Elisabetta
Rocca
- List of publications
WARNING:
The electronic files
included here
are the preprint versions
and
NOT the final published
ones.
updated to April 29, 2024
Pubblished
papers on International Journals and on Scientific
Volumes
109. P. Colli, G.Gilardi, G. Marinoschi, E. Rocca,
Optimal
control of a reaction-diffusion model related to the
spread of COVID-19,
Anal. Appl. (Singap.) 22, 111--136 (2024).
108. A. Agosti, E. Rocca, L. Scarpa,
Strict
separation and numerical approximation for a non–local
Cahn–Hilliard equation with single–well potential,
Discrete and Continuous Dynamical Systems - Series S, 16,
3573--3605 (2023).
107. G. Gilardi, E. Rocca, A. Signori,
Well-posedness
and optimal control for a viscous Cahn–Hilliard–Oono
system with dynamic boundary conditions,
Discrete and Continuous Dynamical Systems - Series S, 16,
3573--3605 (2023).
106. A. Agosti, P. Colli, H. Garcke, E. Rocca, A Cahn-Hilliard phase field model coupled to an Allen-Cahn model of viscoelasticity at large strains, Nonlinearity, 36, 6589 (2023).
105. F. Auricchio, P. Colli, G. Gilardi, A. Reali, E. Rocca, Well-posedness for a diffusion-reaction compartmental model simulating the spread of COVID-19, Math. Methods Appl. Sci., 46, 12529--12548 (2023).
104. A. Agosti, P. Colli, H. Garcke, E. Rocca, A Cahn-Hilliard model coupled to viscoelasticity with large deformations, Commun. Math. Sci., 21, 2083--2130 (2023).
103. E. Rocca, G. Schimperna, A. Signori, On a Cahn-Hilliard-Keller model with generalized logistic source describing tumor growth, J. Differential Equations, 343, 530--578 (2023).
102. A. Aspri, E. Beretta, C. Cavaterra, E. Rocca, M. Verani,
Identification of cavities and inclusions in linear
elasticity with a phase-field approach, Appl. Math. Optim., 86, 41 pp. (2022).
101. R. Lasarzik, E. Rocca, G. Schimperna,
Weak solutions and weak-strong uniqueness for a
thermodynamically consistent phase-field model, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 33, 229--269 (2022).
100. P. Colli, G. Gilardi, E. Rocca, J. Sprekels, Well-posedness and optimal control for a Cahn-Hilliard-Oono system with control in the mass term, DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS SERIES S, 15, 2135-- (2022).
99. P. Krejci, E. Rocca, J. Sprekels, Analysis of a tumor model as a multicomponent deformable porous medium, Interfaces Free Bound., 24, 235--262 (2022).
98. T. Biswas, E. Rocca, Long time dynamics of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects, Discrete Contin. Dyn. Syst. Ser. B, 27, 2455--2469 (2022).
97. A. Giorgini, K.-F. Lam, E. Rocca, G. Schimperna, On the Existence of Strong Solutions to the Cahn-Hilliard-Darcy system with mass source, SIAM J. Math. Anal., 54, 737--767(2022).
96. E. Rocca, L. Scarpa, A. Signori, Parameter identification for nonlocal phase field models for tumor growth via optimal control and asymptotic analysis, Math. Models Methods Appl. Sci., 31 (2021), 2643--2694.
95. P. Colli, H. Gomez, G. Lorenzo, G. Marinoschi, A. Reali, E. Rocca, Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth Math. Models Methods Appl. Sci., 31 (2021), 1419--1468.
94. M. Marino, F. Auricchio, A. Reali, E. Rocca, U. Stefanelli, Mixed variational formulations for structural topology optimization based on the phase-field approach, Struct. Multidisc. Optim., 64, 2627--2652 (2021).
93. A. Perrillat-Mercerot, A. Miranville, A. Agosti, E. Rocca, P. Ciarletta, R. Guillevin, Partial differential model of lactate neuro-energetics: analytic results and numerical simulations,
Math Med Biol (2021), doi: 10.1093/imammb/dqaa016.
