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We discuss here a new approach to phase transitions DO
with thermal memory based on a new formulation of the

internal energy balance by means of the entropy leading

to a nonlinear and possibly singular PDE system. We

proceed as follows:

» we explain how this formulation turns out to be
convenient in order to prove thermodynamical
consistency of the model

» we point out the existence (of solutions) result for the
general PDE system
’ E. Bonetti, M. Frémond, E.R., work in progress‘

» we state the long-time behaviour results holding true
for particular choices of the nonlinearities involved
’ E. Bonetti, E.R., Commun. Pure Appl. Anal., to appear‘
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The internal energy: a dual formulation
The state variables: (9, X, VX) = (s, X, VX)
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The state variables: (9, X, VX) = (s, X, VX)
The functional: w(9, X, VX) = E(s, X, VX)
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The internal energy: a dual formulation

The state variables: (9, X, VX) = (s, X, VX)
The functional: w(9, X, VX) = E(s, X, VX)
We choose

E(s,X, VX) = a(s — A(X))+o(X) + B(X) + gyvxﬁ

where

Formulazione
duale di modelli
di phase-field

E. Rocca

The model



The internal energy: a dual formulation

The state variables: (9, X, VX) = (s, X, VX)
The functional: w(9, X, VX) = E(s, X, VX)
We choose

E(s,X, VX) = a(s — A(X))+o(X) + B(X) + %yvxyz

where
» o and X are smooth functions accounting for the

non-convex part of the internal energy and the latent
heat, respectively

» 3:R — [0, 0] is a general proper, convex, and
lower-semicontinuous function

» a: R — Ris aconvex, increasing, |.s.c. function
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We choose

E(s,X, VX) = a(s — A(X))+o(X) + B(X) + %yvxyz

where
» o and X are smooth functions accounting for the

non-convex part of the internal energy and the latent
heat, respectively
» 3:R — [0, 0] is a general proper, convex, and
lower-semicontinuous function
» o : R — Ris aconvex, increasing, |.s.c. function
It corresponds - due to the standard thermodynamic
relation linking ¥ and E -

W(0,X,VX) = —(E*(0.X, VX))
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The internal energy: a dual formulation

The state variables: (9, X, VX) = (s, X, VX)
The functional: w(9, X, VX) = E(s, X, VX)
We choose

E(s,X, VX) = a(s — A(X))+o(X) + B(X) + %yvxyz

where
» o and X are smooth functions accounting for the

non-convex part of the internal energy and the latent
heat, respectively
» 3:R — [0, 0] is a general proper, convex, and
lower-semicontinuous function
» a: R — Ris aconvex, increasing, |.s.c. function
It corresponds
to the following general free energy functional:

WD, X, VX) = —a*(9) — XXV + o(X) + B(X) + g|v><|2

» a* : R — R is the convex conjugate of a
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The internal energy: a dual formulation duste di modsl

di phase-field
The state variables: (9, X, VX) = (s, X, VX) E. Rocca
The functional: w(49, X, VX) = E(s, X, VX) The model
We choose

E(s,X, VX) = a(s — A(X))+o(X) + B(X) + %yvxyz

where
» o and X are smooth functions accounting for the

non-convex part of the internal energy and the latent
heat, respectively
» 3:R — [0, 0] is a general proper, convex, and
lower-semicontinuous function
» a: R — Ris aconvex, increasing, |.s.c. function
It corresponds

to the standard one in case ‘ () = cy¥(logy — 1) ‘

W(9, X, VX) = ¢,0(1—log 9)—A(X )/L9+U(X)+B(X)+g]VX]2



Possible choices of a’s




Possible choices of a’s

Take the caloric part of the entropy | u = s — A\(X) |.
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Possible choices of a’s

Take the caloric part of the entropy m

¢ If we consider the standard caloric part of the Free
Energy
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Possible choices of a’s

Take the caloric part of the entropy m

¢ If we consider the standard caloric part of the Free
Energy a*(v) = ¢,9(log 9 — 1) [standard
Ginzburg-Landau Free energy functional]

— a(u) = cexp(u)
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Possible choices of a’s

Take the caloric part of the entropy m

¢ If we consider the standard caloric part of the Free
Energy a*(v) = ¢,9(log 9 — 1) [standard
Ginzburg-Landau Free energy functional]

— a(u) = cexp(u)

e Since, ¢, in the applications may also not be
constant, we can allow every form for ¢, = ¢, (?)
such that a(v) is convex - e.g., if cy (V) = 97, for
¥ € (0,9) with v > 0 - since ¢,(9) = —9 (9?W/09?),
then we have a*(9) = 971/ [y(y + 1)]
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The pseudo-potential of dissipation

We follow the approach of [Moreau, 1971].
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The pseudo-potential of dissipation

We follow the approach of [Moreau, 1971].
The dissipative variables: (V9, X;) = (—Q, X;)
The functional: ®(V49, X;) = p(—Q, X¢)
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The pseudo-potential of dissipation

We follow the approach of [Moreau, 1971].

