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Phase transitions and phase-field models

Phase transitions phenomena: processes of physical and industrial
interest (like solid-liquid systems, solid-solid phase transitions in SMA,
damage in elastic material).

Assume that the two phases can coexist at every point: a parameter χ

characterizes the different phases (e.g. the concentration of one of the
two phases in a point).
Use the basic laws of continuum mechanics

I The equation of macroscopic motion, i.e., the standard
stress-strain relation

I The generalized principle of virtual power for microscopic forces
by [M. Frémond, Non-smooth Thermomechanics, 2002]

I The internal energy balance

with a proper choice of our internal energy functional (depending on
the state variables) and of the pseudo-potential of dissipation
(depending on the dissipative variables).
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The state variables

I the absolute temperature ϑ of the system

I the order parameter χ, standing for the local proportion of one of
the two phases, e.g., in a melting-solidification process we shall
have χ ∈ [0, 1] and

I χ = 0 in the solid phase and

I χ = 1 in the liquid phase

I the vector of the small displacements u
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Our aim

The analysis of the initial boundary-value problem for the following
PDE system in Ω× (0, T ):

ϑt + χtϑ−∆ϑ = g (I)

χt −∆χ + W ′(χ) = ϑ− ϑc +
|ε(u)|2

2
(II)

utt − div ((1− χ)ε(u) + χε(ut)) = f (III)

which describes a phase transition phenomenon for a two-phase
viscoelastic system, occupying a bounded domain Ω ⊆ RN ,
N = 1, 2, 3, during a time interval [0, T ].

Our results

[Thm. 1] Local in time well-posedness for a suitable formulation of
(I–III)+I.C.+B.C. in the 3D (in space) setting

[Thm. 2] Global in time well-posedness in the 1D setting
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The free-energy functional

We take into account of elasticity effects by choosing

Ψ(ϑ, ε(u), χ,∇χ) = cV ϑ(1− log ϑ)− λ

ϑc
(ϑ− ϑc)χ

+
(1− χ)ε(u)Reε(u)

2
+ W (χ) +

ν

2
|∇χ|2

I ε(u) the linearized symmetric strain tensor, namely
εij(u) := (ui,j + uj,i )/2, i , j = 1, 2, 3

I (1− χ) the local proportion of the non viscous phase, e.g. the solid
phase in solid-liquid phase transitions

I Re a symmetric positive definite elasticity tensor (set Re ≡ I)

I cV , ϑc , λ and ν(> 0) the specific heat, the equilibrium
temperature, the latent heat of the system, and the interfacial
energy coefficient (set cV = ν = λ/ϑc = 1)

I W (χ) + (ν/2)|∇χ|2 a mixture or interaction free-energy
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The Pseudo-Potential of dissipation

Following the line of [Moreau, ’71], we include dissipation by means
of the following functional

Φ(χt , ε(ut),∇ϑ) =
1

2
|χt |2 +

χ

2
ε(ut)Rvε(ut) +

|∇ϑ|2

2ϑ
,

where

I Rv is a symmetric and positive definite viscosity matrix (set
Rv ≡ I);

I χ represents the local proportion of the viscous phase, e.g. the
liquid phase in solid-liquid phase transitions;

I all physical parameters have been set equal to 1
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Example: melting phenomena

I In the solid phase (i.e. χ = 0) viscous effects are not present in the
model

I In the liquid phase (i.e. χ = 1) we do not have elasticity effects

I in the intermediate cases, the model takes into account the
influence of both effects, which is the main novelty of this
approach to phase transitions.

We could include more general functions a(χ) and b(χ) in the
Free-energy and in the Pseudo-potential with

a and b sufficiently regular functions

a(χ) + b(χ) = 1 for all χ ∈ (0, 1)

a(χ) → 0 for χ ↗ 1, a(χ) → 1 for χ ↘ 0, and, conversely,
b(χ) → 1 for χ ↗ 1, b(χ) → 0 for χ ↘ 0.

For simplicity we shall confine our analysis to the meaningful case in
which a(χ) = 1− χ and b(χ) = χ.
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I in the intermediate cases, the model takes into account the
influence of both effects, which is the main novelty of this
approach to phase transitions.

We could include more general functions a(χ) and b(χ) in the
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Open problems

The equation of macroscopic motion

The equation of macroscopic motion is the following stress-strain
relation, taking into account of accelerations:

utt − div σ = f in Ω× (0, T )

where f stands for the exterior volume force and σ is the stress tensor.

