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The scope

The analysis of the initial boundary-value problem for the following
PDE system:

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ)) = g

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρϑ1) = f

χt + µ∂I(−∞,0](χt)−∆pχ+ W ′(χ) 3 −b′(χ)
|ε(u)|2

2
+ ϑ

which describes a thermoviscoelastic system in a reference domain
Ω ⊂ Rd , d ∈ {2, 3} during a time interval [0,T ]

I ϑ is the absolute temperature of the system

I u the vector of small displacements

I χ is the order parameter, standing for the local proportion of one
of the two phases in phase transitions (χ = 0: solid phase and
χ = 1: liquid phase, and 0 < χ < 1 in the so-called mushy regions)

I χ is the damage parameter, assessing the soundness of the material
in damage (for the completely damaged χ = 0 and the undamaged
state χ = 1, respectively, while 0 < χ < 1: partial damage)

I a and b can vanish at the threshold values 0 and 1
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The aim: deal with the possible degeneracy in the
momentum equation

Main aim: We shall let a and b vanish at the threshold values 0 and 1,
not enforce separation of χ from the threshold values 0 and 1, and
accordingly we will allow for general initial configurations of χ

=⇒ It is not to be expected that either of the coefficients a(χ) and
b(χ) stay away from 0: elliptic degeneracy of the displacement equation

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρϑ1) = f

=⇒ We shall approximate the system with a non-degenerating one,
where we replace the momentum equation with

utt − div((a(χ) + δ)ε(ut) + b(χ)ε(u)− ρϑ1) = f for δ > 0
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The first results and the new goal

[First result.] Local in time well-posedness for a suitable
formulation of the reversible problem (µ = 0 and ρ = 0) using in

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ)) = g+|χt |2 + a(χ)|ε(ut)|2 .

the small perturbations assumption in the 3D (in space) setting [J.
Differential Equations, 2008]

[Second result.] Global well-posedness in the 1D case without small
perturbations assumption [Appl. Math., Special Volume (2008)]

Note: in both these results we assumed χ0 separated from the
thresholds 0 and 1 and we prove (exploiting a sufficient coercivity
condition on W at the thresholds 0 and 1) that the solution χ during
the evolution continues to stay separated from 0 and 1 =⇒ prevent
degeneracy (the operators are uniformly elliptic)

The goal (joint work in progress with R. Rossi): to establish a global
existence result in 3D using a suitable notion of solution and without
enforcing the separation property, i.e. allowing for degeneracy
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Free energy and Dissipation, cf. [Frémond]

The free-energy F :

F =

∫
Ω

(
f (ϑ) + b(χ)

|ε(u)|2

2
+

1

p
|∇χ|p + W (χ) + ρϑtr(ε(u))− ϑχ

)
dx

I f is a concave function, ρ ∈ R a thermal expansion coefficient

I b ∈ C 2(R; [0,+∞)), e.g., b(χ) = 1− χ in phase transitions,
b(χ) = χ in damage

I p > d : we need the embedding of W 1,p(Ω) into C 0(Ω)

I W = β̂ + γ̂, γ̂ ∈ C 2(R), β̂ proper, convex, l.s.c., dom(β̂) = [0, 1]

The pseudo-potential P:

P =
k(ϑ)

2
|∇ϑ|2 +

1

2
|χt |2 + a(χ)

|ε(ut)|2

2
+ µI(−∞,0](χt)

I k the heat conductivity: coupled conditions with the specific heat
c(ϑ) = f (ϑ)− ϑf ′(ϑ)

I a ∈ C 1(R; [0,+∞)), e.g., a(χ) = χ

I µ = 0: reversible case, µ = 1: irreversible case
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The modelling

The momentum equation

utt − div σ = f
(
σ = σnd + σd = ∂F

∂ε(u)
+ ∂P
∂ε(ut )

)
becomes

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρϑ1) = f

The phase evolution

B − div H = 0
(
B = ∂F

∂χ + ∂P
∂χt

,H = ∂F
∂∇χ

)
becomes

χt + µ∂I(−∞,0](χt)−∆pχ+ W ′(χ) 3 −b′(χ) |ε(u)|2
2

+ ϑ

The internal energy balance

et + div q = g + σ : ε(ut) + Bχt + H · ∇χt

(
e = F − ϑ ∂F

∂ϑ
, q = ∂P

∂∇ϑ

)
becomes

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ)) = g+|χt |2 + a(χ)|ε(ut)|2