92. M. Carraturo, E. Rocca, E. Bonetti, D. Hoemberg,
A. Reali, A. Auricchio,
A
phase-field-based graded-material topology optimization
with stress constraint,
Math. Models Methods Appl. Sci., 30 (2020), 1461--1483.
91. C. Orrieri, L. Scarpa, E. Rocca,
Optimal
control of stochastic phase-field models related to tumor
growth,
ESAIM: COCV, 26 (2020) 104.
90. P. Colli, H. Gomez, G. Lorenzo, G. Marinoschi, A. Reali,
E. Rocca,
Mathematical
analysis and simulation study of a phase-field model of
prostate cancer growth
with chemotherapy and antiangiogenic therapy effects,
Math. Models Methods Appl. Sci., 30 (2020), 1253--1295.
89. M. Carraturo, E. Rocca, E. Bonetti, D. Hoemberg, A.
Reali, F. Auricchio,
Graded-material
design based on phase-field and topology optimization,
Computational Mechanics, 64 (2019), 1589--1600.
88. A. Miranville, E. Rocca, G. Schimperna,
On the long time behavior of a tumor
growth model,
Journal of Differential Equations, 67 (2019),
261--2642.
87. C. Cavaterra, E. Rocca, H. Wu,
Long-time Dynamics and Optimal Control of
a Diffuse Interface Model for Tumor Growth,
Applied Mathematics & Optimization,
DOI: 10.1007/s00245-019-09562-5 (2019).
86. P. Colli, G. Gilardi, G. Marinoschi, E. Rocca,
Sliding mode control for phase field
system related to tumor growth,
Appl. Math. Optim., 79 (2019), 647--670.
85. H. Garcke, K.-F. Lam, E. Rocca,
Optimal control of treatment time in a
diffuse interface model of tumor growth,
Appl. Math. Optim., 78 (2018), 495--544.
84. P. Colli, G. Gilardi, G. Marinoschi, E. Rocca,
Distributed optimal control problems for
phase field systems with singular potential,
Analele Stiintifice ale Universitatii Ovidius Constanta.
Seria Matematica, 26 (2018), 71--85.
83. S. Frigeri, K.-F. Lam, E. Rocca, G. Schimperna,
On a multi-species Cahn-Hilliard-Darcy
tumor growth model with singular potentials,
Comm Math Sci., 16 (2018), 821--856.
82. E. Feireisl, E. Rocca, G. Schimperna, A. Zarnescu,
On a hyperbolic system arising in liquid
crystals modeling,
Journal of Hyperbolic Differential Equations, 15 (2018),
15--35.
81. B. Detmann, P. Krejci Pavel, E. Rocca
Periodic waves in unsaturated porous
media with hysteresis,
in Proceedings of the European Congress of Mathematics,
Berlin, 18.7.2016 - 22.7.2016, e
ditor(s): Volker Mehrmann, Martin Skutella, European
Congress of Mathematics,
European Mathematical Society Publishing House, Zurich,
2018, 219-234.
80. M. Fre'mond, M. Marino, E. Rocca,
Collisions in shape memory alloys,
GAMM-Mitt. 40, No. 3, 157-177 (2017) / DOI
10.1002/gamm.201730002 .
79. P. Colli, G. Gilardi, G. Marinoschi, E. Rocca,
Optimal control for a conserved phase
field system with a possibly singular potential,
EVOLUTION EQUATIONS AND CONTROL THEORY, 7 (2018),
95--116.
78. S. Melchionna, E. Rocca,
Varifold solutions of a sharp interface
limit of a diffuse interface model for tumor growth,
Interfaces and Free Boundaries, 19 (2018), 571--590.
77. P. Krejci, E. Rocca, J. Sprekels,
Unsaturated deformable porous media flow
with phase transition,
Math. Models Methods Appl. Sci., 27 (2017), 2675--2710.
76. S. Frigeri, K.-F. Lam, E. Rocca,
On a diffuse interface model for tumour
growth with non-local interactions and degenerate
mobilities,
In: P. Colli, A. Favini, E. Rocca, G. Schimperna, J.
