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Plan of the Talk

I The objective: include the temperature dependence in models describing the
evolution of nematic liquid crystal flows within both the Oseen-Frank and
Landau-de Gennes theories

I Our results:

1. E. Feireisl, M. Frémond, E. R., G. Schimperna, A new approach to non-isothermal
models for nematic liquid crystals, ARMA, to appear, preprint arXiv:1104.1339v1
(2011)

2. E. Feireisl, E.R., G. Schimperna, A. Zarnescu, Evolution of non-isothermal Landau-de
Gennes nematic liquid crystals flows with singular potential, paper in preparation

I Some future perspectives and open problems
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The motivations and the objectives

I The motivations:

I Theoretical studies of these types of materials are motivated by real-world
applications: proper functioning of many practical devices relies on optical properties
of certain liquid crystalline substances in the presence or absence of an electric field: a
multi-billion dollar industry

I At the molecular level, what marks the difference between a liquid crystal and an
ordinary, isotropic fluid is that, while the centers of mass of LC molecules do not
exhibit any long-range correlation, molecular orientations do exhibit orientational
correlations

I The objective: include the temperature dependence in models describing the
evolution of nematic liquid crystal flows within both the Oseen-Frank and
Landau-de Gennes theories.
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To the present state of knowledge, three main types of liquid crystals are distinguished,
termed smectic, nematic and cholesteric

http://www.laynetworks.com/Molecular-Orientation-in-Liquid-Crystal-Phases.htm

The smectic phase forms well-defined layers that can slide one over another in a manner very
similar to that of a soap

The nematic phase: the molecules have long-range orientational order, but no tendency to the
formation of layers. Their center of mass positions all point in the same direction (within each
specific domain)

Crystals in the cholesteric phase exhibit a twisting of the molecules perpendicular to the director,
with the molecular axis parallel to the director
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Our main aim

We consider the range of temperatures typical for the nematic phase

http://www.netwalk.com/ laserlab/lclinks.html

The nematic liquid crystals are composed of rod-like molecules, with the long axes
of neighboring molecules aligned

Most mathematical work has been done on the Oseen-Frank theory, in which the
mean orientation of the rod-like molecules is described by a vector field d. However,
more popular among physicists is the Landau-de Gennes theory, in which the order
parameter describing the orientation of molecules is a matrix, the so-called Q-tensor

I The flow velocity u evidently disturbs the alignment of the molecules and also the
converse is true: a change in the alignment will produce a perturbation of the
velocity field u. Moreover, we want to include in our model also the changes of the
temperature θ
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Plan

I Introduce the Oseen-Frank (Leslie-Ericksen) and the Landau-de Gennes theories
for static case (for which the fluid velocity is zero) in the nematic case

I Discuss the relations between the two models and the free-energies in the two
cases (cf. the slides by J. Ball [notes for the Summer School, Benin, 2010])

I The dynamic problem: include velocities and temperature dependence in a
simplified Leslie-Ericksen model and in a Landau-de Gennes model

I Our analytical results in the two cases

I Perspectives and open problems
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The Landau-de Gennes theory: the molecular orientation

Consider a nematic liquid crystal filling a bounded connected container Ω in R3 with
“regular” boundary

The distribution of molecular orientations in a ball B(x0, δ), x0 ∈ Ω can be
represented as a probability measure µ on the unit sphere S2 satisfying
µ(E) = µ(−E) for E ⊂ S2

For a continuously distributed measure we have dµ(p) = ρ(p)dp where dp is an
element of the surface area on S2 and ρ ≥ 0,

∫
S2 ρ(p)dp = 1, ρ(p) = ρ(−p)
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E. Rocca (Università di Milano) Non-isothermal nematic liquid crystals flows July 1–5, 2012 7 / 30



The Landau-de Gennes theory: the Q-tensor

The first moment
∫
S2 p dµ(p) = 0, the second moment M =

∫
S2 p ⊗ p dµ(p) is a

symmetric non-negative 3× 3 matrix (for every v ∈ S2,
v ·M · v =

∫
S2 (v · p)2 dµ(p) =< cos2 θ >, where θ is the angle between p and v)

satisfying tr(M) = 1

If the orientation of molecules is equally distributed in all directions (the distribution
is isotropic) and then µ = µ0, where dµ0(p) = 1