Phase Transitions and
Damage

E. Rocca

The model

The analysis

Main new results

Hypotheses

The non-degenerate
case

The degenerating
case

The modelling

The momentum equation

utt − div σ = f
(
σ = σnd + σd = ∂F

∂ε(u)
+ ∂P
∂ε(ut )

)
becomes

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρϑ1) = f

The phase evolution

B − div H = 0
(
B = ∂F

∂χ + ∂P
∂χt

,H = ∂F
∂∇χ

)
becomes

χt + µ∂I(−∞,0](χt)−∆pχ+ W ′(χ) 3 −b′(χ) |ε(u)|2
2

+ ϑ

The internal energy balance

et + div q = g + σ : ε(ut) + Bχt + H · ∇χt

(
e = F − ϑ ∂F

∂ϑ
, q = ∂P

∂∇ϑ

)
becomes

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ)) = g+|χt |2 + a(χ)|ε(ut)|2



Phase Transitions and
Damage

E. Rocca

The model

The analysis

Main new results

Hypotheses

The non-degenerate
case

The degenerating
case

The modelling

The momentum equation

utt − div σ = f
(
σ = σnd + σd = ∂F

∂ε(u)
+ ∂P
∂ε(ut )

)
becomes

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρϑ1) = f

The phase evolution

B − div H = 0
(
B = ∂F

∂χ + ∂P
∂χt

,H = ∂F
∂∇χ

)
becomes

χt + µ∂I(−∞,0](χt)−∆pχ+ W ′(χ) 3 −b′(χ) |ε(u)|2
2

+ ϑ

The internal energy balance

et + div q = g + σ : ε(ut) + Bχt + H · ∇χt

(
e = F − ϑ ∂F

∂ϑ
, q = ∂P

∂∇ϑ

)
becomes

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ)) = g+|χt |2 + a(χ)|ε(ut)|2



Phase Transitions and
Damage

E. Rocca

The model

The analysis

Main new results

Hypotheses

The non-degenerate
case

The degenerating
case

The analysis



Phase Transitions and
Damage

E. Rocca

The model

The analysis

Main new results

Hypotheses

The non-degenerate
case

The degenerating
case

Main mathematical difficulties

1) the elliptic degeneracy of the momentum equation

utt − div(a(χ)ε(ut) + b(χ)ε(u)− ρϑ1) = f

a(χ) and b(χ) can tend to zero simultaneously

2) the highly nonlinear coupling between the single equations: in the
heat equation (even with the small perturbation assumption)

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ)) = g

and in the phase equation

χt + µ∂I(−∞,0](χt)−∆pχ+ ∂β̂(χ) + (γ̂)′(χ) 3 −b′(χ) |ε(u)|2
2

+ ϑ

3) the low regularity of the temperature variable: difficulties in dealing
with the coupling between ϑ and u equations in case ρ 6= 0

4) the doubly nonlinear character of the phase equation:

I the nonsmooth graph ∂β̂,
I the nonlinear p-Laplacian operator −∆pχ (however regularizing)
I the non-smooth constraint ∂I(−∞,0](χt) in the irreversible case
µ = 1
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Main results

I We replace the momentum equation with a non-degenerating one

utt − div((a(χ) + δ)ε(ut) + b(χ)ε(u)− ρϑ1) = f, δ > 0 (1)

I Our first result states the existence of solutions to the non-degenerating
system in the reversible case, i.e. with µ = 0 in

χt + µ∂I(−∞,0](χt)−∆pχ+ W ′(χ) 3 −b′(χ)
|ε(u)|2

2
+ ϑ (2)

I In the irreversible case (µ = 1) a major difficulty stems from the
simultaneous presence in (2) of ∂I(−∞,0](χt), W ′(χ), and −∆pχ. We

follow the approach of [Heinemann, Kraus, 2010] and consider a suitable
weak formulation of (2) consisting of a one-sided variational inequality
and of an energy inequality