Sprekels (eds.), Solvability,
Regularity, Optimal Control of Boundary Value Problems for
PDEs,
pp.~217--254, Springer INdAM Series, Springer, Milan, 2017.
75. E. Bonetti, E. Rocca, R. Scala, G. Schimperna,
On the strongly damped wave equation with
constraint,
Commun. Part. Diff. Eq., 42 (2017), 1042--1064.
74. V. Barbu, P. Colli, G. Gilardi, G. Marinoschi, E. Rocca,
Sliding mode control for a nonlinear
phase-field system,
SIAM J. Control Optim. 55 (2017), 2108--2133.
73. P. Colli, G. Gilardi, E. Rocca, J. Sprekels,
Optimal distributed control of a diffuse
interface model of tumor growth,
Nonlinearity 30 (2017), 2518--2546.
72. E. Bonetti, E. Rocca,
Unified gradient flow structure of phase
field systems via a generalized principle of virtual
powers,
ESAIM : COCV, 23 (2017), 1201--1216.
71. E. Rocca, R. Scala,
A rigorous sharp interface limit of a
diffuse interface model related to tumor growth,
J. Nonlinear Sci., 27 (2017), 847--872.
70. C. Heinemann, C. Kraus, E. Rocca, R. Rossi,
A temperature-dependent phase-field model
for phase separation and damage,
Arch. Ration. Mech. Anal., 225 (2017), 177--247.
69. M. Dai, E. Feireisl, E. Rocca, G. Schimperna, M.
Schonbek,
Analysis of a diffuse interface model of
multispecies tumor growth,
Nonlinearity, 30 (2017), 1639.
68. C. Cavaterra, E. Rocca, H. Wu,
Optimal boundary control of a simplified
Ericksen–Leslie system for nematic liquid crystal flows in
2D,
Arch. Ration. Mech. Anal., 224 (2017), 1037--1086.
67. P. Colli, G. Gilardi, E. Rocca, J. Sprekels,
Asymptotic analyses and error estimates
for a Cahn–Hilliard type phase field system modelling
tumor growth,
Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 37--54.
66. B. Detmann, P. Krejci, E. Rocca,
Solvability of an unsaturated porous media
flow problem with thermomechanical interaction,
SIAM J. Math. Anal., 48 (2016), 4175--4201.
65. M. Eleuteri, E. Rocca, G. Schimperna,
Existence of solutions to a
two-dimensional model for nonisothermal two-phase flows of
incompressible fluids,
Ann. Inst. H. Poincare Anal. Non Lineaire, 33 (2016),
1431-1454.
64. M. Dai, E. Feireisl, E. Rocca, G. Schimperna, M.
Schonbek,
On asymptotic isotropy for a hydrodynamic
model of liquid crystals,
Asymptot. Anal, 97 (2016), 189-210.
63. E. Bonetti, E. Rocca, R. Rossi, M. Thomas,
A rate-independent gradient system in
damage coupled with plasticity via structured strains,
ESAIM: PROCEEDINGS AND SURVEYS, 54 (2016), 54-69.
62. C. Cavaterra, E. Rocca, H. Wu, X. Xu,
Global strong solutions of the full
Navier-Stokes and Q-tensor system for nematic liquid
crystal flows in 2D: existence and long-time behavior,
SIAM J. Math. Anal. 48 (2016), no. 2, 1368-1399.
61. P. Colli, G. Marinoschi, E. Rocca,
Sharp interface control in a Penrose-Fife
model,
ESAIM: COCV 22 (2016), 473-499.
60. S. Frigeri, E. Rocca, J. Sprekels,
Optimal distributed control of a nonlocal
Cahn-Hilliard/Navier-Stokes system in 2D,
SIAM J. Control Optim. 54 (2016), 221-250.
59. P. Colli, G. Gilardi, G. Marinoschi, E. Rocca,
Optimal control for a phase field
system with a possibly singular potential,
Math. Control Relat. Fields, 6 (2016),
95-112.
58. C. Heinemann, E. Rocca,
Damage processes in thermoviscoelastic
materials with damage-dependent thermal expansion
coefficients,
MMAS, 38 (2015), 4587--4612.