Using the constitutive law

σ = σnd + σd =
∂Ψ

∂ε(u)
+

∂Φ

∂ε(ut)
,

the tensor σ can be written as

σ = (1− χ)ε(u) + χε(ut) in Ω× (0, T ).

We treat here a pure displacement boundary value problem for u

u = 0 on ∂Ω× (0, T ) .

However, our analysis carries over to other kinds of boundary conditions
on u like a pure traction problem or a displacement-traction problem.
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Open problems

The equation of microscopic motion

If the volume amount of mechanical energy provided by the external
actions is zero, the generalized principle of virtual power by
[Frémond, ’02] gives

B − div H = 0 in Ω× (0, T ), H · n = 0 on ∂Ω× (0, T )

where B and H represent the internal microscopic forces responsible for
the mechanically induced heat sources. From the constitutive relations

B =
∂Ψ

∂χ +
∂Φ

∂χt
= −ϑ + ϑc −

|ε(u)|2

2
+ W ′(χ) + χt

H =
∂Ψ

∂∇χ = ∇χ

we derive the phase equation

χt −∆χ + W ′(χ) = ϑ− ϑc +
|ε(u)|2

2

coupled with the B.C. ∂nχ = 0 on ∂Ω× (0, T ).
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The 1D case: global
well-posedness

Proof of Thm. 2.

Open problems

Possible choices of the potential W

We shall assume that the potential W is given by

W = bβ + bγ ,

where bγ ∈ C2([0, 1]) and

dom(bβ) = [0, 1] , bβ : dom(bβ) → R is proper, l.s.c., convex,bβ ∈ C1,1
loc(0, 1).

Examples.

I bβ(r) = r ln(r) + (1− r) ln(1− r), for r ∈ (0, 1)

I bβ = I[0,1].

Note that

I The maximal monotone operator (β :=)∂ bβ is single-valued and loc.
Lipschitz continuous on (0, 1)

I Since χ ∈ (0, 1), β is a single-valued operator

I We also set γ := bγ′ , so that we have W ′ = β + γ .
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Proof of Thm. 2.

Open problems

The internal energy balance

et + div q = g + σ : ε(ut) + Bχt + H · ∇χt in Ω× (0, T )

where

I e is the (density of) internal energy, g is a heat source;

I in green we have the mechanically induced heat sources, related to
macroscopic and microscopic stresses.

By standard constitutive relations, the heat flux q turns out to be

q = −ϑ
∂Φ

∂∇ϑ
= −∇ϑ.

Using the Helmoltz relation e = Ψ− ϑ
∂Ψ

∂ϑ
, we get
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ϑt + χtϑ−∆ϑ = g+ χ|ε(ut)|2 + |χt |2 in Ω× (0, T )
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Small perturbation assumption (cf. [Germain, ’73]): we get rid of the
higher order dissipative terms on the right-hand side - smaller w.r.t. the
other terms -
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et + div q = g + σ : ε(ut) + Bχt + H · ∇χt in Ω× (0, T )

where

I e is the (density of) internal energy, g is a heat source;

I in green we have the mechanically induced heat sources, related to
macroscopic and microscopic stresses.

By standard constitutive relations, the heat flux q turns out to be

q = −ϑ
∂Φ

∂∇ϑ
= −∇ϑ.
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∂Ψ
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The thermodynamical consistency

Our model complies with the Second Principle of Thermodynamics:

in
fact, the following form of the Clausius-Duhem inequality

st + div
“ q

ϑ

”
− g

ϑ
≥ 0

holds true.

I It is sufficient to note that the internal energy balance can be
expressed in terms of the entropy s = − ∂Ψ

∂ϑ
in this way:

ϑ
“
st − div

“ q

ϑ

”
− g

ϑ

”
= σd : ε(ut) + Bdχt −

q

ϑ
· ∇ϑ,

Bd being the dissipative part of B

I The right-hand side turns out to be non negative because
(σd, Bd, −q/ϑ) ∈ ∂Φ(ut , χt , ∇ϑ), and Φ is convex in all of its
variables

I Therefore, the Clausius-Duhem inequality ensues from the
positivity of ϑ
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well-posedness

Proof of Thm. 2.