I For the analysis of the degenerate limit δ ↘ 0 we have carefully adapted
techniques from [Bouchitté, Mielke, Roub́ıček, 2009] and [Mielke,
Roub́ıček, Zeman, 2011] to the case of a rate-dependent equation for χ,
also coupled with the temperature equation
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Energy vs Enthalpy

In order to deal with the low regularity of ϑ, rewrite the internal energy
equation

c(ϑ)ϑt + χtϑ− ρϑ div ut − div(k(ϑ)∇ϑ)) = g

as the enthalpy equation

wt + χtΘ(w)− ρΘ(w) div ut− div(K(w)∇w)) = g where

w = h(ϑ) :=

∫ ϑ

0
c(s) ds, Θ(w) :=

{
h−1(w) if w ≥ 0,

0 if w < 0,
K(w) :=

k(Θ(w))

c(Θ(w))

We assume that

I c ∈ C 0([0,+∞); [0,+∞))

I ∃σ1 ≥ σ > 2d
d+2

: c0(1+ϑ)σ−1 ≤ c(ϑ) ≤ c1(1+ϑ)σ1−1 =⇒ h is
strictly increasing

Assume moreover
[If ρ = 0:] the function k : [0,+∞)→ [0,+∞) is continuous, and

∃c2, c3 > 0 ∀ϑ ∈ [0,+∞) : c2c(ϑ) ≤ k(ϑ) ≤ c3(c(ϑ) + 1)

[If ρ 6= 0:] ∃cρ > 0 ∃q > d+2
2d

: K(w) = cρ
(
|w |2q + 1

)
∀w ∈ [0,+∞)
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The approximating non-degenerate Problem [Pδ]

Given δ > 0, µ ∈ {0, 1}, find (measurable) functions

w ∈ Lr (0,T ; W 1,r (Ω)) ∩ L∞(0,T ; L1(Ω)) ∩ BV([0,T ]; W 1,r′ (Ω)∗)

u ∈ H1(0,T ; H2(Ω; Rd )) ∩W 1,∞(0,T ; H1
0 (Ω)) ∩ H2(0,T ; L2(Ω; Rd ))

χ ∈ L∞(0,T ; W 1,p(Ω)) ∩ H1(0,T ; L2(Ω))

for every 1 ≤ r < d+2
d+1

, fulfilling the initial conditions

u(0, x) = u0(x), ut(0, x) = v0(x) for a.e. x ∈ Ω

χ(0, x) = χ0(x) for a.e. x ∈ Ω

the equations (for every ϕ ∈ C0([0,T ]; W 1,r′ (Ω)) ∩W 1,r′ (0,T ; Lr′ (Ω)) and
t ∈ (0,T ])∫

Ω
ϕ(t) w(t)(dx)−

∫ t

0

∫
Ω

wϕt dx +

∫ t

0

∫
Ω

χtΘ(w)ϕdx

− ρ
∫ t

0

∫
Ω

divutΘ(w)ϕ dx +

∫ t

0

∫
Ω

K(w)∇w∇ϕdx =

∫ t

0

∫
Ω

gϕ+

∫
Ω

w0ϕ(0) dx

utt − div ((a(χ) + δ)ε(ut) + b(χ)ε(u))− ρ∇Θ(w) = f in H−1(Ω; Rd ) a.e. in (0,T )

and the subdifferential inclusion (in W 1,p(Ω)∗ and a.e. in (0,T ))

χt + µ∂I(−∞,0](χt)−∆pχ+ β(χ) + γ(χ) 3 −b′(χ)
|ε(u)|2

2
+ Θ(w)
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Theorem 1 [The reversible case µ = 0]

Let µ = 0 and ρ = 0, assume the previous Hypotheses and the
conditions:

f ∈ L2(0,T ; L2(Ω)), g ∈ L1(0,T ; L1(Ω)) ∩ L2(0,T ; H1(Ω)′)

ϑ0 ∈ Lσ1 (Ω) whence w0 := h(ϑ0) ∈ L1(Ω)

u0 ∈ H2
0 (Ω), v0 ∈ H1

0 (Ω) χ0 ∈ dom(∆p), β̂(χ0) ∈ L1(Ω)

