results holding true
for particular choices of the nonlinearities involved
E. Bonetti, E.R., Commun. Pure Appl. Anal., to appear
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The internal energy: a dual formulation

The state variables: (ϑ, χ, ∇χ) =⇒ (s, χ, ∇χ)
The functional: Ψ(ϑ, χ,∇χ) =⇒ E(s, χ,∇χ)
We choose

E(s, χ,∇χ) = α̂(s − λ(χ))+σ(χ) + β̂(χ) +
ν

2
|∇χ|2

where
I σ and λ are smooth functions accounting for the

non-convex part of the internal energy and the latent
heat, respectively

I β̂ : R → [0,∞] is a general proper, convex, and
lower-semicontinuous function

I α̂ : R → R is a convex, increasing, l.s.c. function
It corresponds

- due to the standard thermodynamic
relation linking Ψ and E -
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to the following general free energy functional:

Ψ(ϑ, χ,∇χ) = −α̂∗(ϑ)− λ(χ)ϑ + σ(χ) + β̂(χ) +
ν

2
|∇χ|2

I α̂∗ : R → R is the convex conjugate of α̂
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Open problems

Possible choices of α̂’s

Take the caloric part of the entropy u = s − λ(χ) .

• If we consider the standard caloric part of the Free
Energy α̂∗(ϑ) = cvϑ(log ϑ− 1) [standard
Ginzburg-Landau Free energy functional]

=⇒ α̂(u) = c exp(u)

• Since, cv in the applications may also not be
constant, we can allow every form for cv = cv (ϑ)
such that α̂(ϑ) is convex - e.g., if cV (ϑ) = ϑγ , for
ϑ ∈ (0, ϑ̄) with γ ≥ 0 - since cv (ϑ) = −ϑ

(
∂2Ψ/∂ϑ2),

then we have α̂∗(ϑ) = ϑγ+1/ [γ(γ + 1)]
=⇒

α̂(u) = u
γ+1

γ /(γ + 1)
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The case of a general α:
existence result

Meaningful α’s

The case α Lipschitz
continuous

The case α = exp

Open problems

The pseudo-potential of dissipation

We follow the approach of [Moreau, 1971].

The dissipative variables: (∇ϑ, χt) =⇒ (−Q, χt)
The functional: Φ(∇ϑ, χt) =⇒ p(−Q, χt)
We choose

p(χt ,−Q) =
1
2
|χt |2 +

1
2
α′(u)| −Q|2.

where u = s − λ(χ), α = α̂′, Φ = p∗, and
I −Q =

∂Φ

∂(∇ϑ)
the dual conjugate variable of ∇ϑ,

i.e. the entropy flux and
I since α̂ is convex, p is convex with respect to −Q.

Indeed, we can compute the conjugate function
p∗(χt ,∇ϑ) = sup−Q{−∇ϑ ·Q− p(χt ,−Q)}, from which

it follows ∇ϑ = −α′(u)Q and −Q = ∇u because
ϑ = α(u).
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i.e. the entropy flux and
I since α̂ is convex, p is convex with respect to −Q.

Indeed, we can compute the conjugate function
p∗(χt ,∇ϑ) = sup−Q{−∇ϑ ·Q− p(χt ,−Q)}, from which

it follows ∇ϑ = −α′(u)Q and −Q = ∇u because
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continuous

The case α = exp

Open problems

The equation of microscopic motions
We deduce the equation of microscopic motion for χ from
the generalized principle of virtual power (cf. [M.
Frémond, 2002])

THE PRINCIPLE OF VIRTUAL POWER for microscopic
motion - for any subdomain D ⊂ Ω and any virtual
microscopic velocity v - reads

Pint(D, v) + Pext(D, v) = 0,

where (B and H are new interior forces)

Pint(D, v) := −
∫

D
(B v + H · ∇v),

Pext(D, v) :=

∫
D

A v +

∫
∂D

a v = 0.

In absence of external actions we get

B − div H = 0 in Ω with H · n = 0 on ∂Ω.
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Open problems

The phase inclusion
The equilibrium equation

B − div H = 0 in Ω + H · n = 0 on ∂Ω,

where

B =
∂E
∂χ +

∂p
∂χt

, H =
∂E

∂(∇χ)
,

and

E(s, χ,∇χ) = α̂(s − λ(χ))+σ(χ) + β̂(χ) +
ν

2
|∇χ|2,

p = (χt ,−Q) =
1
2
|χt |2 +

1
2
α′(s − λ(χ))| −Q|2

⇓
χt − ν∆χ + β(χ) + σ′(χ)− α(s − λ(χ))λ′(χ) 3 0 in Ω

and ∂nχ = 0 on ∂Ω

where α = α̂′ and β = ∂β̂.
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Possible choices of the potentials β̂

Subdifferential case: β := ∂β̂ = ∂I[−1,1]:
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The case α Lipschitz
continuous

The case α = exp

Open problems

The first Principle
For any subdomain D ⊂ Ω and in absence of external
actions, it reads

d
dt

∫
D

E dΩ = −Pint(D, χt).