The dissipative variables: (V9, X;) = (—Q, X;)
The functional: ®(V49, X;) = p(—Q, X¢)

We choose

1 1,
p(xe, —Q) = Sl + 5o'(u) - Q%

where u = s — \(X), a = &, » = p*, and
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The pseudo-potential of dissipation

We follow the approach of [Moreau, 1971].

The dissipative variables: (V9, X;) = (—Q, X;)
The functional: ®(V49, X;) = p(—Q, X¢)

We choose

1 1,
p(Xt, ~Q) = 5|2 + 5a'(u)| - QF.

where u = s — \(X), a = &, » = p*, and

» Q= W the dual conjugate variable of V1,

i.e. the entropy flux and
» since a is convex, p is convex with respect to —Q.
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The pseudo-potential of dissipation

We follow the approach of [Moreau, 1971].

The dissipative variables: (V9, X;) = (—Q, X;)
The functional: ®(V49, X;) = p(—Q, X¢)

We choose

1 1,
p(Xt, ~Q) = 5|2 + 5a'(u)| - QF.

where u = s — A\(X), a =&, ® = p*, and

» Q= m the dual conjugate variable of V1,

i.e. the entropy flux and
» since a is convex, p is convex with respect to —Q.
Indeed, we can compute the conjugate function
p*(Xt, V) = sup_q{—V¥ - Q — p(Xt, —Q)}, | from which

it follows Vi = —a/(u)Q and —Q = Vu because
9 = a(u).
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The pseudo-potential of dissipation

We follow the approach of [Moreau, 1971].

The dissipative variables: (V9, X;) = (—Q, X;)
The functional: ®(V49, X;) = p(—Q, X¢)

We choose

1 1,
p(Xt, ~Q) = 5|2 + 5a'(u)| - QF.

where u = s — A\(X), a =&, ® = p*, and

» Q= m the dual conjugate variable of V1,

i.e. the entropy flux and
» since a is convex, p is convex with respect to —Q.

Hence, we recover the following form for the pseudo-
potential of dissipation

1

N 1
q)(Xt, Vﬁ) =p (Xt, Vﬁ) = §’Xt‘2 + m

(VY2
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The pseudo-potential of dissipation

We follow the approach of [Moreau, 1971].
The dissipative variables: (V9, X;) = (—Q, X;)
The functional: ®(V4, X;) = p(—Q, X;)

We choose

1 1
p(Xt, —Q) = §|Xt|2 + 50

2

(u)l - Q2.

where u = s — \(X), a = &, » = p*, and
» —Q = ——— the dual conjugate variable of V4,

a(V9)

i.e. the entropy flux and
» since a is convex, p is convex with respect to —Q.

From which, if

a(u) = exp(u)

o (a=1(9)) =0,

1
O(X1, V) = S |Xef* +

like, e.g.,

VY2
29

in case

, we recover the standard form of ®:
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The equation of microscopic motions

We deduce the equation of microscopic motion for X from
the generalized principle of virtual power (cf. [M.
Frémond, 2002])
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The equation of microscopic motions

We deduce the equation of microscopic motion for X from
the generalized principle of virtual power (cf. [M.
Frémond, 2002])

THE PRINCIPLE OF VIRTUAL POWER for microscopic
motion - for any subdomain D C Q and any virtual
microscopic velocity v - reads

Pint(Da V) + Pext(Dv V) — 07

where (B and H are new interior forces)
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The equation of microscopic motions

We deduce the equation of microscopic motion for X from
the generalized principle of virtual power (cf. [M.
Frémond, 2002])

THE PRINCIPLE OF VIRTUAL POWER for microscopic
motion - for any subdomain D C Q and any virtual
microscopic velocity v - reads

Pint(Da V) + Pext(Dv V) — 07

where (B and H are new interior forces)

Pini(D,v) := —/D(Bv+ H-Vv),

Po(D, V) ::/Av+/ av—o.
D oD
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The equation of microscopic motions dusle di modell

di phase-field
We deduce the equation of microscopic motion for X from E. Rocca
the generalized principle of virtual power (cf. [M.
Frémond, 2002]) The equation of

microscopic motion

THE PRINCIPLE OF VIRTUAL POWER for microscopic
motion - for any subdomain D C Q and any virtual
microscopic velocity v - reads

Pint(Da V) + Pext(Dv V) — 07

where (B and H are new interior forces)

Pini(D,v) := _/D(BV+ H-Vv),

Po(D, V) ::/Av+/ av—o.
D oD

In absence of external actions we get
B-divH=0 |inQ with H-n=0ona.