Then,

1. Problem [Pδ] admits a solution (w , u, χ), such that there exists

ξ ∈ L2(0,T ; L2(Ω)), ξ(x , t) ∈ β(χ(x , t)) for a.e. (x , t) ∈ Ω× (0,T ) :

χt −∆pχ+ ξ + γ(χ) = −b′(χ)
|ε(u)|2

2
+ Θ(w) a.e. in Ω× (0,T )

2. Suppose that g(x , t) ≥ 0 a.e. Then, w ≥ 0 a.e., hence
ϑ(x , t) := Θ(w(x , t)) ≥ 0 a.e.

3. In case ρ 6= 0, w0 ∈ L2(Ω), and K(w) = cρ
(
|w |2q + 1

)
,

q > (d + 2)/2d . Then, w has the further regularity

w ∈ L2(0,T ; H1(Ω))∩L∞(0,T ; L2(Ω))∩W 1,r(q)((0,T ); W 2,−s(q)(Ω))



Phase Transitions and
Damage

E. Rocca

The model

The analysis

Main new results

Hypotheses

The non-degenerate
case

The degenerating
case

Theorem 1 [The reversible case µ = 0]

Let µ = 0 and ρ = 0, assume the previous Hypotheses and the
conditions:

f ∈ L2(0,T ; L2(Ω)), g ∈ L1(0,T ; L1(Ω)) ∩ L2(0,T ; H1(Ω)′)

ϑ0 ∈ Lσ1 (Ω) whence w0 := h(ϑ0) ∈ L1(Ω)

u0 ∈ H2
0 (Ω), v0 ∈ H1

0 (Ω) χ0 ∈ dom(∆p), β̂(χ0) ∈ L1(Ω)

Then,

1. Problem [Pδ] admits a solution (w , u, χ), such that there exists

ξ ∈ L2(0,T ; L2(Ω)), ξ(x , t) ∈ β(χ(x , t)) for a.e. (x , t) ∈ Ω× (0,T ) :

χt −∆pχ+ ξ + γ(χ) = −b′(χ)
|ε(u)|2

2
+ Θ(w) a.e. in Ω× (0,T )

2. Suppose that g(x , t) ≥ 0 a.e. Then, w ≥ 0 a.e., hence
ϑ(x , t) := Θ(w(x , t)) ≥ 0 a.e.

3. In case ρ 6= 0, w0 ∈ L2(Ω), and K(w) = cρ
(
|w |2q + 1

)
,

q > (d + 2)/2d . Then, w has the further regularity

w ∈ L2(0,T ; H1(Ω))∩L∞(0,T ; L2(Ω))∩W 1,r(q)((0,T ); W 2,−s(q)(Ω))



Phase Transitions and
Damage

E. Rocca

The model

The analysis

Main new results

Hypotheses

The non-degenerate
case

The degenerating
case

Theorem 1 [The reversible case µ = 0]

Let µ = 0 and ρ = 0, assume the previous Hypotheses and the
conditions:

f ∈ L2(0,T ; L2(Ω)), g ∈ L1(0,T ; L1(Ω)) ∩ L2(0,T ; H1(Ω)′)

ϑ0 ∈ Lσ1 (Ω) whence w0 := h(ϑ0) ∈ L1(Ω)

u0 ∈ H2
0 (Ω), v0 ∈ H1

0 (Ω) χ0 ∈ dom(∆p), β̂(χ0) ∈ L1(Ω)

Then,

1. Problem [Pδ] admits a solution (w , u, χ), such that there exists

ξ ∈ L2(0,T ; L2(Ω)), ξ(x , t) ∈ β(χ(x , t)) for a.e. (x , t) ∈ Ω× (0,T ) :

χt −∆pχ+ ξ + γ(χ) = −b′(χ)
|ε(u)|2

2
+ Θ(w) a.e. in Ω× (0,T )

2. Suppose that g(x , t) ≥ 0 a.e. Then, w ≥ 0 a.e., hence
ϑ(x , t) := Θ(w(x , t)) ≥ 0 a.e.

3. In case ρ 6= 0, w0 ∈ L2(Ω), and K(w) = cρ
(
|w |2q + 1

)
,

q > (d + 2)/2d . Then, w has the further regularity

w ∈ L2(0,T ; H1(Ω))∩L∞(0,T ; L2(Ω))∩W 1,r(q)((0,T ); W 2,−s(q)(Ω))