Then, if we take - as before - the following form for the
power of internal actions:

Pint(D, χt) = −
∫

D
(B χt + H · ∇χt) dΩ,

with
B =

∂E
∂χ +

∂p
∂χt

, H =
∂E

∂(∇χ)
,

we get exactly that there exists q such that

Et + div q =
∂E
∂χ

χt +
∂p
∂χt

χt +
∂E

∂(∇χ)
∇χt in Ω.
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The case of a general α:
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Meaningful α’s

The case α Lipschitz
continuous

The case α = exp

Open problems

The energy balance
Hence, the first principle of thermodynamics reads

Et + div q =
∂E
∂χ

χt +
∂p
∂χt

χt +
∂E

∂(∇χ)
∇χt in Ω.

With

E(s, χ,∇χ) = α̂(s − λ(χ))+σ(χ) + β̂(χ) +
ν

2
|∇χ|2,

p = (χt ,−Q) =
1
2
|χt |2 +

1
2
α′(s − λ(χ))| −Q|2,

and, denoting by u = s − λ(χ), it gives:

α(u) (st + div Q) = α′(u)|∇u|2 + χ2
t in Ω

where

• we recall that α(s − λ(χ)) = α̂′(s − λ(χ)) =
∂E
∂s

,

• and we have chosen q such that
q/α(u) = Q = −∇u.
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The case of a general α:
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Meaningful α’s

The case α Lipschitz
continuous

The case α = exp

Open problems

Thermodynamical consistency

Moreover, in

α(u) (st + div Q) = α′(u)|∇u|2 + χ2
t

we have

I α(u) = α(s − λ(χ)) = α̂′(s − λ(χ)) =
∂E
∂s

(= ϑ) > 0
(ϑ is the absolute temperature) – because we have
assumed α̂ to be increasing,

I α′ > 0 – because we have assumed α̂ to be convex.
Divide by α(u) > 0 the internal energy balance, getting

st + div Q ≥ 0,

that is just the pointwise Clausius-Duhem inequality .
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Meaningful α’s

The case α Lipschitz
continuous

The case α = exp

Open problems

The PDE equation for u

From the following energy conservation principle

α(u) (st + div Q) = α′(u)|∇u|2 + χ2
t

where u = s − λ(χ), dividing by α(u), and using the small
perturbations assumption (cf. [Germain]) - which allow us
to neglect the higher order dissipative contributions on the
right hand side - we obtain the following equation for u

(u + λ(χ))t −∆u = 0, (EB)

where we have taken - as before - Q = −∇u. We
generalize now the system in this direction:

I we let α = ∂α̂ be a general MAXIMAL MONOTONE

GRAPH (maybe also multivalued),
I we include in the internal energy balance memory

effects, i.e. the term − div
∫ t

−∞
k(t − τ)∇α(u(τ)) dτ

on the left hand side of (EB).
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Meaningful α’s

The case α Lipschitz
continuous

The case α = exp

Open problems

The PDE system

Take the auxiliary variable u = s − λ(χ) and suppose to
know the past history of α(u) = ϑ up to time t = 0,
i.e. suppose the history term:

div
∫ 0

−∞
k(t − τ)∇α(u(τ)) dτ to be known.

Put it on the right hand side. Then, we aim to find suitably
regular (u, χ) solving in a proper sense:

(u + λ(χ))t −∆(u + k ∗ α(u)) 3 r in Ω

∂n(u + k ∗ α(u)) 3 h on ∂Ω

χt − ν∆χ + β(χ) + σ′(χ)− λ′(χ)α(u) 3 0 in Ω

∂nχ = 0 on ∂Ω

u(0) = u0, χ(0) = χ0 in Ω.

We must suppose from now on λ′ constant (= 1 for
simplicity).
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Meaningful α’s

The case α Lipschitz
continuous

The case α = exp

Open problems

Our main results

I An existence (of weak solutions) result under general
assumptions on the nonlinearity α for a graph β with
domain the whole R and with at most a polynomial
growth at ∞

I An existence-uniqueness-long-time behaviour (of
solutions) result in case α is Lipschitz-continuous
and for a general β

I An existence-long-time behaviour (of solutions) result
in case α = exp and for a general β
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The case of a general α:
existence result

Meaningful α’s

The case α Lipschitz
continuous

The case α = exp

Open problems

Hypotheses 1

I Ω ⊂ R3 bdd connected domain with sufficiently
smooth boundary Γ := ∂Ω

I t ∈ [0,∞], Qt := Ω× (0, t), Σt := Γ× (0, t),
I V := H1(Ω) ↪→ H := L2(Ω) ≡ H ′ ↪→ V ′ the Hilbert

triplet.