Open problems

Formulation of the Problem

Find functions ϑ, χ : Ω× [0, T ] → R such that

χ(x , t) ∈ dom(W ) and ϑ(x , t) > 0 a.e. in Ω× (0, T )

and u : Ω× [0, T ] → R3

fulfilling the initial conditions:

ϑ(0) = ϑ0 in Ω

χ(0) = χ0 in Ω

u(0) = u0, ut(0) = v0 in Ω

the equations a.e. in Ω× (0, T ):

ϑt + χtϑ−∆ϑ = g (EQ1)

χt −∆χ + W ′(χ) = ϑ− ϑc +
|ε(u)|2

2
(EQ2)

utt − div ((1− χ)ε(u) + χε(ut)) = f (EQ3)

and the boundary conditions:

∂nϑ = 0, ∂nχ = 0, u = 0 on ∂Ω× (0, T ) . (B.C.)
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The 3D case: local
well-posedness

Proof of Thm. 1

Hypothesis 2

The 1D case: global
well-posedness

Proof of Thm. 2.

Open problems

Main mathematical difficulties

The degenerating character of equation

utt − div ((1− χ)ε(u) + χε(ut)) = f (EQ3)

and the nonlinear features of equations

ϑt + χtϑ−∆ϑ = g (EQ1)

χt −∆χ + W ′(χ) = ϑ− ϑc +
|ε(u)|2

2
(EQ2)

I Degeneracy is due to the presence of the terms (1− χ) and χ in
front of the elasticity and viscosity contributions: such terms
vanish as χ ↗ 1 and χ ↘ 0, making the related elliptic operator
degenerate

I The nonlinear term W ′(χ) and the quadratic terms
|ε(u)|2

2
and

χt ϑ occurring in (EQ1)–(EQ2) give a strongly nonlinear
character to the system
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Our results

[Thm. 1] Local (in time) well-posedness result for this problem in the
spatially 3D setting

[Thm. 2] Global well-posedness result for this system in the 1D case
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well-posedness

Proof of Thm. 1

Hypothesis 2

The 1D case: global
well-posedness

Proof of Thm. 2.

Open problems

The literature: [χ+ϑ]-equations

I So far Frémond’s models of phase change do not take into account
the different properties of the viscous and elastic parts of the
system (cf., e.g., Colli, Bonfanti, Luterotti, Schimperna,
Stefanelli).

No coupling between the [χ+ϑ]-equations and the
u-equation, which is thus neglected. The PDE system looks like

ϑt + χtϑ−∆ϑ = |χt |2

χt −∆χ + W ′(χ) = ϑ− ϑc .

I Due to the presence of the term χt ϑ in the temperature equation,
no global-in-time well-posedness result has yet been obtained for
Frémond’s phase-field model in the 3D case, even neglecting the
u-equation

I A global existence result has been proved for (a generalization of)
(EQ1)+(EQ2) in the 1D case


 Recent discussions with E. Feireisl and H. Petzeltová:
introduce a weaker notion of solution (satisfying an entropy
inequality and the total energy conservation).
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Frémond’s phase-field model in the 3D case, even neglecting the
u-equation

I A global existence result has been proved for (a generalization of)
(EQ1)+(EQ2) in the 1D case


 Recent discussions with E. Feireisl and H. Petzeltová:
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I A global existence result has been proved for (a generalization of)
(EQ1)+(EQ2) in the 1D case


 Recent discussions with E. Feireisl and H. Petzeltová:
introduce a weaker notion of solution (satisfying an entropy
inequality and the total energy conservation).
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I Frémond thermoviscoelastic system not subject to a phase
transition has been tackled in [Bonetti, Bonfanti, ’03]: a linear
viscoelastic equation for u and an internal energy balance for ϑ are
considered

I Due to the highly nonlinear character of the system, only a local
well-posedness result is available in the 3D case

I However, in this framework no degeneracy of the elliptic operator
in the u-equation is allowed
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I Frémond thermoviscoelastic system not subject to a phase
transition has been tackled in [Bonetti, Bonfanti, ’03]: a linear
viscoelastic equation for u and an internal energy balance for ϑ are
considered

I Due to the highly nonlinear character of the system, only a local
well-posedness result is available in the 3D case

I However, in this framework no degeneracy of the elliptic operator
in the u-equation is allowed



Themoviscolelastic
materials

E. Rocca

The model

Free-energy
functional

Pseudo-Potential of
dissipation

Example

Macroscopic motion

Microscopic motion

Internal energy
balance

The PDE system

The literature

Main results

Hypothesis 1

The 3D case: local
well-posedness

Proof of Thm. 1

Hypothesis 2

The 1D case: global
well-posedness

Proof of Thm. 2.