Phase Transitions and
Damage

E. Rocca

The model

The analysis

Main new results

Hypotheses

The non-degenerate
case

The degenerating
case

Theorem 1 [The reversible case µ = 0]

Let µ = 0 and ρ = 0, assume the previous Hypotheses and the
conditions:

f ∈ L2(0,T ; L2(Ω)), g ∈ L1(0,T ; L1(Ω)) ∩ L2(0,T ; H1(Ω)′)

ϑ0 ∈ Lσ1 (Ω) whence w0 := h(ϑ0) ∈ L1(Ω)

u0 ∈ H2
0 (Ω), v0 ∈ H1

0 (Ω) χ0 ∈ dom(∆p), β̂(χ0) ∈ L1(Ω)

Then,

1. Problem [Pδ] admits a solution (w , u, χ), such that there exists

ξ ∈ L2(0,T ; L2(Ω)), ξ(x , t) ∈ β(χ(x , t)) for a.e. (x , t) ∈ Ω× (0,T ) :

χt −∆pχ+ ξ + γ(χ) = −b′(χ)
|ε(u)|2

2
+ Θ(w) a.e. in Ω× (0,T )

2. Suppose that g(x , t) ≥ 0 a.e. Then, w ≥ 0 a.e., hence
ϑ(x , t) := Θ(w(x , t)) ≥ 0 a.e.

3. In case ρ 6= 0, w0 ∈ L2(Ω), and K(w) = cρ
(
|w |2q + 1

)
,

q > (d + 2)/2d . Then, w has the further regularity

w ∈ L2(0,T ; H1(Ω))∩L∞(0,T ; L2(Ω))∩W 1,r(q)((0,T ); W 2,−s(q)(Ω))



Phase Transitions and
Damage

E. Rocca

The model

The analysis

Main new results

Hypotheses

The non-degenerate
case

The degenerating
case

Theorem 1 [The reversible case µ = 0]

Let µ = 0 and ρ = 0, assume the previous Hypotheses and the
conditions:

f ∈ L2(0,T ; L2(Ω)), g ∈ L1(0,T ; L1(Ω)) ∩ L2(0,T ; H1(Ω)′)

ϑ0 ∈ Lσ1 (Ω) whence w0 := h(ϑ0) ∈ L1(Ω)

u0 ∈ H2
0 (Ω), v0 ∈ H1

0 (Ω) χ0 ∈ dom(∆p), β̂(χ0) ∈ L1(Ω)

Then,

1. Problem [Pδ] admits a solution (w , u, χ), such that there exists

ξ ∈ L2(0,T ; L2(Ω)), ξ(x , t) ∈ β(χ(x , t)) for a.e. (x , t) ∈ Ω× (0,T ) :

χt −∆pχ+ ξ + γ(χ) = −b′(χ)
|ε(u)|2

2
+ Θ(w) a.e. in Ω× (0,T )

2. Suppose that g(x , t) ≥ 0 a.e. Then, w ≥ 0 a.e., hence
ϑ(x , t) := Θ(w(x , t)) ≥ 0 a.e.

3. In case ρ 6= 0, w0 ∈ L2(Ω), and K(w) = cρ
(
|w |2q + 1

)
,

q > (d + 2)/2d .

Then, w has the further regularity

w ∈ L2(0,T ; H1(Ω))∩L∞(0,T ; L2(Ω))∩W 1,r(q)((0,T ); W 2,−s(q)(Ω))



Phase Transitions and
Damage

E. Rocca

The model

The analysis

Main new results

Hypotheses

The non-degenerate
case

The degenerating
case

Theorem 1 [The reversible case µ = 0]

Let µ = 0 and ρ = 0, assume the previous Hypotheses and the
conditions:

f ∈ L2(0,T ; L2(Ω)), g ∈ L1(0,T ; L1(Ω)) ∩ L2(0,T ; H1(Ω)′)

ϑ0 ∈ Lσ1 (Ω) whence w0 := h(ϑ0) ∈ L1(Ω)

u0 ∈ H2
0 (Ω), v0 ∈ H1

0 (Ω) χ0 ∈ dom(∆p), β̂(χ0) ∈ L1(Ω)