Suppose moreover that

β = ∂β̂, α = ∂α̂, with β̂, α̂ : R → (−∞,+∞] are proper,
convex, and lower semicontinuous

σ ∈ C2(D(β)), σ′′ ∈ L∞(D(β)), ν ≥ 0

k ∈ W 2,1(0, t), k(0) ≥ 0, k ≡ 0 if k(0) = 0,

r ∈ L2(Qt) ∩ L1(0, T ; L∞(Ω)), h ∈ L∞(Σt),

〈R(t), v〉 =

∫
Ω

r(·, t)v +

∫
Γ

h(·, v)v|Γ ∀v ∈ V

u0 ∈ H, α̂(u0) ∈ L1(Ω), χ0 ∈ H, νχ0 ∈ V , β̂(χ0) ∈ L1(Ω).
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Existence result for a general α

Thm 1.Let T be a positive final time, HYPOTHESIS 1 be
satisfied with t = T , and suppose moreover that ν > 0,
k(0) > 0, and there exists p < 5 such that

|β(s)| ≤ cβ + c′β min{|s|p, |β̂(s)|} ∀s ∈ R, (beta)

then there exists at least a couple (u, χ) with the
regularity properties

u ∈ H1(0, T ; V ′) ∩ L2(0, T ; V ), χ ∈ H1(0, T ; H) ∩ L∞(0, T ; V ),

αV ′,V (u) ∈ L2(0, T ; V ′),

1 ∗ αV ′,V (u) ∈ L2(0, T ; V ) ∩ C0(0, T ; H)

solving, a.e. in (0, T ), the PDE system:

∂t(u + χ) + Au + A(k ∗ αV ′,V (u)) 3 R, in V ′, (1)
∂tχ + νAχ + β(χ) + σ′(χ)− αV ′,V (u) 3 0 in V ′, (2)
u(0) = u0, χ(0) = χ0 a.e. in Ω.
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The case α Lipschitz
continuous

The case α = exp

Open problems

Meaningful α’s

I α(u) = exp(u)(= ϑ) : we recover the model
proposed by [Bonetti, Colli, Frémond, ’03]

(u + χ)t −∆(u + k ∗ exp(u)) = r
χt − ν∆χ + β(χ) + σ′(χ)− exp(u) 3 0.

Choosing a different heat flux law q = −∇(α2(u)) we
recover the model proposed by [Bonetti, Colli,
Fabrizio, Gilardi, ’06]

(u + χ)t −∆(exp(u) + k ∗ exp(u)) = r
χt − ν∆χ + β(χ) + σ′(χ)− exp(u) 3 0

I α(u) = −1/u: we recover, e.g., the Penrose-Fife
system
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The case α = exp

Open problems

The existence – uniqueness result
Thm 2. Let T be a positive final time and HYPOTHESIS 1,
with t = T , hold and assume that α is a Lipschitz
continuous function.

Then, there exists (u, χ, ξ) (with
ξ ∈ β(χ) a.e.) solving (1–2) (a.e. in QT ) + initial
conditions and satisfying

u ∈ C0([0, T ]; H) ∩ L2(0, T ; V ), ξ ∈ L2(QT ),

χ ∈ H1(0, T ; H), νχ ∈ L∞(0, T ; V ) ∩ L2(0, T ; H2(Ω)).

The components u and χ of such a solution are uniquely
determined.

Note that in this case αV ′,V in (2) can be identified with
the standard ∂α̂ (defined a.e. in QT ) in the sense of
Convex Analysis.

THE PROOF IS A SUITABLE ADAPTATION OF THE ONE OF

[BONETTI, COLLI, FRÉMOND, 2003] HOLDING TRUE IN

CASE β = ∂I[0,1], σ′ = ϑc
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Open problems

The long-time behaviour of solutions

Thm 3. Let HYPOTHESIS 1 hold and suppose that
(i) k ∈ W 1,1(0,∞) is of strongly positive type,

i.e. ∃ η > 0 such that

k̃(t) := k(t)− η exp(−t) is of positive type;

(ii) r , h sufficiently regular.
Then, the ω-limit:

ω(u0, χ0, ν) :={(u∞, χ∞) ∈ H × H, νχ∞ ∈ V : ∃ tn → +∞,

(u(tn), χ(tn)) → (u∞, χ∞) in V ′ × (V ′ ∩ νH)}

is a compact, connected subset (6= ∅) of V ′ × (V ′ ∩ νH)
and ∀(u∞, χ∞) ∈ ω(u0, χ0, ν), ∃ ξ∞ ∈ β(χ∞) such that:

u∞ =
1
|Ω|

(
−

∫
Ω

χ∞ + c0 + m
)

,

νAχ∞ + ξ∞ + σ′(χ∞) = α

(
1
|Ω|

(
−

∫
Ω

χ∞ + c0 + m
))

,

where c0 =
∫
Ω u0 +

∫
Ω

χ0, m =
∫∞

0

(∫
Ω r(s) +

∫
Γ h(s)

)
ds.
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The case α Lipschitz
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The case α = exp

Open problems

The existence result

THM 4. Fix T > 0 and assume that HYPOTHESIS 1 hold
with t = T . Suppose moreover that

(i) ν ≥ 0 if D(β) is bounded and ν > 0 if D(β) is
unbounded.

