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Introduction: setting

We consider two d-dimensional elastic bodies represented by the open, bounded sets
Ω1 and Ω2. There is a common boundary Γ which is the interface where an adhesive
keep the two bodies glued together.

The variable u : Ω→ Rd represents the displacement. The variable z : Γ→ [0, 1]
represents the status of the adhesive.

z(x) = 1⇒ glue perfectly sane at x
z(x) = 0⇒ glue completely deteriored at x ⇒ ineffective

The variable σ : Ω→ Rd×d is the stress of the body. The constitutive equation for σ
is

σ = C0e(u) + µC1e(u̇),

where e(u) := 1
2 (∇u +∇uT ), C0 is the elasticity tensor and C1 is the elasticity tensor

for viscosity, µ > 0 is the viscosity of the material. We suppose Ci positive definite
and constant on Ω (homogeneous material).
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The general problem

We suppose ∂Ω = ∂DΩ ∪ ∂N Ω, which represents the Dirichlet and Neumann part of
the boundary.

If f : Ω→ Rd , g : ∂N Ω→ Rd represents the external forces, and w : ∂DΩ→ Rd a
boundary datum, then the law of dynamic reads

ρü − Div σ = f

where ρ is the constant density of the material, coupled with the Neumann condition
σν = g on ∂N Ω, and the Dirichlet condition u = w on ∂DΩ.
The relation with the variable z arises in the condition

σν = −K[u]z on Γ

where K is the (constant, positive definite) elasticity tensor of the adhesive, and
[u] := u2 − u1.
Let us introduce the delamination potential

1
2

∫
Γ

K[u] · [u]z.
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The internal variable

As for the constitutive equations for z ∈ L∞(Γ, [0, 1]), we want that the process of
deterioration is irreversible:

ż ≤ 0. (1)

Moreover there is a delamination threshold α ∈ L∞(Γ), with α > c > 0, such that

1
2
K[u] · [u] < α ⇒ ż = 0 (2a)

ż(
1
2
K[u] · [u]− α) = 0, (2b)

and

1
2
K[u] · [u]− α ≤ 0, (2c)

holding on the set {z > 0} ⊂ Γ.
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Introduction of the constraint

Physically, the quantity [u] · ν represents the normal jump of the displacement on Γ.
Thus if it is positive, means that the bodies are separating, while a negative value
must be avoided, since it means that interpenetration of matter is taking place.

Therefore the constraint takes the form

[u] · ν ≥ 0. (3)

The presence of (3) will provide an instantaneous normal reaction at Γ as soon as
[u] · ν = 0. Such reaction must have fixed sign too!
So we introduce the reaction term ξ in the equation for σ, i.e.,

−σ(t)ν = K[u(t)]z(t) + ξν on Γ, (4)

coupled with (3) and the condition

[u] · ν > 0 ⇒ ξ = 0, (5)
[u] · ν = 0 ⇒ ξ < 0. (6)

This can be equivalently said writting

ξ ∈ ∂I[0,+∞)([u] · ν), (7)

with ∂I[0,+∞) denotes the subdifferential of the characteristic function of the interval
[0,+∞).
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Simplifications (WLOG) and Generalizations
We treat the homogeneous Dirichlet datum case u = 0 on ∂DΩ. Moreover we assume
all the elasticity tensors being the identity matrix, i.e., C1 = C2 = K = Id , and the
constant ρ = µ = 1. Finally we replace the symmetric gradient e(u) by the usual one
∇u (wlog thanks to Korn).

Let us rewrite all the equations

ü −∆u −∆u̇ = f on Ω, (8a)
− (∇u +∇u̇)ν = [u]z + ξν on Γ, (8b)
1
2
|[u]|2 < α ⇒ ż = 0, (8c)

and

ż(
1
2
|[u]|2 − α) = 0, (8d)

1
2
|[u]|2 − α ≤ 0, (8e)

holding on the set {z > 0} ⊂ Γ.
On the other side, in orther to get a general constraint, we replace the function
I[0,+∞) by j : R→ [0,+∞], being a convex and lower semicontinuous function such
that j(0) = min j = 0. Then the constraint reads

ξ ∈ ∂j([u] · ν). (8f)
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ü −∆u −∆u̇ = f on Ω, (8a)
− (∇u +∇u̇)ν = [u]z + ξν on Γ, (8b)
1
2
|[u]|2 < α ⇒ ż = 0, (8c)
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ü −∆u −∆u̇ = f on Ω, (8a)
− (∇u +∇u̇)ν = [u]z + ξν on Γ, (8b)
1
2
|[u]|2 < α ⇒ ż = 0, (8c)
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Generalized constraint