The phase inclusion
The equilibrium equation

B—divH=0inQ + H-n=00n0Q,
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B—divH=0inQ + H-n=00n0Q,
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The phase inclusion dusl i model
I phase-fiel
The equilibrium equation E. Rocca

B—divH=0inQ + H-n=00n0Q,

The equation of
microscopic motion

where
0E Op OE
= —_— —_— H =
ox ox¢’ A(VX)’
and

E(s,X,VX) = a(s — \(X))+a(X) + 5(X) + g\vx\z,

1 1, ,
p= (%, ~Q) = 5+ 5o/(s = A(V))| - QP

Y



The phase inclusion dusl i model
I phase-fiel
The equilibrium equation E. Rocca

B—divH=0inQ + H-n=00n0Q,

The equation of
microscopic motion

where
0E Op OE
= — —_— H o
ox ox¢’ A(VX)’
and

E(s,X,VX) = a(s — \(X))+a(X) + 5(X) + g\vx\z,

1 1
p=(Xt,—Q) = §\Xt\2 + 50/(3 — (X)) - Qf?
%

Xe = vAX + B(X) +0'(X) — a(s — A())N(X) 50 in Q|

]and@nxzoonaﬂ\

where o = @ and 8 = 95.



Possible choices of the potentials B
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Subdifferential case: 8 := 98 = 9l_1 1}
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Thermodynamical
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Lo
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Main Hypothesis
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existence result
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The case o = ex



Possible choices of the potentials 3

Subdifferential case: 3 := 93 = dl_ 4):

Logarithmic case: 3 := 93 = log(1 + X) — log(1 — X):

5
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The first Prin

For any subdomain D € Q and in absence of external

actions, it reads

ciple

d
(jt/DEdQ — —Pim(D,X[).
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The first PrinCipIe duale di modelli
di phase-field
For any subdomain D € Q and in absence of external E. Rocca

actions, it reads

The internal energy

d
2 /D E dQ = —Py(D, Xy).

Then, if we take - as before - the following form for the
power of internal actions:

Pa(D,Xt) = — /D (BX; +H-VX,) d9,

with 0E 0 OE
_0E  op _
“ox ' Xy’ H A(VX)’

B



Formulazione

The first PrinCipIe duale di modelli

di phase-field
For any subdomain D C 2 and in absence of external E. Rocca
actions, it reads
d The internal energy
a EdQ = —Pim(D,Xt). balance
D

Then, if we take - as before - the following form for the
power of internal actions:

Pa(D,Xt) = — /D (BX; +H-VX,) d9,

with
0E 0p OE

H=
ax Ty A(VX)’
we get exactly that there exists ¢ such that
op 0E

— in Q.
8tht+a(vx)vxt in

B=

E
Et—l-dlvq = a—XH—




The energy balance
Hence, the first principle of thermodynamics reads

Ei+divqg = 0

ox

E
Xt +

p

X

Xt +

oE

ooy VX

a(VX)

t

in Q.
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The energy balance dusle di modell
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Hence, the first principle of thermodynamics reads E. Rocca
. oE op oE .
E:i+d = —X —X —VX; inQ.
t + v q aX t + 8Xf t + a(VX) v t I The internal energy
With

E(s,X, VX) = a(s — A\(X))+o(X) + B(X) + %\VX\Z,
1 1
p=(x1,=Q) = 5[ + 5o(s — M) - QP
and, denoting by u = s — A(X), it gives:



The energy balance dusle di modell

di phase-field
Hence, the first principle of thermodynamics reads E. Rocca
. oE op oE .
E:i+d = —X —X —VX; inQ.
t + v q aX t + 8Xf t + a(VX) v t I The internal energy
With

E(s,X,VX) = a(s — A(X))+o(X) + B(X) + %\VX\Z,

1 1,
p= (X, —Q) = 5 [Xi* + 50'(s = \())[ - QF%,

and, denoting by u = s — A(X), it gives:
a(u) (st +divQ) = o/(U)|Vul]® + X2 in Q

where
e we recall that a(s — A(X)) = d/(s — A\(X)) =

e and we have chosen q such that
q/a(u) =Q=—-Vu.