Then,

1. Problem [Pδ] admits a solution (w , u, χ), such that there exists

ξ ∈ L2(0,T ; L2(Ω)), ξ(x , t) ∈ β(χ(x , t)) for a.e. (x , t) ∈ Ω× (0,T ) :

χt −∆pχ+ ξ + γ(χ) = −b′(χ)
|ε(u)|2

2
+ Θ(w) a.e. in Ω× (0,T )

2. Suppose that g(x , t) ≥ 0 a.e. Then, w ≥ 0 a.e., hence
ϑ(x , t) := Θ(w(x , t)) ≥ 0 a.e.

3. In case ρ 6= 0, w0 ∈ L2(Ω), and K(w) = cρ
(
|w |2q + 1

)
,

q > (d + 2)/2d . Then, w has the further regularity

w ∈ L2(0,T ; H1(Ω))∩L∞(0,T ; L2(Ω))∩W 1,r(q)((0,T ); W 2,−s(q)(Ω))



Phase Transitions and
Damage

E. Rocca

The model

The analysis

Main new results

Hypotheses

The non-degenerate
case

The degenerating
case

Theorem 2 [The irreversible case µ = 1]

Let µ = 1, ρ = 0, and take the previous assumptions with β̂ = I[0,+∞). Then,

[1.] Problem [Pδ] admits a weak solution (w , u, χ), which, beside fulfilling the
enthalpy and momentum equations, satisfies χt(x , t) ≤ 0 for almost all

t ∈ (0,T ), and (∀ϕ ∈ Lp(0,T ; W 1,p
− (Ω)) ∩ L∞(Q)) the one-sided inequality∫ T

0

∫
Ω

χtϕ+ |∇χ|p−2∇χ · ∇ϕ+ ξϕ+ γ(χ)ϕ+ b′(χ)
|ε(u)|2

2
ϕ−Θ(w)ϕ ≥ 0

with ξ ∈ ∂I[0,+∞)(χ) in the following sense:

ξ ∈ L1(0,T ; L1(Ω)), 〈ξ(t), ϕ− χ(t)〉W 1,p(Ω) ≤ 0 ∀ϕ ∈W 1,p
+ (Ω), a.e. t ∈ (0,T )

and the energy inequality for all t ∈ (0,T ], for s = 0, and for almost all
0 < s ≤ t:∫ t

s

∫
Ω
|χt |2 dx dr +

1

p
|∇χ(t)|p +

∫
Ω

W (χ(t)) dx

≤
1

p
|∇χ(s)|p +

∫
Ω

W (χ(s)) dx +

∫ t

s

∫
Ω

χt

(
−b′(χ)

|ε(u)|2

2
+ Θ(w)

)
dx dr

[2.] Suppose in addition that g(x , t) ≥ 0, ϑ0 > ϑ0 ≥ 0 a.e. Then

ϑ(x , t) := Θ(w(x , t)) ≥ ϑ0 ≥ 0 a.e.

[3.] In case ρ 6= 0 an analogous statement to the reversible case holds true
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+ (Ω), a.e. t ∈ (0,T )

and the energy inequality for all t ∈ (0,T ], for s = 0, and for almost all
0 < s ≤ t:∫ t

s

∫
Ω
|χt |2 dx dr +

1

p
|∇χ(t)|p +

∫
Ω

W (χ(t)) dx

≤
1

p
|∇χ(s)|p +

∫
Ω

W (χ(s)) dx +

∫ t

s

∫
Ω

χt

(
−b′(χ)

|ε(u)|2

2
+ Θ(w)

)
dx dr

[2.] Suppose in addition that g(x , t) ≥ 0, ϑ0 > ϑ0 ≥ 0 a.e. Then

ϑ(x , t) := Θ(w(x , t)) ≥ ϑ0 ≥ 0 a.e.