Open problems

The literature: [ϑ+u]-equations
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Open problems

The literature: [χ+u]-equations

I E.g., the authors Bonetti, Bonfanti, Schimperna, Segatti
address Frémond models for damaging phenomena.

The variable χ

stands for the local proportion of damaged material: χ ∈ [0, 1],
χ = 0 when the body is completely damaged and χ = 1 in the
damage-free case

I The PDE systems looks like

χt −∆χ + ∂I(−∞,0](χt) + β(χ) 3 −1

2
|∇u|2

utt − div(χ(∇ut +∇u)) = f

where

I ∂I(−∞,0](χt) accounts for the irreversibility of the damaging
process, and gives a doubly nonlinear character to the equation

I the coefficients in the u-equation vanish only as χ↘ 0, contrary to
the twofold degeneracy of our equation (EQ3)

I Local well-posedness results are proved for the resulting PDE
system in [Bonetti, Schimperna, Segatti, ’05].
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Assume that

(i) the potential W is given by

W = bβ + bγ , where bγ ∈ C2([0, 1]) and

dom(bβ) = [0, 1] , bβ : dom(bβ) → R is proper, l.s.c., convex,bβ ∈ C1,1
loc(0, 1)

(ii) the data satisfy

g ∈ H1(0, T ; L2(Ω)), g(x , t) ≥ 0 for a.e. (x , t) ∈ Ω× (0, T )

f ∈ L2(0, T ; L2(Ω))

ϑ0 ∈ H2
N(Ω) and min

x∈Ω
ϑ0(x) > 0, χ0 ∈ H2

N(Ω)

u0 ∈ H2
0 (Ω), v0 ∈ H1

0 (Ω)

(iii) the datum χ0 is “separated from the potential barriers”

min
x∈Ω

χ0(x) > 0,

max
x∈Ω

χ0(x) < 1.
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Remarks

3 The separation conditions on χ0 and the assumptions on β åbβ(χ0), β(χ0) ∈ L∞(Ω)

3 The separation condition of χ0 from 1 å χ is locally separated
from both the potential barriers + (assumptions on ϑ0 and u0) å

perform the further regularity estimates needed for the Schauder
fixed point procedure

3 It would be possible to dispense it by requiring that for all ρ > 0 β
is a Lipschitz continuous function on [ρ, 1) å β extends to a

(left-)continuous function in r = 1. E.g., bβ(r) := r ln(r) + I[0,1](r),
r ∈ (0, 1], complies with it

3 In this framework it would not be necessary any longer to require bβ
to have a bounded domain.
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Theorem 1. The 3D case.

Under Hypothesis 1, there exist bT ∈ (0, T ], σ > 0, and a unique triple
(ϑ, χ, u) with the regularity

ϑ ∈ H2(0, bT ; H1(Ω)′) ∩W 1,∞(0, bT ; L2(Ω)) ∩ H1(0, bT ; H1(Ω))

∩ L∞(0, bT ; H2
N(Ω)) ↪→ C1([0, bT ]; L2(Ω)),

χ ∈ H2(0, bT ; H1(Ω)′) ∩W 1,∞(0, bT ; L2(Ω)) ∩ H1(0, bT ; H1(Ω))

∩ L∞(0, bT ; H2
N(Ω)) ↪→ C1([0, bT ]; L2(Ω)),

u ∈ H2(0, bT ; L2(Ω)) ∩W 1,∞(0, bT ; H1
0 (Ω)) ∩ H1(0, bT ; H2

0 (Ω))

↪→ C1([0, bT ]; H1
0 (Ω)),

solving Problem (P) on the interval (0, bT ), and fulfilling

min
x∈Ω

ϑ(x , t) > 0 ∀ t ∈ [0, bT ] ,

0 < σ ≤ χ(x , t) ≤ 1− σ < 1 ∀ (x , t) ∈ Ω× (0, bT ).

Under the additional assumption of Lipschitz continuity of β on [ρ, 1),
the solution triple (ϑ, χ, u) depends continuously on the initial data and
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Open problems

First step.