4π
dS . In this case the second

moment tensor is M0 = 1
4π

∫
S2 p ⊗ p dS = 1

3
1, because

∫
S2 p1p2 dS = 0,∫

S2 p2
1 dS =

∫
S2 p2

2 dS , etc., and tr(M0) = 1

I The de Gennes Q-tensor measures the deviation of M from its isotropic value

Q = M −M0 =

∫
S2

(
p ⊗ p − 1

3
1

)
dµ(p)

I Note that (cf. [Ball, Majumdar, Molecular Crystals and Liquid Crystals (2010)])

1. Q = QT

2. tr(Q) = 0

3. Q ≥ − 1
3

1

1.+2. implies Q = λ1n1 ⊗ n1 + λ2n2 ⊗ n2 + λ3n3 ⊗ n3, where {ni} is an othonormal basis of
eigenvectors of Q with corresponding eigenvalues λi such that λ1 + λ2 + λ3 = 0

2.+3. implies − 1
3
≤ λi ≤ 2

3

I Q = 0 does not imply µ = µ0 (e.g. µ = 1
6

∑3
i=1(δei + δ−ei ))
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The reduction to the Oseen-Frank model

If the eigenvalues of Q are all distinct then Q is said to be biaxial (biaxiality implies
the existence of more than one preferred direction of molecular alignment)

If two λi are equal then Q is said to be uniaxial (liquid crystal materials with a single
preferred direction of molecular alignment)

Reduction to the Oseen-Frank (1925, 1952) model (Ericksen model, 1991): the
uniaxial case: λ1 = λ2 = − s

3
, λ3 = 2s

3
, setting n3 = d where ni is an orthonormal basis of

eigenvectors of Q corresponding to λi , we have

Q = − s

3
(1− d⊗ d) +

2s

3
d⊗ d = s

(
d⊗ d− 1

3
1

)
,

where − 1
2
≤ s ≤ 1.

Here s ∈ R is a real scalar order parameter that measures the degree of orientational
ordering and d is a vector representing the direction of preferred molecular alignment:
the director field.
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The Landau-de Gennes free energy

Suppose (for the moment) that the material is incompressible, homogeneous and at a
constant temperature T in Ω. At each x ∈ Ω we have an order parameter tensor Q(x)
and the Landau-de Gennes free energy (defined in the space of traceless symmetric
3× 3 matrixes) is

FLG (Q) =

∫
Ω

(
L

2
|∇Q(x)|2 + fB(Q(x))

)
dx ,

where

|∇Q|2 =
∑3

i,j,k=1 Qij,kQij,k is the elastic energy density that penalizes spatial
inhomogeneities and L > 0 is a material-dependent elastic constant

fB(Q) is the bulk free energy density, e.g., (following [de Gennes, Prost (1995)])

fB(Q) =
α(T − T ∗)

2
tr(Q2)− b

3
tr(Q3) +

c

4
(tr(Q2))2

where α, b, c are material-dependent positive constants, T is the absolute
temperature and T ∗ is a characteristic liquid crystal temperature. Call
a = α(T − T ∗)
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The Oseen-Frank free energy

It can be shown (cf. [Majumdar, Zarnescu, ARMA (2010)]) that, if L is small in

FLG (Q) =

∫
Ω

(
L

2
|∇Q(x)|2 + fB(Q(x))

)
dx ,

it is reasonable to consider a theory where Q is required to be uniaxial with constant
scalar order parameter s > 0, i.e.

Q = s

(
d⊗ d− 1

3
1

)
.

Here d = d(x) ∈ S2 represents the preferred direction of molecular alignment

In this case fB is constant and we can consider only the elastic energy and
calculating it in terms of d we obtain the simplest form of the Oseen-Frank free
energy (1925, 1958)

FOF = Ls2

∫
Ω

|∇d(x)|2 dx
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The Ball-Majumdar singular potential

In the Landau-de Gennes free energy there is no a-priori bound on the eigenvalues

In order to naturally enforce the physical constraints in the eigenvalues of the
symmetric, traceless tensors Q, Ball and Majumdar have recently introduced in [Ball,

Majumdar, Molecular Crystals and Liquid Crystals (2010)] a singular component

f (Q) =


infρ∈AQ

∫
S2 ρ(p) log(ρ(p)) dp if λi [Q] ∈ (−1/3, 2/3), i = 1, 2, 3,

∞ otherwise,

AQ =

{
ρ : S2 → [0,∞)

∣∣∣ ∫
S2

ρ(p) dp = 1; Q =

∫
S2

(
p⊗ p− 1

3
I
)
ρ(p) dp

}
.

to the bulk free-energy fB enforcing the eigenvalues to stay in the interval (− 1
3
, 2