%
0s’



Thermodynamical consistency
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Thermodynamical consistency

Moreover, in

we have

a(u) (st +divQ) = o/ (u)|Vul? + X2
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Thermodynamical consistency dusle di modell

di phase-field

E. Rocca

Moreover, in

a(u) (St + div Q) = a/(u)|vu|2 + X? Thermodynamical

we have
» a(u) =a(s— X)) =a'(s— X)) = 85( ¥) >0

(¥ is the absolute temperature) — because we have
assumed «a to be increasing,

» o/ > 0 —because we have assumed & to be convex.



Thermodynamical consistency dusle di modell

di phase-field

E. Rocca

Moreover, in

a(u) (st +divQ) = o/ (u)|Vul? + X2

Thermodynamical
consistency

we have
» a(u) =a(s— X)) =a'(s— X)) = ai( ¥) >0

(¥ is the absolute temperature) — because we have
assumed «a to be increasing,

» o/ > 0 —because we have assumed & to be convex.
Divide by a(u) > 0 the internal energy balance, getting

]st+div020,

that is just the ‘ pointwise Clausius-Duhem inequality | .




The PDE equation for u
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The PDE equation for u

From the following energy conservation principle

a(u) (st +divQ) = o/ (U)|Vul? + x2

where u = s — A(X),
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The PDE equation for u dusl i model
I phase-fiel
From the following energy conservation principle E. Rocca

a(u) (st +divQ) = o/ (U)|Vul]? + X2

where u = s — \(X), dividing by a(u),
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The PDE equation for u

From the following energy conservation principle

a(u) (st +divQ) = o/ (U)|Vul]? + X2

where u = s — A\(X), dividing by «(u), and using the small
perturbations assumption (cf. [Germain]) - which allow us

to neglect the higher order dissipative contributions on the
right hand side -
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The PDE equation for u

From the following energy conservation principle

a(u) (st +divQ) = o/ (U)|Vul]? + X2

where u = s — A\(X), dividing by «(u), and using the small
perturbations assumption (cf. [Germain]) - which allow us
to neglect the higher order dissipative contributions on the
right hand side - we obtain the following equation for u
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to neglect the higher order dissipative contributions on the

right hand side - we obtain the following equation for u

‘ (u+A(X))t — Au =0,
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The PDE equation for u

From the following energy conservation principle

a(u) (st +divQ) = o/ (U)|Vul]? + X2

where u = s — \(X), dividing by «(u), and using the small
perturbations assumption (cf. [Germain]) - which allow us
to neglect the higher order dissipative contributions on the
right hand side - we obtain the following equation for u

‘ (u+A(X))t — Au =0,

(EB)

where we have taken - as before - Q = —Vu.

Formulazione
duale di modelli
di phase-field

E. Rocca

Thermodynamical
consistency



The PDE equation for u dusl i model
I phase-fiel
From the following energy conservation principle E. Rocca

a(u) (st +divQ) = o/ (U)|Vul]? + X2

where u = s — A(X), dividing by o(u), and using the small ~ woec
perturbations assumption (cf. [Germain]) - which allow us oy
to neglect the higher order dissipative contributions on the

right hand side - we obtain the following equation for u

(U4 M) — Au =0, (EB)

where we have taken - as before - Q = —Vu. We
generalize now the system in this direction:
» we let « = da be a general MAXIMAL MONOTONE
GRAPH (maybe also multivalued),



The PDE equation for u

From the following energy conservation principle

a(u) (st +divQ) = o/ (U)|Vul]? + X2

where u = s — \(X), dividing by «(u), and using the small
perturbations assumption (cf. [Germain]) - which allow us
to neglect the higher order dissipative contributions on the
right hand side - we obtain the following equation for u

(U+ X)) — Bu = (EB)

where we have taken - as before - Q = —Vu. We
generalize now the system in this direction:

» we let « = da be a general MAXIMAL MONOTONE
GRAPH (maybe also multivalued),

» we include in the internal energy balance memory
effects, i.e. the term dlv/ k(t—7)Va(u(r))dr
on the left hand side of (EB).
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Take the auxiliary variable
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The PDE system
Take the auxiliary variable and suppose to

know the past history of a(u) = ¥ up to time t = 0,
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Take the auxiliary variable and suppose to

know the past history of a(u) = ¥ up to time t = 0,
i.e. suppose the history term:

0
div/ k(t—7)Va(u(r))dr to be known.

