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Abstract

In this talk we will extend our previous results and solve the prob-
lem not only for first-order differential equations but also for second-
order differential equations in time that reduced to weakly parabolic
systems.
Consider the following problem:

d

dt
(Mu) + Lu = f(t)z , 0 ≤ t ≤ τ , (1)

(Mu)(0) = Mu0 , (2)

Φ[Mu(t)] = g(t) , 0 ≤ t ≤ τ , (3)

where L, M are two closed linear operators with D(L) ⊆ D(M), L
being invertible, Φ ∈ X∗, g ∈ C1+θ([0, τ ]; R) for θ ∈ (0, 1) and M may
have no bounded inverse.

The main assumption here is:

‖M(λM + L)−1‖L(X) ≤ c(1 + |λ|)−β , ∀λ ∈ Σα ,

or, equivalently, (where T = ML−1)

‖L(λM + L)−1‖L(X) = ‖(λT + I)−1‖L(X) ≤ c(1+ |λ|)1−β , ∀λ ∈ Σα ,

where
Σα = {λ ∈ R : Reλ ≥ −c(1 + |Imλ|)α} ,

c > 0, α, β ∈ (0, 1), 0 < β ≤ α ≤ 1, α + β > 3/2, 2 − α − β < θ <
α+β−1, z = Tz∗ and Lu0 = Tv∗. Then we show that problem (1)-(3)
admits a unique global solution

(u, f) ∈ Cθ([0, τ ],D(L)) × Cθ([0, τ ]; R)
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provided that Φ[z] 6= 0 and Φ[Mu0] = g(0).

To find similar results for second order degenerate problem we
consider the following system:

d

dt

(

My′
)

+ Ly′ + Ky = f(t)z , 0 ≤ t ≤ τ , (4)

y(0) = y0 , (5)

My′(0) = My1 , (6)

Φ[My(t)] = g(t) , 0 ≤ t ≤ τ , (7)

with the compatibility relations

Φ[My0] = g(0) , (8)

Φ[My1] = g′(0) , (9)

Φ[z] 6= 0 , (10)

where D(L) ⊆ D(M) ∩ D(K), 0 ∈ ρ(L), ‖u‖D(L) = ‖Lu‖,

‖M(λM+L)−1‖ ≤
C

(1 + |λ|)β
, Re(λ) ≥ c(1+|Im(λ)|)α, α+β > 1.

Let y′ = w, then the system (4)-(7) is equivalent to:

d

dt

[

1 0
0 M

] [

y(t)
w(t)

]

+

[

0 −1
K L

] [

y(t)
w(t)

]

= f(t)

[

0
z

]

,

[

1 0
0 M

] [

y(0)
w(0)

]

=

[

1 0
0 M

] [

y0

y1

]

,

Ψ

([

1 0
0 M

] [

y(t)
w(t)

])

= Φ[Mw(t)] = g′(t) .

where the linear functional Ψ : D(L) × D(L) → R is defined by:

Ψ

([

y(t)
w(t)

])

= Φ[w(t)] .

Using the previous results we can show that problem (4)-(7) has
a unique strict global solution (y, f) such that y′ ∈ Cθ([0, τ ];D(L)),
(My′)′ ∈ Cθ([0, τ ];X) and f ∈ Cθ([0, τ ]; R).
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