[3.] In case ρ 6= 0 an analogous statement to the reversible case holds true
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Let ρ ∈ R. In addition to the previous hypotheses, assume that

the function a is constant

Then, the isothermal reversible system admits a unique solution (u, χ)
which continuously depends on the data

Uniqueness of solutions for the irreversible system, even in the
isothermal case, is still an open problem. This is mainly due to the
triply nonlinear character of the χ equation.
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The techniques used in the proof

I We pass to the limit in a carefully designed time-discretization
scheme

I A key role is played by
I the presence of the p-Laplacian with p > d =⇒ an estimate for χ

in L∞(0,T ; W 1,p(Ω)) =⇒ a suitable regularity estimate on the
displacement variable u =⇒ a global-in-time bound on the
quadratic nonlinearity |ε(u)|2 on the right-hand side of

χt + µ∂I(−∞,0](χt)−∆pχ+ W ′(χ) 3 −b′(χ)
|ε(u)|2

2
+ ϑ

I the Boccardo-Gallouët-type estimates combined with the
Gagliardo-Nirenberg inequality applied to the enthalpy equation in
order to obtain an Lr (0,T ; W 1,r (Ω))-estimate on the enthalpy w
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Consider the irreversible case with the s−Laplacian (the previous results
still hold true in this case), ρ = 0, and a(χ) = χ, b(χ) = χ+ δ:

∫
Ω

ϕ(t) w(t)(dx)−
∫ t

0

∫
Ω

wϕt dx +

∫ t

0

∫
Ω

χtΘ(w)ϕ dx

+

∫ t

0

∫
Ω

K(w)∇w∇ϕdx =

∫ t

0

∫
Ω

gϕ+

∫
Ω

w0ϕ(0) dx ,

utt − div ((χ+ δ)ε(ut) + (χ+ δ)ε(u)) = f in H−1(Ω; Rd) a.e. in (0,T )

and the subdifferential inclusion (in W 1,p(Ω)∗ and a.e. in (0,T ))

χt +∂I(−∞,0](χt) + As(χ) +∂I[0,+∞)(χ) +γ(χ) 3 −b′(χ)
|ε(u)|2

2
+ Θ(w)

where

As : Hs(Ω)→ Hs(Ω)∗ with s >
d

2
, 〈Asχ,w〉Hs (Ω) := as(χ,w) and

as(z1, z2) :=

∫
Ω

∫
Ω

(
∇z1(x)−∇z1(y)

)
·
(
∇z2(x)−∇z2(y)

)
|x − y |d+2(s−1)

dx dy
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Rewrite the momentum equation

∂2
t uδ − div((χ+ δ)ε(∂tuδ))− div((χ+ δ)ε(uδ)) = f

using the new variables (quasi-stresses) µδ :=
√
χδ + δ ε(∂tuδ), and

ηδ :=
√
χδ + δ ε(uδ):

∂2
t uδ − div(

√
χ+ δµδ)− div(

√
χ+ δ ηδ) = f

The total energy inequality for (wδ, uδ, χδ) is∫
Ω

wδ(t)(dx) +
1

2

∫
Ω
|∂tuδ(t)|2 dx +

∫ t

s

∫
Ω
|∂tχδ|2 dx +

1

2

∫ t

s
|µδ(r)|2

+
|ηδ(t)|2

2
+

1

2
as(χδ(t), χδ(t)) +

∫
Ω

W (χδ(t)) dx

≤
∫

Ω
wδ(s)(dx) +

1

2

∫
Ω
|∂tuδ(s)|2 dx +

|ηδ(s)|2

2
+

1

2
as(χδ(s), χδ(s))

+

∫
Ω

W (χδ(s)) dx +

∫ t

s

∫
Ω

f · ∂tuδ dx +

∫ t

s

∫
Ω

g dx
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Theorem 3 [The degenerate case]
Under the previous assumptions, there exist

u ∈W 1,∞(0,T ; L2(Ω)) ∩ H2(0,T ; H−1(Ω)), µ ∈ L2(0,T ; L2(Ω)), η ∈ L∞(0,T ; L2(Ω)),

w ∈ Lr (0,T ; W 1,r (Ω)) ∩ L∞(0,T ; L1(Ω)) ∩ BV([0,T ]; W 1,r′ (Ω)∗)

χ ∈ L∞(0,T ; Hs(Ω)) ∩ H1(0,T ; L2(Ω)), χ(x , t) ≥ 0, χt(x , t) ≤ 0 a.e.

such that

it holds true (a.e. in any open set A ⊂ Ω× (0,T ): χ > 0 a.e. in A)