Put it on the right hand side.
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The PDE system
Take the auxiliary variable and suppose to

know the past history of a(u) = ¥ up to time t = 0,
i.e. suppose the history term:

0
div/ k(t—7)Va(u(r))dr to be known.

Put it on the right hand side. Then, we aim to find suitably
regular (u, X) solving in a proper sense:

(U+ X))t —A(u+ k*xa(u))sr inQ
on(U+kxa(u))>h onoQ

Xt — vAX + B(X) +'(X) = N (X)a(u) 20 inQ
OnX =0 onoQ

u(0) = ug, X(0)=Xp inQ.

We must suppose from now on X\’ constant (= 1 for
simplicity).
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Our main results

» An existence (of weak solutions) result under general
assumptions on the nonlinearity « for a graph 5 with
domain the whole R and with at most a polynomial
growth at co
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Our main results

» An existence (of weak solutions) result under general
assumptions on the nonlinearity « for a graph 5 with
domain the whole R and with at most a polynomial
growth at co

» An existence-uniqueness-long-time behaviour (of
solutions) result in case « is Lipschitz-continuous
and for a general 3
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Our main results

» An existence (of weak solutions) result under general
assumptions on the nonlinearity « for a graph 5 with
domain the whole R and with at most a polynomial
growth at co

» An existence-uniqueness-long-time behaviour (of
solutions) result in case « is Lipschitz-continuous
and for a general 3

» An existence-long-time behaviour (of solutions) result
in case a = exp and for a general 3
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» Q C RS bdd connected domain with sufficiently
smooth boundary I := 0Q

» te[0,00], Qr:=Qx(0,t), s :=T x (0,1),

» V.= H'(Q) — H:=L?(Q) = H — V' the Hilbert
triplet.
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» Q C R3 bdd connected domain with sufficiently E. Rocca
smooth boundary I := 0Q

» te[0,00], Qr:=Qx(0,t), s :=T x (0,1),
» V.= H'(Q) — H:=L?(Q) = H — V' the Hilbert
triplet.

Suppose moreover that

B=0B, a=0a, withj3, a:R— (—o0, +00] are proper,
convex, and lower semicontinuous

o € C3(D(B)), o" € L®(D(B)), v=>0

ke W21(0,t), k(0)>0, k=0ifk(0)=0,
rel2(Q)NLY 0, T;L2(Q)), hel>(xy,

(R(t), v) :/Qr(-,z‘)v+/rh(-,v)v|r YveV
o € H, a(up) € L'(Q), Xo € H, vXg € V, B(Xo) € L'().
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Existence result for a general «

Thm 1.Let T be a positive final time, HYPOTHESIS 1 be
satisfied with t = T, and suppose moreover that v > 0,

k(0) > 0, and there exists p < 5 such that
6(s)| < ¢5+ chmin{|s|’, [B(s)|} Vs R,

(beta)
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Existence result for a general « duste di modsl

di phase-field
Thm 1.Let T be a positive final time, HYPOTHESIS 1 be E. Rocca

satisfied with t = T, and suppose moreover that v > 0,
k(0) > 0, and there exists p < 5 such that
B(s)| < g+ cymin{|s]®,|B(s)]} VseR, (beta)

then there exists at least a couple (u, X) with the

regularity properties e
ue H'(0,T; V)N L30,T; V), x e H(0, T; H)n L=(0, T; V),
avry(u) € L(0, T; V'),

1 ay y(u) € L2(0, T; V)N C%(0, T; H)

ase of a general ox:
istence result

solving, a.e. in (0, T), the PDE system:
o(u+X)+ Au+ A(k xayr y(u)) 2 R, in V', (1)
IX 4+ vAX + B(X) + o' (X) —ay y(u) 20 in V', (2
u(0) =ug, X(0)=Xp a.e.inqQ.
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proposed by [Bonetti, Colli, Frémond, '03]

(U+X)t—A(u+kxexp(u))=r
Xt — vAX + B(X) + o' (X) — exp(u) > 0.
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> ‘a(u) = exp(u)(= V) | we recover the model
proposed by [Bonetti, Colli, Frémond, '03]

(U+X)t—A(u+ kxexp(u)) =r
Xt — vAX + B(X) + o' (X) — exp(u) > 0.
Choosing a different heat flux law q = —V(a?(u)) we

recover the model proposed by [Bonetti, Colli,
Fabrizio, Gilardi, '06]

Meaningful ov'’s

(Uu+X)t— A(exp(u) + kxexp(u)) =r
Xt — vAX + B(X) + o' (X) —exp(u) > 0
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> ‘a(u) = exp(u)(= V) | we recover the model
proposed by [Bonetti, Colli, Frémond, '03]