We define

J (v) :=

∫ T

0

∫
Γ

j(v)dxdt v ∈ L2([0,T ]× Γ). (9)

The subdifferential of J on L2([0,T ]× Γ) is defined as the multivalued operator

∂J : L2([0,T ]× Γ)⇒ L2([0,T ]× Γ),

as follows: for v , u ∈ L2([0,T ]× Γ), we have

v ∈ ∂J (u)⇔ J (w)− J (u) ≥ ((v ,w − u)) ∀w ∈ L2([0,T ]× Γ). (10)

Setting β := ∂j, it is easy to see that v ∈ ∂J (u) if and only if

v(t, x) ∈ β(u(t, x)) for a.e. (t, x) ∈ [0,T ]× Γ. (11)

We call this the pointwise interpretation of ∂J , so we still denote it by β := ∂J .
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Relaxation of the constraint

We consider the restriction of J to the space H ⊂ L2([0,T ]× Γ), and we consider the
subdifferential with respect to this new topology. This is the multivalued operator

∂HJ : H⇒ H′,

defined as follows: for u ∈ H and ξ ∈ H′, we have

ξ ∈ ∂HJ (u) ⇔ J (w)− J (u) ≥ 〈〈ξ,w − u〉〉 ∀w ∈ H, (12)

where 〈〈·, ·〉〉 is the duality pairing between H and H′.

Let us denote by
βw := ∂HJ .

Note that the pointwise interpretation

ξ(t, x) ∈ β(u(t, x)) for a.e. (t, x) ∈ [0,T ]× Γ,

does no longer make sense!
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Properties of the weak constraint

However if ξ ∈ βw (u) the following can be said:

Theorem

There exists a bounded Borel measure T such that 〈〈ξ, ϕ〉〉 =
∫ T

0

∫
Γ
ϕdT for all

ϕ ∈ H ∩ C0([0,T ]× Γ). Moreover if T = Ta + Ts then

Tau ∈ L1([0,T ]× Γ), (13)
Ta(t, x) ∈ β(u(t, x)) for a.e. (t, x) ∈ [0,T ]× Γ, (14)

〈〈ξ, u〉〉 −
∫ T

0

∫
Γ

Tau dxdt = sup
{∫ T

0

∫
Γ

z dTs , z ∈ C([0,T ]× Γ), |z| ≤ 1
}
. (15)

It can be proved that, in the case that j = I[0,+∞), denoting by Ts = ρ|Ts |,

ρ ∈ ∂j(u) |Ts | − a.e. in [0,T ]× Γ. (16)

This means that Ts is supported on the set where u = 0 and that here it holds
ρ = −1.



Properties of the weak constraint

However if ξ ∈ βw (u) the following can be said:

Theorem

There exists a bounded Borel measure T such that 〈〈ξ, ϕ〉〉 =
∫ T

0

∫
Γ
ϕdT for all

ϕ ∈ H ∩ C0([0,T ]× Γ). Moreover if T = Ta + Ts then

Tau ∈ L1([0,T ]× Γ), (13)
Ta(t, x) ∈ β(u(t, x)) for a.e. (t, x) ∈ [0,T ]× Γ, (14)

〈〈ξ, u〉〉 −
∫ T

0

∫
Γ

Tau dxdt = sup
{∫ T

0

∫
Γ

z dTs , z ∈ C([0,T ]× Γ), |z| ≤ 1
}
. (15)

It can be proved that, in the case that j = I[0,+∞), denoting by Ts = ρ|Ts |,

ρ ∈ ∂j(u) |Ts | − a.e. in [0,T ]× Γ. (16)

This means that Ts is supported on the set where u = 0 and that here it holds
ρ = −1.



Properties of the weak constraint

However if ξ ∈ βw (u) the following can be said:

Theorem

There exists a bounded Borel measure T such that 〈〈ξ, ϕ〉〉 =
∫ T

0

∫
Γ
ϕdT for all

ϕ ∈ H ∩ C0([0,T ]× Γ). Moreover if T = Ta + Ts then

Tau ∈ L1([0,T ]× Γ), (13)
Ta(t, x) ∈ β(u(t, x)) for a.e. (t, x) ∈ [0,T ]× Γ, (14)

〈〈ξ, u〉〉 −
∫ T

0

∫
Γ

Tau dxdt = sup
{∫ T

0

∫
Γ

z dTs , z ∈ C([0,T ]× Γ), |z| ≤ 1
}
. (15)

It can be proved that, in the case that j = I[0,+∞), denoting by Ts = ρ|Ts |,

ρ ∈ ∂j(u) |Ts | − a.e. in [0,T ]× Γ. (16)

This means that Ts is supported on the set where u = 0 and that here it holds
ρ = −1.