57. E. Feireisl, E. Rocca, G. Schimperna, A. Zarnescu,
Nonisothermal nematic liquid crystal
flows with the Ball-Majumdar free energy,
Annali di Matematica, 194
(2015), 1269--1299.
56. E. Rocca, J. Sprekels,
Optimal distributed control of a nonlocal
convective Cahn-Hilliard equation by the velocity in 3D,
SIAM J. Control Optim., 53 (2015), 1654--1680.
55. E. Rocca, R. Rossi,
``Entropic'' solutions to a
thermodynamically consistent PDE system for phase
transitions and damage,
SIAM J. Math. Anal., 47 (2015), 2519--2586.
54. P. Colli, G. Gilardi, E. Rocca, J. Sprekels,
Vanishing viscosities and error estimate
for a Cahn--Hilliard type phase-field system related to
tumor growth,
Nonlinear Analysis: Real World Applications, 26 (2015),
93--108.
53. S. Frigeri, M. Grasselli, E. Rocca,
A diffuse interface model for two-phase
incompressible flows with nonlocal interactions and
nonconstant mobility,
Nonlinearity, 28 (2015), 1257--1293.
52. S. Frigeri, M. Grasselli, E. Rocca,
On a diffuse interface model of
tumor growth,
European J. Appl. Math., 26 (2015), 215--243.
51. M. Eleuteri, E. Rocca, G. Schimperna,
On a non-isothermal diffuse interface
model for two-phase flows of incompressible fluids,
Discrete Contin. Dyn. Syst., 35 (2015), 2497--2522.
50. D. Hoemberg, T. Petzold, E. Rocca,
Analysis and simulation of multifrequency
induction hardening,
Nonlinear Analysis: Real World Applications, 22 (2015),
84–-97.
49. S. Melchionna, E. Rocca,
On a nonlocal Cahn-Hilliard equation with
a reaction term,
Adv. Math. Sci. Appl., 24 (2014), 461--497.
48. D. Hoemberg, T. Petzold, E. Rocca,
Multifrequency induction hardening: a challenge for
industrial mathematics,
in ``The Impact of Applications on Mathematics'',
Mathematics for Industry 1, M. Wakayama et al. (eds.),
Springer, Japan (2014).
47. A. Miranville, E. Rocca, G. Schimperna, A. Segatti,
The Penrose-Fife phase-field model with
coupled dynamic boundary conditions,
Discrete Contin. Dyn. Syst., 34 (2014), 4259--4290.
46. E. Rocca, R. Rossi,
A degenerating PDE system for phase
transitions and damage,
Math. Models Methods Appl. Sci., 24 (2014), 1265--1341.
45. E. Feireisl, E. Rocca, G. Schimperna,
A. Zarnescu,
Evolution of non-isothermal Landau-de
Gennes nematic liquid crystals flows with singular
potential,
Comm. Math. Sci., 12 (2014), 317--343.
44. C. Cavaterra, E. Rocca, H. Wu,
Global weak solution and blow-up criterion
of the general Ericksen--Leslie system for nematic liquid
crystal flows,
J. Differential Equations, 255 (2013), 24--57.
43. S. Frigeri, E. Rocca,
Trajectory attractors for the Sun-Liu
model for nematic liquid crystals in 3D,
Nonlinearity, 26 (2013), 933--957.
42. C. Cavaterra, E. Rocca,
On a 3D isothermal model for nematic
liquid crystals accounting for stretching terms,
Z. Angew. Math. Phys., 64 (2013), 69--82.
41. P. Krejci, E. Rocca,
Well-posedness of an extended model for
water-ice phase transitions,
Discrete Contin. Dyn. Syst. Ser. S, 6, no.2 (2013),
439--460.
40. H. Petzeltova, E. Rocca, G. Schimperna,
On the long-time behavior of some
mathematical models for nematic liquid crystals,
Calc. Var., 46 (2013), 623-639.
39. E. Feireisl, M. Fre'mond, E. Rocca, G. Schimperna,
A new approach to non-isothermal models
for nematic liquid crystals,
Arch. Ration. Mech. Anal. 205 (2012), no. 2, 651-672.