3
).
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The hydrodynamic theories in the isothermal case

⇒ The hydrodynamic theory corresponding to the Oseen-Frank free energy has been
developed by Ericksen (1961) and Leslie (1968) (the celebrated Leslie-Ericksen
model)

⇒ The Lin-Liu model (1995) is obtained by replacing the unit-vector constraint on d
with a Ginzburg-Landau penalization W (d) = 1

4ε2 (|d|2 − 1)2, on the director field d,
which should formally converge to the Leslie-Ericksen model when ε→ 0, but this is
an important open issue

⇒ For the Landau-de Gennes free energy with “regular” potential, the hydrodynamic
theory has been developed in [Paicu, Zarnescu, SIAM (2011) and ARMA (2012)]
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E. Rocca (Università di Milano) Non-isothermal nematic liquid crystals flows July 1–5, 2012 13 / 30



The hydrodynamic theories in the isothermal case

⇒ The hydrodynamic theory corresponding to the Oseen-Frank free energy has been
developed by Ericksen (1961) and Leslie (1968) (the celebrated Leslie-Ericksen
model)

⇒ The Lin-Liu model (1995) is obtained by replacing the unit-vector constraint on d
with a Ginzburg-Landau penalization W (d) = 1

4ε2 (|d|2 − 1)2, on the director field d,
which should formally converge to the Leslie-Ericksen model when ε→ 0, but this is
an important open issue

⇒ For the Landau-de Gennes free energy with “regular” potential, the hydrodynamic
theory has been developed in [Paicu, Zarnescu, SIAM (2011) and ARMA (2012)]
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Our main aims

We study the evolutionary system for nematic liquid crystals including the temperature
θ and the velocity u.

We deal with two type of models:

1. [E. Feireisl, M. Frémond, E.R., G. Schimperna, ARMA, to appear]: a variant of the
Lin-Liu model, introduced by Sun and Liu (2009), for vectorial director field d

2. [E. Feireisl, E.R., G. Schimperna, A. Zarnescu, paper in preparation]: a recent
Ball-Majumdar Q-tensorial model preserving the physical eigenvalue constraint on
the traceless and symmetric matrices Q
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E. Rocca (Università di Milano) Non-isothermal nematic liquid crystals flows July 1–5, 2012 14 / 30



Our main aims

We study the evolutionary system for nematic liquid crystals including the temperature
θ and the velocity u. We deal with two type of models:

1. [E. Feireisl, M. Frémond, E.R., G. Schimperna, ARMA, to appear]: a variant of the
Lin-Liu model, introduced by Sun and Liu (2009), for vectorial director field d

2. [E. Feireisl, E.R., G. Schimperna, A. Zarnescu, paper in preparation]: a recent
Ball-Majumdar Q-tensorial model preserving the physical eigenvalue constraint on
the traceless and symmetric matrices Q
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Model 1: the d-vectorial Lin-Liu model

• The time evolution of the velocity field u is governed by the incompressible
Navier-Stokes system, with a non-isotropic stress tensor depending on the gradients
of the velocity and of the director field d, where the transport (viscosity) coefficients
vary with temperature

• The dynamics of d is described by means of a parabolic equation of Ginzburg-Landau
type, with a suitable penalization term to relax the constraint |d| = 1

• A total energy balance together with an entropy inequality, governing the dynamics
of the absolute temperature θ of the system

=⇒ The proposed model is shown compatible with First and Second laws of
thermodynamics, and the existence of global-in-time weak solutions for the
resulting PDE system is established, without any essential restriction on the size of
the data, or on the space dimension, or on the viscosity coefficient
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E. Rocca (Università di Milano) Non-isothermal nematic liquid crystals flows July 1–5, 2012 15 / 30



Model 1: the d-vectorial Lin-Liu model

• The time evolution of the velocity field u is governed by the incompressible
Navier-Stokes system, with a non-isotropic stress tensor depending on the gradients
of the velocity and of the director field d, where the transport (viscosity) coefficients
vary with temperature

• The dynamics of d is described by means of a parabolic equation of Ginzburg-Landau
type, with a suitable penalization term to relax the constraint |d| = 1

• A total energy balance together with an entropy inequality, governing the dynamics
of the absolute temperature θ of the system

=⇒ The proposed model is shown compatible with First and Second laws of
thermodynamics, and the existence of global-in-time weak solutions for the
resulting PDE system is established, without any essential restriction on the size of
the data, or on the space dimension, or on the viscosity coefficient
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The director field dynamics