Then, there exists at least a quadruple (u, ϑ, χ, ξ) such
that ϑ = α(u) = exp(u), ξ ∈ β(χ) a.e.,

u ∈ H1(0, T ; V ′) ∩ L2(0, T ; V ), ϑ ∈ L5/3(QT ),

χ ∈ H1(0, T ; H), νχ ∈ L∞(0, T ; V ) ∩ L5/3(0, T ; W 2,5/3(Ω)),

ξ ∈ L5/3(QT ), k(0)(1 ∗ ϑ) ∈ L∞(0, T ; V ),

satisfying system (1–2) a.e. in QT and the same initial
conditions as before.
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that ϑ = α(u) = exp(u), ξ ∈ β(χ) a.e.,

u ∈ H1(0, T ; V ′) ∩ L2(0, T ; V ), ϑ ∈ L5/3(QT ),

χ ∈ H1(0, T ; H), νχ ∈ L∞(0, T ; V ) ∩ L5/3(0, T ; W 2,5/3(Ω)),

ξ ∈ L5/3(QT ), k(0)(1 ∗ ϑ) ∈ L∞(0, T ; V ),

satisfying system (1–2) a.e. in QT and the same initial
conditions as before.
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Meaningful α’s

The case α Lipschitz
continuous

The case α = exp

Open problems

Long-time behaviour of solutions

Thm 5. Under the assumptions of existence and
(i) k ∈ W 1,1(0,∞) is of strongly positive type;
(ii) r , h sufficiently regular, ν > 0;
(i) lim|r |→+∞ |r |−2β̂(r) = +∞.

Let (u, χ) : (0,∞) → H × V be a solution on (0,+∞)
associated to (u0, χ0). Then, the ω-limit set of a single
trajectory (u, χ) defined in (0,+∞):

ω(u, χ) :={(u∞, χ∞) ∈ H × V : ∃ tn → +∞,

(u(tn), χ(tn)) → (u∞, χ∞) in V ′ × H}.

is a nonempty, compact, and connected subset of V ′ ×H.
Moreover, for any (u∞, χ∞) ∈ ω(u, χ) there exists
ξ∞ ∈ L5/3(Ω), ξ∞ ∈ β(χ∞) such that (u∞, χ∞, ξ∞) solves
the corresponding stationary problem (a.e. in Ω).

THE CASE ν, k = 0 has been studied in [Bonetti, in
“Dissipative phase transitions” (ed. P. Colli, N. Kenmochi,
J. Sprekels) (2006)]
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Open problems

Convergence of the whole trajectory in special cases

In general, we cannot conclude that the whole trajectory
{(u(t), χ(t)) t ≥ 0} tends to (u∞, χ∞) weakly in H × V
and strongly in V ′ × H as t → +∞. This is mainly due to
the presence of the anti-monotone term σ′(χ∞).
Indeed if

β = ∂I[0,1], σ′(χ) = θc ,

then we can conclude in addition that both u∞ and χ∞
are constants a.e. in Ω and that (u∞, χ∞) ∈ ω(u, χ) is
uniquely determined by

u∞ = −χ∞ +
1
|Ω|

(c0 + m),

∂I[0,1](χ∞)− exp
(
−χ∞ +

1
|Ω|

(c0 + m)

)
3 −θc ,

being c0 and m defined as before. In particular, the whole
trajectory (u(t), χ(t)) tends to (u∞, χ∞) weakly in H × V
and strongly in V ′ × H as t → +∞.
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Open problems

Related open problems

• To study the convergence of the whole trajectories in
case the anti-monotone part σ′ is present in the
phase equation: no uniqueness of the stationary
states is expected

−ν∆χ∞ + β(χ∞) + σ′(χ∞) 3 exp(u∞)

by employing the Lojasiewicz technique in case of
analytical potentials β, cf., e.g., [Feireisl,
Schimperna, to appear] ↪→ Penrose-Fife systems. Or
use other techniques, cf. [Krejčı́, Zheng, 2005] ↪→
phase-relaxation systems with non-smooth
potentials.

• To get uniqueness in case of a general α (not
Lipschitz-continuous). Problem: the doubly-nonlinear
character of the system.
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