References

These results are adaptations of those contained in
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Approximation of βw

We introduce jε the Moreau-Yosida regularization of j, and define the operator J ε on
L2([0,T ]× Γ) as

J ε(v) :=

∫ T

0

∫
Γ

jε(v)dxdt v ∈ L2([0,T ]× Γ). (17)

As for j, we set
βε := ∂jε,

the Yosida approximation of β. Recall that βε is globally ε−1-Lipschitz continuous.

Lemma

βε is a monotone operator on H into H′. Moreover for u ∈ H then βε(u) ∈ H′
belongs to the subdifferential of J ε (as an operator on H).
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Approximation of βw

Following the theory of
H. Attouch, “Variational Convergence for Functions and Operators”, Pitman,
London, 1984.

we can then prove that the monotone operators βε tends to the maximal monotone
operator βw in the sense of graph, i.e.,

∀[x , y ] ∈ βw ∃[xε, yε] ∈ βε such that [xε, yε]→ [x , y ],

where the convergence is intended with respect to the strong topology of H×H′.

The following holds:

Lemma

Let the monotone operator ηn tends to the maximal monotone operator η in the sense
of graph (operators on H into H′). Let un ⇀ u weakly in H, ξn ⇀ ξ weakly in H′,
and assume ξn ∈ ηn(un). If

lim sup〈〈ξn, un〉〉 ≤ 〈〈ξ, u〉〉,

then ξ ∈ η(u).

These are the ingredients we need!
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lim sup〈〈ξn, un〉〉 ≤ 〈〈ξ, u〉〉,

then ξ ∈ η(u).

These are the ingredients we need!



Energetic formulation of the evolution

We define a weak form of solution to problem (8).

Definition

Let u0, v0 ∈ V , z0 ∈ Z, and f ∈ L2([0,T ],V ′). Then (u, z, η) is an energetic solution
to (8) if

u ∈ H1([0,T ],V ) ∩W 1,∞([0,T ], L2(Ω)), (18a)

u̇ ∈ H1([0,T ],H−1(Ω̃)) ∩ BV (0,T ; H̃−2(Ω)), (18b)

z ∈ L∞([0,T ],Z) ∩ BV (0,T ; L1(Γ)), (18c)
ξ ∈ H′, (18d)

is such that u(0) = u0, u̇(0) = v0, z(0) = z0, and satisfies conditions (a), (a’), (b),
(c), and (d) below.

(a) for all ϕ ∈ V,

− ((u̇, ϕ̇)) + (u̇(T ), ϕ(T )) + ((∇u̇,∇ϕ)) + ((∇u,∇ϕ)) + 〈〈ξ, [ϕ] · ν〉〉

= (u1, ϕ(0)) + 〈〈f , ϕ〉〉 − ((z[u], [ϕ]))Γ. (19)
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Energetic formulation of the evolution

(a’) for all t ∈ [0,T ] there exists ξt ∈ H′ such that also the local version of (19) holds

− ((u̇, ϕ̇))t + (u̇(t), ϕ(t)) + ((∇u̇,∇ϕ))t + ((∇u,∇ϕ))t + 〈〈ξt , [ϕ] · ν〉〉t
= (u1, ϕ(0)) + 〈〈f , ϕ〉〉t − ((z[u], [ϕ]))Γ

t , (20)

for all ϕ ∈ Vt . Moreover ξt satisfies the property that, for all ϕ ∈ Ht with
ϕ(t) = 0, we have

〈〈ξt , ϕ〉〉t = 〈〈ξ, ϕ̃〉〉, (21)

where ϕ̃ is the extension to H of ϕ ∈ Ht,0 such that ϕ(s) = 0 for s ∈ [t,T ].
(b) We have

ξ ∈ βw ([u] · ν), (22)

and for all t ∈ [0,T ] it also holds that

ξt ∈ βw,t ([ux[0,t]] · ν).