We assume that the driving force governing the dynamics of the director d is of
“gradient type” ∂dF , where the free-energy functional F is given by

F =
|∇xd|2

2
+ W (d)− θ log θ

W penalizes the deviation of the length |d| from its natural value 1; generally, W is
assumed to be a sum of a dominating convex (and possibly non smooth) part and a
smooth non-convex perturbation of controlled growth. E.g. W (d) = (|d|2 − 1)2

Consequently, d satisfies the following equation

dt + u · ∇xd−d · ∇xu = ∆d− ∂dW (d)

where the last term accounts for stretching of the director field induced by the
straining of the fluid

The presence of the stretching term d · ∇xu in the d-equation prevents us from
applying any maximum principle. Hence, we cannot find any L∞ bound on d (useful
in order to handle the nonlinearities)
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The momentum balance

♦ In the context of nematic liquid crystals, we have the incompressibility constraint

div u = 0

♦ By virtue of Newton’s second law, the balance of momentum reads

ut + u · ∇xu +∇xp = div S + div σnd + g

where p is the pressure, and

• the stress tensors are

S =
µ(θ)

2

(
∇xu +∇t

xu
)
, σnd = −∇xd�∇xd + (∂dW (d)−∆d)⊗ d

where ∇xd�∇xd :=
∑

k ∂i dk∂jdk , µ is a temperature-dependent viscosity
coefficient

• The presence of the stretching term d · ∇xu in the d-equation prevents us from
applying any maximum principle. Hence, we cannot find any L∞ bound on d. We
will need a weak formulation of the momentum balance
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The total energy balance

∂t

(
1

2
|u|2 + e

)
+ u · ∇x

(
1

2
|u|2 + e

)
+ div

(
pu + qd+qnd − Su− σndu

)
= g · u+ div

(
∇xd · (∆d− ∂dW (d))

)
with the internal energy

e =
|∇xd|2

2
+ W (d) + θ

and the flux

q = qd + qnd = −k(θ)∇xθ − h(θ)(d · ∇xθ)d−∇xd · ∇xu · d

together with

The entropy inequality

H(θ)t + u · ∇xH(θ) + div(H ′(θ)qd)

≥ H ′(θ)
(

S : ∇xu+|∆d− ∂dW (d)|2
)

+ H ′′(θ)qd · ∇xθ

holding for any smooth, non-decreasing and concave function H.
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The initial and boundary conditions

In order to avoid the occurrence of boundary layers, we suppose that the boundary is
impermeable and perfectly smooth imposing the complete slip boundary conditions:

u · n|∂Ω = 0, [(S + σnd)n]× n|∂Ω = 0

together with the no-flux boundary condition for the temperature

qd · n|∂Ω = 0

and the Neumann boundary condition for the director field

∇xdi · n|∂Ω = 0 for i = 1, 2, 3

The last relation accounts for the fact that there is no contribution to the surface force
from the director d. It is also suitable for implementation of a numerical scheme.
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A weak solution is a triple (u, d, θ) satisfying:

the momentum equations (ϕ ∈ C∞0 ([0,T )× Ω; R3), ϕ · n|∂Ω = 0):

∫ T

0

∫
Ω

(
u · ∂tϕ+ u⊗ u : ∇xϕ+ p divϕ

)
=

∫ T

0

∫
Ω

(S + σnd ) : ∇xϕ−
∫

Ω
g · ϕ−

∫
Ω

u0 · ϕ(0, ·) ;

the director equation: ∂td + u · ∇x d− d · ∇x u = ∆d− ∂dW (d) a.e., ∇x di · n|∂Ω = 0;

the total energy balance (ϕ ∈ C∞0 ([0,T )× Ω), e0 = λ
2
|∇xd0|2 + λW (d0) + θ0):∫ T

0

∫
Ω

((
1

2
|u|2 + e

)
∂tϕ

)
+

∫ T

0

∫
Ω

((
1

2
|u|2 + e

)
u · ∇xϕ

)
+

∫ T

0

∫
Ω

(
pu + q− Su− σnd u

)
· ∇xϕ

=

∫ T

0

∫
Ω

(
∇x d · (∆d− ∂dW (d))