(U+X)t—A(u+ kxexp(u)) =r
Xt — vAX + B(X) + o' (X) — exp(u) > 0.
Choosing a different heat flux law q = —V(a?(u)) we

recover the model proposed by [Bonetti, Colli,
Fabrizio, Gilardi, '06]

Meaningful ov'’s

(Uu+X)t— A(exp(u) + kxexp(u)) =r
Xt — vAX + B(X) + o' (X) —exp(u) > 0

» a(u) = —1/u: we recover, e.g., the Penrose-Fife
system
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The existence — uniqueness result

Thm 2. Let T be a positive final time and HYPOTHESIS 1,
with t = T, hold and assume that « is a Lipschitz
continuous function.
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The existence — uniqueness result

Thm 2. Let T be a positive final time and HYPOTHESIS 1,
with t = T, hold and assume that « is a Lipschitz
continuous function. Then, there exists (u, X, £) (with

¢ € B(X) a.e.) solving| (1-2) | (a.e. in Q7) + initial
conditions and satisfying

ue Co0, T; H)n L3(0, T; V), ¢ € L?(Qr),

X e HY(0,T; H), vXel>(0,T;V)nL%0,T; H*(Q)).

Formulazione
duale di modelli
di phase-field

E. Rocca

The case «x Lipschitz
continuous



The existence — uniqueness result

Thm 2. Let T be a positive final time and HYPOTHESIS 1,
with t = T, hold and assume that « is a Lipschitz
continuous function. Then, there exists (u, X, £) (with

¢ € B(X) a.e.) solving| (1-2) | (a.e. in Q) + initial
conditions and satisfying

ue Co0, T; H)n L3(0, T; V), ¢ € L?(Qr),

X e HY(0,T; H), vXel>(0,T;V)nL%0,T; H*(Q)).

The components u and X of such a solution are uniquely
determined.
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The existence — uniqueness result duste di modsl
di phase-field
Thm 2. Let T be a positive final time and HYPOTHESIS 1, E. Rocca

with t = T, hold and assume that « is a Lipschitz
continuous function. Then, there exists (u, X, £) (with
¢ € B(X) a.e.) solving| (1-2) | (a.e. in Q) + initial
conditions and satisfying

ue Co[0, T]; H) N L2(0, T; V), ¢ e L2(Qy),

XeH'(0,T;H), vXel>(0,T;V)nL*0,T;H*(Q)).
The components u and X of such a solution are uniquely s iz
determined.

Note that in this case o y in (2) can be identified with
the standard da (defined a.e. in Q7) in the sense of
Convex Analysis.



The existence — uniqueness result

Thm 2. Let T be a positive final time and HYPOTHESIS 1,
with t = T, hold and assume that « is a Lipschitz
continuous function. Then, there exists (u, X, £) (with

¢ € B(Xx) a.e.) solving | (1-2) | (a.e. in Q7) + initial
conditions and satisfying

ue CO[0, T H)NL2(0, T; V), e L*(Qr),

X e HY(0,T; H), vXel>(0,T;V)nL%0,T; H*(Q)).
The components u and X of such a solution are uniquely
determined.

Note that in this case o y in (2) can be identified with
the standard da (defined a.e. in Q7) in the sense of
Convex Analysis.

THE PROOF IS A SUITABLE ADAPTATION OF THE ONE OF
[BONETTI, COLLI, FREMOND, 2003] HOLDING TRUE IN
CASE (0 = 8/[0,1], o' =19
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The long-time behaviour of solutions
Thm 3. Let HYPOTHESIS 1 hold and suppose that
(i) k € W'1(0,0) is of strongly positive type,

i.e. 3n > 0 such that

k() = k(t) — nexp(~t)
(i) r, hsufficiently regular.

is of positive type;
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The long-time behaviour of solutions
Thm 3. Let HYPOTHESIS 1 hold and suppose that

(i) k € W'1(0,0) is of strongly positive type,

i.e. 3n > 0 such that
k(t) := k(t) — nexp(—t) is of positive type;

(i) r, hsufficiently regular.
Then, the w-limit:
w(Up, X0, ) :={(Usos Xo) € H X H,vXoo € V : Ity — 400,

(u(tn), X(tn)) — (Uso, Xoo) In V! x (V' NvH)}

is a compact, connected subset (# () of V' x (V' NnvH)
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The long-time behaviour of solutions Formulazione
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Thm 3. Let HYPOTHESIS 1 hold and suppose that di phase-field