Energetic formulation of the evolution

(c) for almost every x ∈ Γ the function t 7→ z(t, x) is nonincreasing and

either
1
2
|[u(t, x)]|2 ≤ α(x) or z(t, x) = 0 for a.e. x ∈ Γ (23)

for all t ∈ [0,T ].
(c’) for all times t1 and t2 with 0 ≤ t1 < t2 ≤ T it holds∫

Γ

z(t2)(
1
2
|[u(t2)]|2 − α)dx −

∫
Γ

z(t1)(
1
2
|[u(t1)]|2 − α)dx

−
∫ t2

t1

∫
Γ

z[u] · [u̇]dxdt = 0. (24)

(d) for all t ∈ [0,T ] the following energy inequality holds

1
2
‖u̇(t)‖2

H +

∫
Γ

j([u(t)] · ν)dx +
1
2

∫
Γ

z(t)|[u](t)|2dx +
1
2
‖∇u(t)‖2

+

∫ T

0
‖∇u̇‖2dt − (α, z(t))Γ + (α, z0)Γ ≤

1
2
‖v0‖2

H +

∫
Γ

j([u0] · ν)dx +
1
2

∫
Γ

z0|[u0]|2dx +
1
2
‖∇u0‖2 + 〈〈f , u̇〉〉t . (25)



Energetic formulation of the approximate evolution

In order to prove the existence of an energetic solution we introduce the following
approximate evolutions.

Definition

Let ε ∈ (0, 1), u0, v0 ∈ V , z0 ∈ Z, and f ∈ L2([0,T ],V ′). Then (uε, zε) is an
ε-approximation of the energetic solution (4) if

uε ∈ H1([0,T ],V ) ∩W 1,∞([0,T ], L2(Ω)), (26a)

u̇ε ∈ H1([0,T ],V ′), (26b)

zε ∈ L∞([0,T ],Z) ∩ BV (0,T ; L1(Γ)), (26c)

is such that uε(0) = u0, u̇ε(0) = v0, zε(0) = z0, and satisfies conditions (aε), (bε),
and (cε) below.

(aε) for every time t ∈ [0,T ], it holds

− ((u̇ε, ϕ̇))t + (u̇ε(t), ϕ(t)) + ((∇u̇ε,∇ϕ))t + ((∇uε,∇ϕ))t + 〈〈βε([uε] · ν), [ϕ] · ν〉〉t
= (u1, ϕ(0)) + 〈〈f , ϕ〉〉t − ((zε[uε], [ϕ]))Γ

t , (27)

for all ϕ ∈ V.
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Energetic formulation of the approximate evolution

(bε) for almost every x ∈ Γ the function t 7→ zε(t, x) is nonincreasing and

either
1
2
|[uε(t, x)]|2 ≤ α(x) or zε(t, x) = 0 for a.e. x ∈ Γ (28)

for all t ∈ [0,T ].
(cε) the following energy balance holds

1
2
‖u̇ε(t)‖2

H +

∫
Γ

jε([uε(t)] · ν)dx +
1
2

∫
Γ

zε(t)|[uε](t)|2dx +
1
2
‖∇uε(t)‖2

+

∫ T

0
‖∇u̇ε‖2dt − (α, zε(t))Γ + (α, z0)Γ =

1
2
‖v0‖2

H +

∫
Γ

jε([u0] · ν)dx +
1
2

∫
Γ

z0|[u0]|2dx +
1
2
‖∇u0‖2 + 〈〈f , u̇ε〉〉t , (29)

for all t ∈ [0,T ].



Existence of evolutions

For all ε ∈ (0, 1), existence of an approximate solution can be obtained by time
discretization and by an implicit Euler scheme. This is standard and we can adapt, for
instance, results by

T. Roubicek, Adhesive contact of visco-elastic bodies and defect measures arising
by vanishing viscosity. SIAM J. Math. Anal., 45 (2013), 101-126,

and reference therin.

We want to pass to the limit as ε→ 0. The following Theorem holds true.

Theorem

Let (uε, zε) be approximate solutions. Then there exists (u, z, ξ) energetic solution as
in Definition 4 such that, up to a subsequence,

uε → u strongly in H1(0,T ; L2(Ω)) and weakly in H1(0,T ; V ), (30a)

u̇ε ⇀ u̇ weakly in H1(0,T ; H−1(Ω̃)) and weakly* in BV (0,T ; H̃−2(Ω)), (30b)
zε(t) ⇀ z(t) weakly* in L∞(Γ) for all t ∈ [0,T ], (30c)
βε([uε] · ν) ⇀ ξ weakly in H′ and in V ′. (30d)
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Sketch of the proof

In order to get the convergences above we should prove suitable apriori estimates for
(uε, zε, βε([uε] · ν)).

Some estimates are straightforward and follows by the energy balance (cε). These are

‖uε‖H1(0,t;V ) ≤ M,∫
Γ

jε([uε(t)] · ν) ≤ M for all t ∈ [0,T ],

1
2

∫
Γ

|[uε](t)|2zε(t) ≤ M for all t ∈ [0,T ],

‖zε‖L∞(0,t;Z) ≤ M,

‖zε‖BV (0,T ;L1(Γ)) ≤ M.