)
· ∇xϕ−

∫ T

0

∫
Ω

g · uϕ−
∫

Ω

(
1

2
|u0|2 + e0

)
ϕ(0, ·) ;

the entropy production inequality (ϕ ∈ C∞0 ([0,T )× Ω), ϕ ≥ 0):∫ T

0

∫
Ω

H(θ)∂tϕ+

∫ T

0

∫
Ω

(
H(θ)u + H′(θ)qd

)
· ∇xϕ

≤ −
∫ T

0

∫
Ω

(
H′(θ)

(
S : ∇x u + |∆d− ∂dW (d)|2

)
+ H′′(θ)qd · ∇xθ

)
ϕ−

∫
Ω

H(θ0)ϕ(0, ·)

for any smooth, non-decreasing and concave function H.
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)
ϕ−

∫
Ω

H(θ0)ϕ(0, ·)

for any smooth, non-decreasing and concave function H.
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The existence theorem [E. Feireisl, M. Frémond, E. R., G. Schimperna, ARMA, to

appear]

Assume that Ω ⊂ R3 is a bounded domain of class C 2+ν , g ∈ L2((0,T )× Ω; R3),

W ∈ C 2(R3), W ≥ 0, W convex for all |d| ≥ D0, lim|d|→∞W (d) =∞
The transport coefficients µ, k, and h are continuously differentiable functions
satisfying

0 < µ ≤ µ(θ) ≤ µ, 0 < k ≤ k(θ), h(θ) ≤ k for all θ ≥ 0

and the initial data satisfy

u0 ∈ L2(Ω; R3), div u0 = 0, d0 ∈W 1,2(Ω; R3), W (d0) ∈ L1(Ω),

θ0 ∈ L1(Ω), ess infΩ θ0 > 0.

Then our problem possesses a weak solution (u, d, θ) belonging to the class

u ∈ L∞(0,T ; L2(Ω; R3)) ∩ L2(0,T ; W 1,2(Ω; R3)),

d ∈ L∞(0,T ; W 1,2(Ω; R3)) ∩ L2(0,T ; W 2,2(Ω; R3)),

W (d) ∈ L∞(0,T ; L1(Ω)) ∩ L5/3((0,T )× Ω),

θ ∈ L∞(0,T ; L1(Ω)) ∩ Lp(0,T ; W 1,p(Ω)), 1 ≤ p < 5/4, θ > 0 a.e. in (0,T )× Ω,

with the pressure p
p ∈ L5/3((0,T )× Ω).
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An idea of the proof

We perform suitable a-priori estimates which coincide with the regularity class
stated in the Theorem

It can be shown that the solution set of our problem is weakly stable (compact)
with respect to these bounds, namely, any sequence of (weak) solutions that
complies with the uniform bounds established above has a subsequence that
converges to some limit

Hence, we construct a suitable family of approximate problems (via
Faedo-Galerkin scheme + regularizing terms in the momentum equation)
whose solutions weakly converge (up to subsequences) to limit functions which solve
the problem in the weak sense
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E. Rocca (Università di Milano) Non-isothermal nematic liquid crystals flows July 1–5, 2012 22 / 30



An idea of the proof

We perform suitable a-priori estimates which coincide with the regularity class
stated in the Theorem

It can be shown that the solution set of our problem is weakly stable (compact)
with respect to these bounds, namely, any sequence of (weak) solutions that
complies with the uniform bounds established above has a subsequence that
converges to some limit

Hence, we construct a suitable family of approximate problems (via
Faedo-Galerkin scheme + regularizing terms in the momentum equation)
whose solutions weakly converge (up to subsequences) to limit functions which solve
the problem in the weak sense
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Model 2: the Q-tensorial Ball-Majumdar model

We work in the three-dimensional torus Ω ⊂ R3 in order to avoid complications connected with
boundary conditions.

The free energy density takes the form

F =
1

2
|∇Q|2 + fB(θ,Q)−θ log θ

where fB is bulk the configuration potential:

fB(θ,Q) = f (Q)− U(θ)G(Q)

f is the convex l.s.c. and singular Ball-Majumdar potential

U changes in sign at a critical temperature: U(θ) = α(θ − θ∗) for θ ∼ θ∗ with a controlled
growth for large θ

e.g. G(Q) = tr(Q2)

Theorem [E. Feireisl, E.R., G. Schimperna, A. Zarnescu, paper in preparation] There exists at
least one weak solution to a system coupling

a weak momentum equation for u

a gradient-type equation for Q
an entropy inequality+total energy balance for θ

for finite-energy initial data.
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Q-tensor equation

We assume that the driving force governing the dynamics of the director d is of
“gradient type” ∂dF :

∂tQ + u · ∇Q− S(∇u,Q) = Γ(θ)H, (eq-Q)