38. D. Hoemberg, E. Rocca,
A model for resistance welding including
phase transitions and Joule heating,
Math. Meth. Appl. Sci. 2011, 34, 2077--2088.
37. P. Colli, P. Krejci, E. Rocca, J. Sprekels,
A nonlocal quasilinear multi-phase system
with nonconstant specific heat and heat conductivity,
J. Differential Equations, 251 (2011), 1354--1387.
36. E. Feireisl, E. Rocca, G. Schimperna,
On a non-isothermal model for nematic
liquid crystals,
Nonlinearity, 24 (2011), 243--257.
35. P. Krejci, E. Rocca , J. Sprekels,
Phase separation in a gravity field,
Discrete Contin. Dyn. Syst. Ser. S, 4, No. 2 (2011),
391--407.
34. M. Fremond, E. Rocca,
A model for shape memory alloys with the
possibility of voids,
Discrete Contin. Dyn. Syst., 27 No. 4 (2010), 1633--1659.
33. E. Feireisl, H. Petzeltova, E. Rocca, G. Schimperna,
Analysis of a phase-field model for
two-phase compressible fluids,
Math. Models Methods Appl. Sci., 20 No. 7 (2010).
32. P. Krejci, E. Rocca, J. Sprekels,
Liquid-solid phase transitions in a
deformable container,
contribution to the book ``Continuous Media with
Microstructure'' on the occasion of Krzysztof Wilmanski's
70th birthday, Springer (2010), 285--300.
31. P. Krejci, E. Rocca, J. Sprekels,
A bottle in a freezer,
SIAM J. Math. Anal., 41 No. 5 (2009), 1851--1873.
30. E. Feireisl, H. Petzeltova, E. Rocca,
Existence of solutions to some models of
phase changes with microscopic movements,
Math. Meth. Appl. Sci., 32 (2009), 1345--1369.
29. M. Fremond, E. Rocca,
Solid liquid phase changes with different
densities,
Quart. Appl. Math., 66 (2008), 609--632.
28. E. Rocca, R. Rossi,
Global existence of strong solutions to
the one-dimensional full model for phase transitions in
thermoviscoelastic materials,
Appl. Math., 53 No. 5 (2008), 485--520.
27. E. Rocca, R. Rossi,
Analysis of a nonlinear degenerating PDE
system for phase transitions in thermoviscoelastic
materials,
J. Differential Equations, 245 (2008), 3327--3375.
26. A. Lorenzi, E. Rocca,
Identification of two memory kernels in a
fully hyperbolic phase-field system,
J. Inverse Ill-Posed Probl., 16 (2008), 147--174.
25. P. Colli, P. Krejci, E. Rocca, J. Sprekels,
Nonlinear evolution inclusions arising
from phase change models,
Czech. Math. J., 57 (2007), 1067--1098.
24. E. Bonetti, M. Fremond, E. Rocca,
A new dual approach for a class of phase
transitions with memory: existence and long-time behaviour
of solutions,
J. Math. Pures Appl., 88 (2007), 455--481.
23. G. Gilardi, E. Rocca,
Well posedness and long time behaviour for
a singular phase field system of conserved type,
IMA J. Appl. Math., 72 (2007), 498--530.
22. P. Krejci, E. Rocca, J. Sprekels,
A
nonlocal phase-field model with nonconstant specific
heat,
Interfaces Free Bound., 9 (2007), 285--306.
21. A. Lorenzi, E. Rocca,
Weak solutions for the fully hyperbolic
phase-field system of conserved type,
J. Evol. Equ., 7 (2007), 59--78.
20. E. Bonetti, E. Rocca,
Global existence and long-time
behaviour for a singular integro-differential phase-field
system,
Commun. Pure Appl. Anal, 6 (2007), 367--387.
19. P. Krejci, E. Rocca, J. Sprekels,
Nonlocal temperature-dependent phase-field
models for non-isothermal phase transitions,
J. London Math. Soc., 76 No. 2 (2007), 197--210.
18. G. Gilardi, E. Rocca,
Convergence of phase field to phase
relaxation governed by the entropy balance with memory,
Math. Meth. Appl. Sci., 29 (2006), 2149--2179.