I Following the approach of [Bonetti, Schimperna, Segatti,
’05], we fix a constant σ ∈ (0, 1) such that

σ ≤ 2

3
min


min
x∈Ω

χ0(x), 1−max
x∈Ω

χ0(x)

ff
,

and we introduce the truncation operator

Tσ(r) := max{r , σ} ∀ r ∈ R

I Hence, we consider the PDE system where (EQ3) is replaced by

utt − div (Tσ(1− χ)ε(u) + Tσ(χ)ε(ut)) = f.

We shall prove the existence of a local-in-time solution to this
truncated system by a Schauder fixed point argument
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Second step.

I Then we prove that χ locally stays away from both the potential
barriers;

indeed “formally” we can estimate

‖χ(t)− χ0‖H1(Ω) ≤ t1/2‖∂tχ‖L2(0,T ;H1(Ω)) ≤ ct1/2 ∀ t ∈ [0, T ].

Combining this with a suitable interpolation estimate, there exists
some 0 < bT ≤ T for which

‖χ(t)− χ0‖L∞(Ω) ≤
σ

2
∀ t ∈ [0, bT ]

I Hence the coefficients of ε(ut) and ε(u) do not degenerate on

[0, bT ] and so Problem (P) is (locally) well-posed

I Separation properties are only local in time hence we cannot
extend the local solution to a global one: σ is smaller at time
t = bT than at time t = 0

I Together with the assumption that bβ ∈ C 1,1
loc(0, 1) (e.g., for the

logarithmic potential and for the indicator function), the local (in
time) inequality χ ≤ 1− σ < 1 implies enhanced regularity on χ

needed to prove compactness of the Schauder operator
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Suppose that

(i) Ω = (0, `), for some ` > 0

(ii) beside the conditions

dom(bβ) = [0, 1] , bβ : dom(bβ) → R is proper, l.s.c., convex,

the graph β satisfies the “coercivity” condition

lim
x→0+

β0(x) = −∞ ,

where β0(r) denotes the element of minimal norm in β(r)

(iii) the data satisfy

f ∈ L2(0, T ; L2(Ω)),

u0 ∈ H2
0 (Ω), v0 ∈ H1

0 (Ω),bβ(χ0) ∈ L1(Ω) , β0(χ0) ∈ L2(Ω)

(iv) the datum χ0 is “separated from 0-barrier” of the potential

min
x∈Ω

χ0(x) > 0.
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Remarks

3 In this case no separation condition of χ0 from 1 is needed

3 We do not need in this case the assumption bβ ∈ C 1,1
loc(0, 1) and so

∂ bβ has to be regarded as a truly multivalued nonlinearity

3 The coercivity condition on β rules out the case in which bβ is the
indicator function of [0, 1], but is fulfilled, e.g., in the case of the
logarithmic potential:bβ(r) = r ln(r) + (1− r) ln(1− r), for r ∈ (0, 1)
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Theorem 2. The 1D case.

Fix T > 0 and assume Hypothesis 2.

Then

there exist δ > 0 - depending on the potential W and on the initial
datum χ0,

there exist θ∗ > 0 - depending on the problem data,

and there exist a quadruple (ϑ, χ, ξ, u) (ξ ∈ β(χ)) solving the 1D
Problem

and the ϑ and χ components fulfil

ϑ(x , t) ≥ θ∗ > 0, χ(x , t) ≥ δ > 0 ∀ (x , t) ∈ [0, `]× [0, T ] .

Suppose in addition that β : dom(β) → R is a single-valued function
such that

for all ρ > 0 β is a Lipschitz continuous function on [ρ, 1).

Then, the triple (ϑ, χ, u) is the unique solution to our 1D problem and
χ has the further regularity

χ ∈ H2(0, T ; H1(Ω)′) .
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Open problems

An idea of the proof of Thm. 2.

I First step: existence of a local solution. Fix δ > 0 such that

χ0(x) ≥ δ > 0 and β0(δ) + γ(δ) < 0 ,

and consider the truncated PDE system where (EQ2) is replaced by

utt−div((1−χ)ε(u))−div(Tδ(χ)ε(ut)) = f a.e. in (0, `)×(0, T ) ,

3 We prove existence of a local solution (bϑ, bχ, bξ, bu) to this system on
some interval [0, T0] fulfilling

bχ(x , t) ≥ δ > 0 ∀ (x , t) ∈ [0, `]× [0, T0] .