The left hand side is the “generalized material derivative”
DtQ = ∂tQ + u · ∇Q− S(∇u,Q)

S represents deformation and stretching effects of the crystal director along the flow

H = ∆Q− ∂f (Q)

∂Q + U(θ) ∂G(Q)

∂Q

The function f represents the convex part of a singular potential of
[Ball-Majumdar] type

The functions U and G are smooth and satisfy suitable growth conditions
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E. Rocca (Università di Milano) Non-isothermal nematic liquid crystals flows July 1–5, 2012 24 / 30



Q-tensor equation

We assume that the driving force governing the dynamics of the director d is of
“gradient type” ∂dF :

∂tQ + u · ∇Q− S(∇u,Q) = Γ(θ)H, (eq-Q)

The left hand side is the “generalized material derivative”
DtQ = ∂tQ + u · ∇Q− S(∇u,Q)

S represents deformation and stretching effects of the crystal director along the flow

H = ∆Q− ∂f (Q)

∂Q + U(θ) ∂G(Q)

∂Q

The function f represents the convex part of a singular potential of
[Ball-Majumdar] type

The functions U and G are smooth and satisfy suitable growth conditions
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The Ball-Majumdar potential

The Ball-Majumdar potential (cf. [Ball, Majumdar (2010)]) exhibit a logarithmic
divergence as the eigenvalues of Q approaches − 1

3
and 2

3

f (Q) =


infρ∈AQ

∫
S2 ρ(p) log(ρ(p)) dp if λi [Q] ∈ (−1/3, 2/3), i = 1, 2, 3,

∞ otherwise,

AQ =

{
ρ : S2 → [0,∞)

∣∣∣ ∫
S2

ρ(p) dp = 1; Q =

∫
S2

(
p⊗ p− 1

3
I
)
ρ(p) dp

}
.

=⇒ It explodes as one of the eigenvalues of Q approaches the limiting values −1/3 or

2/3.
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Equation of momentum

In the context of nematic liquid crystals, we have the incompressibility constraint

div u = 0

By virtue of Newton’s second law, the balance of momentum reads

∂tu + div(u⊗ u) = div σ + g, (eq-u)

I The stress σ is given by

σ =
µ(θ)

2
(∇u +∇tu)− pI + T

I The coupling term (or “extra-stress”) T depends both on θ and Q:

T = 2ξ (H : Q)

(
Q +

1

3
I
)
−ξ
[
H
(

Q +
1

3
I
)

+

(
Q +

1

3
I
)

H
]

+(QH− HQ)−∇Q�∇Q,

where ξ is a fixed scalar parameter.
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Entropy equation

The evolution of temperature is prescribed by stating the entropy balance:

st + u · ∇s − div

(
κ(θ)

θ
∇θ
)

(eq-θ)

≥1

θ

(
µ(θ)

2

∣∣∇u +∇tu
∣∣2 + Γ(θ)|H|2 +

κ(θ)

θ
|∇θ|2

)
,

where s = 1 + log θ + U ′(θ)G(Q)

The coefficients µ, κ and Γ are smooth and bounded

The “heat” balance can be recovered by (formally) multiplying by θ

Due to the quadratic terms, we can only interpret (eq-θ) as an inequality
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Total energy balance

Passing from the heat equation to the entropy inequality gives rise to some
information loss

Following an idea by [Buĺıček, Feireisl, & Málek (2009)], we can complement the
system with the total energy balance

∂t

(
1

2
|u|2 + e

)
+ div

(
(

1

2
|u|2 + e)u

)
+ div q (eq-bal)

= div(σu) + div

(
Γ(θ)∇Q :

(
∆Q− ∂f (Q)

∂Q
+ U(θ)

∂G(Q)

∂Q

))
+ g · u,

where e = F + sθ is the internal energy

Note the explicit occurrence of the pressure p (“hidden” inside σ). To control it,
assuming periodic b.c.’s is essential

Here the internal energy balance is more complicated than for the vectorial model
due to the more sophisticated dependence of ψB from θ and Q =⇒ the entropy s
depends also on Q
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Possible extensions

The system we described may be modified in several ways, giving rise to further
interesting mathematical problems

In particular, we are interested in the case when the configuration potential has the
form (proposed also by Ball and Majumdar)

fB(θ,Q) = Λ(θ)f (Q) + G(Q)

We have preliminary results both in the case when Λ(θ) = θ and in the case when Λ
is nondegenerate at 0
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