µ =
√
χ ε(ut), η =

√
χ ε(u) ,

the weak enthalpy equation and the weak momentum and phase relations

∂2
t u− div(

√
χµ)− div(

√
χη)) = f in H−1(Ω; Rd ), a.e. in (0,T ) ,∫ T

0

∫
Ω

(∂tχ+ γ(χ))ϕ dx +

∫ T

0
as(χ, ϕ) ≤

∫ T

0

∫
Ω

(
−

1

2χ
|η|2 + Θ(w)

)
ϕ dx

for all ϕ ∈ L2(0,T ; W s,2
+ (Ω)) ∩ L∞(Q) with supp(ϕ) ⊂ {χ > 0},

together with the total energy inequality (for almost all t ∈ (0,T ])∫
Ω

w(t)(dx) +

∫ t

0

∫
Ω
|χt |2 dx +

1

2

∫ t

0
|µ(r)|2 +

∫
Ω

W (χ(t)) dx + J (t)

=

∫
Ω

w0 dx +
1

2

∫
Ω
|v0|2 dx +

1

2
b(χ0)|ε(u0)|2 +

1

2
as(χ0, χ0) +

∫
Ω

W (χ0) dx

+

∫ t

0

∫
Ω

f · ut dxdr +

∫ t

0

∫
Ω

g dx with∫ t

0
J (r) dr ≥

1

2

∫ t

0

(∫
Ω
|ut(r)|2 dx + |η(r)|2 + as(χ(r), χ(r))

)
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g dx with∫ t

0
J (r) dr ≥

1

2

∫ t

0

(∫
Ω
|ut(r)|2 dx + |η(r)|2 + as(χ(r), χ(r))
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Theorem 3 [The degenerate case]
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√
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√
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√
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∫
Ω

(
−

1

2χ
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ϕ dx
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A comparison between the solution notions

Weak solution to the degenerating irreversible full system ⇐⇒ weak
solution to the non-degenerating irreversible full system in the case of
the s−Laplacian

Suppose that the solution is more regular and χ > 0 a.e. Then

µ =
√
χ ε(ut), η =

√
χ ε(u) a.e. in Ω× (0,T )

Hence∫ T

0

∫
Ω

(∂tχ+ γ(χ))ϕ dx +

∫ T

0
as(χ, ϕ) ≤

∫ T

0

∫
Ω

(
−

1

2χ
|η|2 + Θ(w)

)
ϕ dx

for all ϕ ∈ L2(0,T ; W s,2
+ (Ω)) ∩ L∞(Q) with supp(ϕ) ⊂ {χ > 0},

coincides with∫ T

0

∫
Ω

χtϕ+ |∇χ|p−2∇χ · ∇ϕ+ ξϕ+ γ(χ)ϕ+
|ε(u)|2

2
ϕ−Θ(w)ϕ ≥ 0

Subtracting from the degenerate energy inequality the weak enthalpy equation
tested by 1, we recover (a.e. in (0,T ]):∫ t

0

∫
Ω
|χt |2 dx dr + ‖χ(t)‖2

Hs (Ω) +

∫
Ω

W (χ(t)) dx

≤ ‖χ0‖2
Hs (Ω) +

∫
Ω

W (χ0) dx +

∫ t

0

∫
Ω

χt

(
−
|ε(u)|2

2
+ Θ(w)

)
dx dr
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Remarks

The proof of Theorem 3 strongly relies on the following properties:

1. the compact embedding of Hs(Ω) into C0(Ω);

2. the fact that the s-Laplacian operator is linear: if instead we had
stayed with the p-Laplacian operator, we would have not been able
to pass to the limit in the nonlinear term |∇χδ|p−2∇χδ∇ζ
featuring in the χ-inequality in place of as(χδ, ζ);

3. the fact that t 7→ χδ(t, x) is nonincreasing for all x ∈ Ω, which
follows from the irreversibility constraint;

4. the fact that we neglige the thermal expansion, i.e. we take ρ = 0,
is due to the low regularity estimates we have on div ut for δ = 0,
which does not allow to pass to the limit in ρ div(ut)Θ(w) when
δ ↘ 0

These are the reasons why we have restricted the analysis of the
degenerate limit to the irreversible system, with the nonlocal
s-Laplacian operator.
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