Hence, we shall conclude that this is in particular a local solution
to our Problem.

I Second step: extension procedure. Prove global estimates for
the local solution (bϑ, bχ, bξ, bu) fulfilling the separation inequality å

extend to the whole interval [0, T ] the local solution (bϑ, bχ, bξ, bu) å

get existence of a global solution such that χ satisfies the global
separation inequality.
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Remarks

é In 1D: fixed point in a functional framework weaker than in 3D

é Compactness of the solution operator:
I estimates on the solution component ϑ considerably weaker;
I it is not necessary to derive (EQ1);
I local existence is disentangled from the achievement of a two-sided

separation inequality for χ

é If local existence were based on a separation inequality both
from 0 and from 1, in order extend the solution, one should also
prove that for all t ∈ [0, T0] χ(·, t) is separated from both the
potential barriers by a constant invariant from the initial time
(global in time separation inequality)

é This is not the case with the separation inequality in Thm 1: the
separation constant σ at time bT is strictly smaller than the one
at time t = 0. We dispose of a method for obtaining global in
time separation inequalities from below, only.

Z Global separation inequalities of the same kind as our:

¶ with a similar comparison technique by [Miranville, Zelik, ’04]
for the viscous Cahn-Hilliard equation with a logarithmic potential

· and by [Horn, Sprekels, Zheng, ’96] for the Penrose-Fife
model by means of a Moser iteration scheme
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potential barriers by a constant invariant from the initial time
(global in time separation inequality)

é This is not the case with the separation inequality in Thm 1: the
separation constant σ at time bT is strictly smaller than the one
at time t = 0. We dispose of a method for obtaining global in
time separation inequalities from below, only.

Z Global separation inequalities of the same kind as our:

¶ with a similar comparison technique by [Miranville, Zelik, ’04]
for the viscous Cahn-Hilliard equation with a logarithmic potential

· and by [Horn, Sprekels, Zheng, ’96] for the Penrose-Fife
model by means of a Moser iteration scheme
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Z Global separation inequalities play a key role in the study of the
convergence to equilibrium for large times of some phase transition
systems possibly with singular potentials, e.g., by [Aizicovici,
Feireisl, Grasselli, Petzeltová, Schimperna, ...] where
 Lojasiewicz-Simon techniques are used


 It is possible, e.g., to get global existence and some results on the
long-time behaviour of solutions (existence of the ω-limit of

trajectories) to the following 3D isothermal system (e.g. ϑ ≡ ϑc

during the evolution)

χt + Aχ + W ′(χ) =
|ε(u)|2

2
(1iso)

utt − div ((1− χ)ε(u) + χε(ut)) = f (2iso)

coupled with suitable initial-boundary conditions - in case A is the
p−Laplacian (p sufficiently large) or the bilaplacian operator.

Z For (1iso)-(2iso) it would be interesting to study the convergence
of the whole trajectories to stationary states by means , e.g., of
 Lojasiewicz-Simon techniques.
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 Lojasiewicz-Simon techniques are used


 It is possible, e.g., to get global existence and some results on the
long-time behaviour of solutions (existence of the ω-limit of

trajectories) to the following 3D isothermal system (e.g. ϑ ≡ ϑc

during the evolution)

χt + Aχ + W ′(χ) =
|ε(u)|2

2
(1iso)

utt − div ((1− χ)ε(u) + χε(ut)) = f (2iso)

coupled with suitable initial-boundary conditions - in case A is the
p−Laplacian (p sufficiently large) or the bilaplacian operator.

Z For (1iso)-(2iso) it would be interesting to study the convergence
of the whole trajectories to stationary states by means , e.g., of
 Lojasiewicz-Simon techniques.



Themoviscolelastic
materials

E. Rocca

The model

Free-energy
functional

Pseudo-Potential of
dissipation

Example

Macroscopic motion

Microscopic motion

Internal energy
balance

The PDE system

The literature

Main results

Hypothesis 1

The 3D case: local
well-posedness

Proof of Thm. 1

Hypothesis 2

The 1D case: global
well-posedness

Proof of Thm. 2.

Open problems

Open problems

Z Global separation inequalities play a key role in the study of the
convergence to equilibrium for large times of some phase transition
systems possibly with singular potentials, e.g., by [Aizicovici,
Feireisl, Grasselli, Petzeltová, Schimperna, ...] where
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