17. A. Lorenzi, E. Rocca,
Approximation of an inverse problem for a
parabolic integro-differential system of Caginalp type,
in ``Dissipative phase transitions'' (ed. P. Colli, N.
Kenmochi, J. Sprekels), Series on Advances in Mathematics
for Applied Sciences, Vol. 71, World Sci. Publishing
(2006), 151--176.
16. P. Colli, M. Fremond, E. Rocca, K. Shirakawa,
Attractors for the 3D Fremond model of
shape memory alloys,
Chinese Annals of Mathematics, Ser. B, 27 (2006), 683--700.
15. E. Rocca, G. Schimperna,
Global attractor for a
parabolic-hyperbolic Penrose-Fife phase field system,
Discrete Contin. Dyn. Syst., 15 No. 4 (2006), 1192--1214.
14. M. Fremond, E. Rocca,
Well-posedness of a phase transition model
with the possibility of voids,
Math. Models Methods Appl. Sci., 16 No. 4 (2006), 559--586.
13. A. Lorenzi, E. Rocca, G. Schimperna,
Direct and inverse problems for parabolic
integro-differential systems of Caginalp type,
Adv. Math. Sci. Appl., 15 No. 1 (2005), 227--263.
12. E. Rocca,
Well-posedness and regularity for a
parabolic-hyperbolic Penrose-Fife phase field system,
Appl. Math., 50 No. 5 (2005), 415--450.
11. E. Rocca, G. Schimperna,
Universal attractor for a Penrose-Fife
system with special heat flux law,
Mediterr. J. Math., 1 (2004), 109--121.
10. E. Rocca, G. Schimperna,
Universal attractor for some singular
phase transition systems,
Physica D, 192 (2004), 279--307.
9. P. Colli, G. Gilardi, E. Rocca, G. Schimperna,
On a Penrose-Fife phase-field model with
non-homogeneous Neumann boundary condition for the
temperature,
Differential and Integral Equations, 17 No. 5--6
(2004), 511--534.
8. E. Rocca,
Existence and uniqueness for the parabolic
conserved phase field model with memory,
Commun. Appl. Anal., 8 No. 1 (2004), 27--46.
7. E. Rocca,
The conserved Penrose-Fife system with
temperature-dependent memory,
J. Math. Anal. Appl., 287 No. 1 (2003), 177--199.
6. E. Rocca, G. Schimperna,
Singular limits of a conserved
Penrose-Fife phase field model with special heat flux laws
and memory effects,
Asymptot. Anal., 36 No. 3--4 (2003), 285--301.
5. E. Rocca, G. Schimperna,
The Conserved Penrose-Fife system with
Fourier heat flux law,
Nonlinear Anal., 53 (2003), 1089--1100.
4. G. Gilardi, E. Rocca,
Su un modello conservativo di tipo Penrose-Fife con
condizioni di Neumann,
Istituto Lombardo (Rend. Sc.) A, 136-137 (2002--2003).
3. E. Rocca,
Some remarks on the conserved Penrose-Fife
phase field model with memory effects,
in ``Mathematical Models and Methods for Smart Materials'',
M. Fabrizio, B. Lazzari, and A. Morro (ed.),
Ser.Adv.Math.Appl.Sci., 62, World Scientific Publishing Co.
(2002), 313--322.
2. E. Rocca,
The conserved Penrose-Fife phase field
model with special heat flux laws and memory effects,
J. Integral Equations Appl., 14 No. 4 (2002), 425--466.
1. E. Rocca,
Asymptotic analysis of a conserved phase-field model with
memory for vanishing time relaxation,
Adv. Math. Sci. Appl., 10 No. 2 (2000), 899--916.
Preprints and papers
to appear:
[1.] F. Riva, E. Rocca,
A rigorous approach to the sharp interface limit for
phase-field models of tumor growth,
preprint arXiv:2402.19156v1 (2024).
[2.] E. Feireisl, E. Rocca, G. Schimperna,
The Oberbeck--Boussinesq approximation and Rayleigh--Benard
convection revisited,
preprint arXiv:2402.06554, to appear on DCDS-B.