Crucial is the following one:

Lemma

For all ε ∈ (0, 1) it holds

‖βε([uε] · ν)‖L1(0,T ;L1(Γ)) ≤ M. (31)
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Sketch of the proof

This can be obtained letting ψ̄ ∈ H
1
2 (Γ;Rd ) such that ψ̄ · ν = 1 on the whole Γ and

extending (harmonic) it to an element ϕ ∈ V which is 0 on Ω2, and set
Ψ(t, x) := ϕ(x) for all t ∈ [0,T ]. Testing the weak equation (aε) by u − δΨ, δ > 0,

we obtain

(u̇ε(T ), uε(T ))− (uε1 , uε0)−
∫ T

0
‖u̇ε‖2

2 +

∫
Ω1

uε(t), δΨdx −
∫

Ω1

uε0 , δΨdx +

∫ T

0
‖∇uε‖2

2dt

+
1
2
‖∇uε(T )‖2

2 −
1
2
‖∇uε0‖2

2 + ((∇u, δ∇ψ〉))Ω1 + (∇uε(T ), δ∇Ψ)Ω1 − (∇uε0 , δ∇Ψ)Ω1

+

∫ T

0

∫
Γ

βε([uε] · ν)([uε] · ν − δ)dxdt + ((zε, |[uε]|2 − δuε · ν)) = 〈〈f , uε〉〉+ 〈〈f , δΨ〉〉Ω1 .

and then using the previous estimates and the fact that |βε(x)| ≤ δ−1|βε(x)(x − δ)|
for ε ∈ (0, 1).

The previous estimate implies

‖u̇ε‖W 1,1(0,T ;H̃−2(Ω)) ≤ M, (32)

for all ε ∈ (0, 1).
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Sketch of the proof

Now we employ Helly selection principle combined with a generalized version of
Aubin-Lions compactness principle entail the strong convergence

uε → u strongly in H1(0,T ; L2(Ω)) (33)

uε(t)→ u(t) strongly in L2(Ω) for all t ∈ [0,T ]. (34)

Another key fact is the following:

Lemma
There holds

‖βε([uε] · ν)‖H′ ≤ M, (35)

for all ε ∈ (0, 1).

Using the previous estimate we argue as before using an arbitrary function
ψ ∈ H

1
2 (Γ;Rd ) and suitably extending it to V .

We have then found
βε([uε] · ν) ⇀ ξ,

for some ξ ∈ H′.
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Sketch of the proof

We are now ready to prove (b). To this aim we apply Lemma 3, and then we have to
check that

lim sup
ε→0

〈〈βε(uε), uε〉〉 ≤ 〈〈ξ, u〉〉. (36)

Thanks to the convergences above it is easily seen that (a) holds. Using (27), we
write

〈〈βε([uε] · ν), uε〉〉 = ‖u̇ε‖2
L2(0,T ;L2)

− (u̇ε(T ), uε(T )) + (u1, u0)−
1
2
‖∇uε(T )‖2

+
1
2
‖∇u0‖2 − ‖∇uε‖2

L2(0,T ;L2)
−
∫ T

0

∫
Γ

zε(t)[uε(t)]2dxdt + ((f , uε)). (37)

Taking the lim sup we get

≤ ‖u̇‖2
L2(0,T ;L2)

− (u̇(T ), u(T )) + (u1, u0)−
1
2
‖∇u(T )‖2 +

1
2
‖∇u0‖2 − ‖∇u‖2

L2(0,T ;L2)

+

∫ T

0

∫
Γ

z(t)[u(t)]2dxdt + ((f , u)) = 〈〈ξ, u〉〉, (38)

and the claim follows.
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Some Remarks

We have seen that ξ and ξt coincides with Borel measures concentrated on the set
where [u] · ν = 0. Thanks to the fact that

u̇ ∈ BV (0,T ; H−2(Ω)),

it can be proved that ξt ≡ ξx[0,t]×Γ outside a set of countable many times.

In some sense the presence of such jumps is the main difficulty to prove an enery
balance (if it holds). Outside these points an energy balance holds true!!!

In dimension d = 1 energy balance holds!
The behaviour of the constraint is quite independent of the flow rule of the variable z.
For instance, the same behaviour takes place when we add a viscosity term in the flow
rule

1
2
|[u]|2 + ż − α ≤ 0

(S.-G. Schimperna).
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The end

THANK YOU FOR ATTENTION!
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