(i) k € W'1(0,0) is of strongly positive type, E. Rocca

i.e. 3n > 0 such that
l?(t) = k(t) —nexp(—t) is of positive type;

(i) r, hsufficiently regular.
Then, the w-limit:
w(Uo, Xo, V) :={(Uso, Xoo) € Hx H,vXoo € V: Ity — +00,

(u(tn), X(tn)) — (Uso, Xoo) In V! x (V' NVH)}  mecsse o tpsents

continuous

is a compact, connected subset (# () of V' x (V' NnvH)
and V(Uso, Xoo) € w(Ug, Xo,v), ¢ € B(Xs) such that:

2 (] )
Uso = 77 | — Xoc+co+m )
Q|< Ja

VAX oo + €oo + 0’ (Xoo) = (;2’ <— / Xoo—i—co—i—m>> :

Jo
where ¢y = [ Uo + [o Xo. M= [~ (Jq r(8) + J; h(s)) ds.
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THM 4. Fix T > 0 and assume that HYPOTHESIS 1 hold
with t = T. Suppose moreover that

(i) v > 0if D(p) is bounded and v > 0 if D(3) is
unbounded.

The case o = exp



The existence result

THM 4. Fix T > 0 and assume that HYPOTHESIS 1 hold
with f = T. Suppose moreover that

(i) v > 0if D(p) is bounded and v > 0 if D(3) is
unbounded.

Then, there exists at least a quadruple (u, ¥, X, £) such

that ¥ = a(u) = exp(uv), £ € B(X) a.e.,

ue H'(0,T; V)N L3(0,T; V), 9el53Qr),

X e H'(0,T;H), vXxel>®0,T;V)nL330, T, W?53(Q)),
¢€ L3(Qr), k(O0)(1+9)€L™(0,T;V),

satisfying | system (1-2) | a.e. in Q7 and the same initial

conditions as before.
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Long-time behaviour of solutions

Thm 5. Under the assumptions of existence and
(i) k € W'1(0, o) is of strongly positive type;
(ii) r, hsufficiently regular, v > 0;

(i) 1im iy [r[72B(r) = +o0.
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Long-time behaviour of solutions

Thm 5. Under the assumptions of existence and

(i) k € W'1(0, o) is of strongly positive type;

(ii) r, hsufficiently regular, v > 0;

(i) 1im iy F72B(r) = +00.
Let (u,X) : (0,00) — H x V be a solution on (0, +c0)
associated to (up, Xp).-
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Long-time behaviour of solutions

Thm 5. Under the assumptions of existence and
(i) k € W'1(0, o) is of strongly positive type;
(iiy r, h sufficientIyAreguIar, v>0;
(i) 1My 4o |r1725(r) = +o0.
Let (u,X) : (0,00) — H x V be a solution on (0, +c0)
associated to (up, Xp). Then, the w-limit set of a single
trajectory (u, X) defined in (0, +o0):
w(U, X)  ={(Uso, Xoo) € Hx V : Tt — 400,
(u(tn), X(tn)) — (Uso, Xoo) in V' x H}.

is @ nonempty, compact, and connected subset of V' x H.
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Long-time behaviour of solutions

Thm 5. Under the assumptions of existence and
(i) k € W'1(0, o) is of strongly positive type;
(i) r, hsufficiently regular, v > 0;
(i) iMoo 7] 725(r) = +o0.
Let (u,X) : (0,00) — H x V be a solution on (0, +c0)
associated to (up, Xp). Then, the w-limit set of a single
trajectory (u, X) defined in (0, +o0):
w(U, X) = ={(Uso, Xoo) E Hx V: Tt — +00,
(u(tn), X(tn)) — (Uso, Xoo) in V' x H}.
is @ nonempty, compact, and connected subset of V' x H.
Moreover, for any (Us, Xoo) € w(u, X) there exists

oo € 15/3(Q), €50 € B(Xso) such that (Use, Xoo, £x0) SOlVES
the corresponding stationary problem (a.e. in ).
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Long-time behaviour of solutions

Thm 5. Under the assumptions of existence and
(i) k € W'1(0, o) is of strongly positive type;
(i) r, hsufficiently regular, v > 0;
(i) iMoo 7] 725(r) = +o0.
Let (u,X) : (0,00) — H x V be a solution on (0, +c0)
associated to (up, Xp). Then, the w-limit set of a single
trajectory (u, X) defined in (0, +o0):
w(U, X) = ={(Uso, Xoo) E Hx V: Tt — +00,
(u(tn), X(tn)) — (Uso, Xoo) in V' x H}.
is @ nonempty, compact, and connected subset of V' x H.
Moreover, for any (Us, Xoo) € w(u, X) there exists
oo € 15/3(Q), €50 € B(Xso) such that (Use, Xoo, £x0) SOlVES
the corresponding stationary problem (a.e. in ).
THE CASE v, k = 0 has been studied in [Bonetti, in