[3.] E. Davoli, E. Rocca, L. Scarpa, L. Trussardi,
Local asymptotics and optimal control for a viscous
Cahn-Hilliard-Reaction-Diffusion model for tumor growth,
preprint arXiv:2311.10457 (2023).
[4.] A. Agosti, R. Lasarzik, E. Rocca,
Energy-variational solutions for viscoelastic fluid models,
preprint arXiv:2310.13601 (2023).
[5.] E. Beretta, C. Cavaterra, M. Fornoni, G. Lorenzo, E.
Rocca,
Mathematical analysis of a model-constrained inverse problem
for the reconstruction of early states of prostate cancer
growth,
preprint arXiv:2404.12198 (2024).
[6.] P. Colli, G. Marinoschi, E. Rocca, A. Viguerie,
Chemotaxis-inspired PDE model for airborne infectious
disease transmission: analysis and simulations,
preprint arXiv:2404.17506 (2024).
Editor of the volumes:
[V1] ``New trends in direct, inverse, and control problems
for evolution equations'',
Discrete Contin. Dyn. Syst. Ser. S, 4, No. 3 (2011), edited
by P. Cannarsa, C. Cavaterra, A. Favini, A. Lorenzi,
E. Rocca.
[V2] ``Special issue dedicated to Michel Fre'mond on the
occasion of his 70th birthday'',
Discrete Contin. Dyn. Syst. Ser. S, 6, No. 2 (2013), edited
by E. Bonetti, C. Cavaterra, E. Rocca, R. Rossi.
[V3] ``Special issue on rate-independent evolutions and
hysteresis modelling'',
Discrete Contin. Dyn. Syst. Ser. S, 8, No. 4 (2015), edited
by S. Bosia, M. Eleuteri, E. Rocca, and E. Valdinoci.
[V4] ``Special issue dedicated to Juergen Sprekels on the
occasion of his 65th birthday'',
Discrete Contin. Dyn. Syst., 35, No. 6 (2015), edited by P.
Colli, G. Gilardi, D. Hoemberg, P. Krejci
and Elisabetta Rocca.
[V5] ``PDE 2015: Theory and applications of partial
differential equations'', edited by Hans-Christoph
Kaiser, Dorothee Knees, Alexander Mielke,
Joachim Rehberg, Elisabetta Rocca, Marita Thomas
and Enrico Valdinoci, Discrete Contin. Dyn. Syst. Ser.
S, 10, No. 4 (2017).
[V6] ``Solvability, Regularity, Optimal Control of Boundary
Value Problems for PDEs'',
edited by P. Colli, A. Favini, E. Rocca, G. Schimperna, J.
Sprekels,
Springer INdAM Series, Springer, Milan, 2017.
[V7] ``Trends on Applications of Mathematics to Mechanics'',
edited by
E. Rocca, U. Stefanelli, L. Truskinovsky, and A. Visintin,
Springer INdAM Series, Springer, Milan, 2017.
[V8] ``Mathematical Thermodynamics of Complex Fluids'',
edited by E. Feireisl and E. Rocca,
Springer CIME Series, Springer, Milan, 2017.
[V9] M. Hintermueller, K. Kunisch, G. Leugering, E. Rocca,
``Challenges in Optimal Control of Nonlinear PDE-Systems'',
Oberwolfach Rep. 15 (2018), no. 2, 941--1020.
[V10] ``Special issue dedicated to Maurizio Grasselli on the
occasion of his 60th birthday'',
edited by P. Colli, M. Conti, A. Miranville, V. Pata, E.
Rocca, Discrete Contin. Dyn. Syst. Ser. S, 15 (2022).
[V11] `` Special Issue on evolution of phases and
interfaces, for Pierluigi Colli's 65th'',
edited by E. Bonetti, E. Rocca, A. Segatti, A. Signori, U.
Stefanelli, Discrete Contin. Dyn. Syst. Ser. S, 17 (2024).
Other publications:
[N.] E. Rocca: "Entropic" solutions for two-phase fluids flows, phase transitions, and damage, ISIMM -- The International Society for theInteraction of Mechanics and Mathematics -- FORUM, March 2015.
|