“Dissipative phase transitions” (ed. P. Colli, N. Kenmochi,
J. Sprekels) (2006)]
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Convergence of the whole trajectory in special cases Formulazione
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In general, we cannot conclude that the whole trajectory SR
{(u(t),x(t)) t > 0} tends 10 (Uso, Xoo) Weakly in H x V - Rocea
and strongly in V/ x H as t — +oo. This is mainly due to

the presence of the anti-monotone term o’(X ).
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In general, we cannot conclude that the whole trajectory SR
{(u(t),x(t)) t > 0} tends 10 (Uso, Xoo) Weakly in H x V - Rocea
and strongly in V/ x H as t — +oo. This is mainly due to

the presence of the anti-monotone term o’(X ).

Indeed if

/8 = aI[071]> OI(X) = 007

then we can conclude in addition that both u,, and X,
are constants a.e. in Q

The case o = exp



Convergence of the whole trajectory in special cases

In general, we cannot conclude that the whole trajectory
{(u(t),x(t)) t > 0} tends 10 (Uso, Xoo) Weakly in H x V
and strongly in V/ x H as t — +oo. This is mainly due to
the presence of the anti-monotone term o’(X ).

Indeed if

/8 = aI[071]> UI(X) = 007

then we can conclude in addition that both u,, and X,
are constants a.e. in Q and that (Ux, Xoo) € w(u, X) is
uniquely determined by

u X +1(c+m)
0o = T Aoco Tor\to )
Q]

1
o .11(Xoo) — €Xp <_Xoo - @(Co + m)> 5 —6,,

being ¢y and m defined as before.
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Convergence of the whole trajectory in special cases Formulazione
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In general, we cannot conclude that the whole trajectory SR
{(u(t),x(t)) t > 0} tends 10 (Uso, Xoo) Weakly in H x V - Rocea
and strongly in V/ x H as t — +oo. This is mainly due to

the presence of the anti-monotone term o’(X ).

Indeed if

/8 = aI[071]> UI(X) = 007

then we can conclude in addition that both u,, and X,
are constants a.e. in Q and that (Ux, Xoo) € w(u, X) is
uniquely determined by S

u X +1(c+m)
0o = T Aoco Tor\to )
Q]

1
o .11(Xoo) — €Xp <_Xoo - @(Co + m)> 5 —6,,

being ¢y and m defined as before. In particular, the whole
trajectory (u(t), X(t)) tends to (Uso, Xoo) Weakly in H x V
and strongly in V/ x Has t — +ooc.



Related open problems
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Related open problems

e To study the convergence of the whole trajectories in
case the anti-monotone part ¢’ is present in the
phase equation:
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Related open problems

e To study the convergence of the whole trajectories in
case the anti-monotone part ¢’ is present in the
phase equation: no uniqueness of the stationary
states is expected

—VAX oo + B(Xoo) + 0" (Xoo) 2 €Xp(Uso)

by employing the Lojasiewicz technique in case of
analytical potentials 3, cf., e.g., [Feireisl,
Schimperna, to appear] — Penrose-Fife systems.
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Open problems



Related open problems

e To study the convergence of the whole trajectories in
case the anti-monotone part ¢’ is present in the
phase equation: no uniqueness of the stationary
states is expected

—VAX oo + B(Xoo) + 0" (Xoo) 2 €Xp(Uso)

by employing the Lojasiewicz technique in case of
analytical potentials 3, cf., e.g., [Feireisl,
Schimperna, to appear] — Penrose-Fife systems. Or
use other techniques, cf. [KrejCi, Zheng, 2005] —
phase-relaxation systems with non-smooth
potentials.
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Related open problems

e To study the convergence of the whole trajectories in
case the anti-monotone part ¢’ is present in the
phase equation: no uniqueness of the stationary
states is expected

—VAX oo + B(Xoo) + 0" (Xoo) 2 €Xp(Uso)

by employing the Lojasiewicz technique in case of
analytical potentials 3, cf., e.g., [Feireisl,
Schimperna, to appear] — Penrose-Fife systems. Or
use other techniques, cf. [KrejCi, Zheng, 2005] —
phase-relaxation systems with non-smooth
potentials.

e To get uniqueness in case of a general « (not
Lipschitz-continuous). Problem: the doubly-nonlinear
character of the system.
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