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o Investigate the mathematical meaning of diffusion

@ Introduce the nonlocal model H coupling

- a nonlocal Cahn-Hilliard equation with nonconstant mobility

- an incompressible Navier-Stokes system including the Korteweg force

@ Our main results on the nonlocal model H

o existence of solutions in the 3D case for the nondegenerate and the degenerate
mobility cases

o existence of the global attractor (in the sense of generalized semiflows) in the 2D case

@ Our results on the 3D convective nonlocal Cahn-Hilliard equation with degenerate
mobility

o well-posedness

o existence of the global attractor
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Modelling motivation

@ A well-known model which describes the evolution of an incompressible isothermal
mixture of two immiscible fluids is the so-called model H (cf. [Gurtin, Polignone,
Vifals, '96], [Hohenberg, Halperin, '77], [H. Abels’ seminar])

@ A fluid-mechanical theory for two-phase mixtures of fluids faces a well known
mathematical difficulty:

> the movement of the interfaces = Lagrangian description
> the bulk fluid flow = Eulerian framework
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Modelling motivation

@ A well-known model which describes the evolution of an incompressible isothermal
mixture of two immiscible fluids is the so-called model H (cf. [Gurtin, Polignone,
Vifals, '96], [Hohenberg, Halperin, '77], [H. Abels’ seminar])

@ A fluid-mechanical theory for two-phase mixtures of fluids faces a well known
mathematical difficulty:

> the movement of the interfaces = Lagrangian description
> the bulk fluid flow = Eulerian framework

@ The phase-field methods overcome this problem by postulating the existence of a
“diffuse” interface spread over a possibly narrow region covering the “real” sharp
interface boundary:

> an order parameter ¢ (concentration difference of the two components) is introduced
to demarcate the two species and to indicate the location of the interface

> mixing energy F is defined in terms of ¢ and its spatial gradient

@ The time evolution of ¢ is described by means of a convection-diffusion equation:
typically, different variants of Cahn-Hilliard or Allen-Cahn or other types of
dynamics are used (see [Anderson et al., '98], [Feng, '06])

@ This parameter influences the (average) fluid velocity u through a capillarity force
(called Korteweg force) proportional to uVp, where p is the chemical potential (cf.
[Jasnow, Vifials, '96])
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The local model H

The state variables are
- the order parameter ¢

- the velocity field u
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The local model H

The state variables are
- the order parameter ¢
- the velocity field u
and the corresponding initial-boundary value problem (in Q x (0, T)) is

u; — vAu+ (u- V)u+ Vr = Vo + h, div(u) =0
. 1
e+ u- Ve =div(m(@)Ve),  p=—-chp+ =F(p)
where

m denotes the non-constant mobility

w the chemical potential

F the (density of) potential energy (logarithmic or double-well potential)
uV is the so-called Korteweg force

v the viscosity and 7 the pressure

o > 0 is related to the (diffuse) interface thickness
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Local and nonlocal Cahn-Hilliard
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Local and nonlocal Cahn-Hilliard

The chemical potential p represents the first variation of the free energy functionals:
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Local and nonlocal Cahn-Hilliard

The chemical potential p represents the first variation of the free energy functionals:

@ (in the local case, cf. [Elliott, Garcke '96], [Boyer, '99], [Abels, '09], ... )

e) = [ (GIveear + FED) o
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Local and nonlocal Cahn-Hilliard

The chemical potential p represents the first variation of the free energy functionals:

@ (in the local case, cf. [Elliott, Garcke '96], [Boyer, '99], [Abels, '09], ... )

Elo) = /Q (%\W(X)F + @) d

o (in the nonlocal case, cf. [Gajewski, Zacharias, '03], ..., [Colli, Frigeri, Grasselli, '12])
E(@) = | [ J=0) (e = o))" dely + [ nF(ol) o
Q

» J: R? — R is a smooth even function, e.g. J(x) = j3|x|~! in 3D and
J(x) = —j2 log |x] in 2D

> it is justified as a macroscopic limit of microscopic phase segregation models with
particle conserving dynamics (cf. [Giacomin Lebowitz, '97&.'98])
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From Nonlocal to Local

Local Ginzburg-Landau potential “=" lim, ... (Nonlocal van der Waals potential)
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From Nonlocal to Local

Local Ginzburg-Landau potential “=" lim,_... (Nonlocal van der Waals potential)

Choosing J(x,y) = n®"2J(|n(x — y)[?), with J nonnegative function supported in [0, 1]

[ it =Y 60~ e oy = [ ) M dz
Q n(x) n
=5 [ A=) (Tl),2) oz = Vel

where we denote

o 0=2/d [, J(z] )|z dz and Qa(x) = n(Q — x) and we have used the identity
o [oaJ(z*)(e,2)* dz=1/d [,4J

(121?)|z|? dz for every unit vector e € R
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Big changes in the model and in the analysis:

o the fourth order equation becames a second order equation = more chance to get
separation property and uniqueness

@ the analysis is more challenging due to the less regularity of ¢ and so of the
Korteweg force uV
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Choosing J(x,y) = n?*2J(|n(x — y)|?), with J nonnegative function supported in [0, 1]:

[t Y ) oy = [ ey |EEFR A
Q n(x) n
=5 [ A=) (Tl),2) oz = Vel

where we denote
o 0=2/d [, J(z] )|z|? dz and Q.(x) = n( — x) and we have used the identity
o [ooJ(z? (e, z)? dz=1/d Jaa J(121*)|2|? dz for every unit vector e € R?

Big changes in the model and in the analysis:
o the fourth order equation becames a second order equation = more chance to get
separation property and uniqueness
@ the analysis is more challenging due to the less regularity of ¢ and so of the
Korteweg force uV

A philosophical question: is diffusion local or nonlocal?
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Understand Diffusion by Nonlocality
By Louis Caffarelli, at the “Colloquium Magenes", Pavia, March 20, 2013:
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Understand Diffusion by Nonlocality
By Louis Caffarelli, at the “Colloquium Magenes", Pavia, March 20, 2013:

“Diffusion is a process where the variable under consideration, a particle density, a
temperature, a population tends to revert to its surrounding average.

The diffusion equation
ur—Au=20

does not seem to say much about diffusion, unless we realize that the “Laplacian” is in
fact the limit of an averaging process.
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Understand Diffusion by Nonlocality
By Louis Caffarelli, at the “Colloquium Magenes”, Pavia, March 20, 2013:

“Diffusion is a process where the variable under consideration, a particle density, a
temperature, a population tends to revert to its surrounding average.

The diffusion equation
—Au=0

does not seem to say much about diffusion, unless we realize that the “Laplacian” is in
fact the limit of an averaging process.

If we consider
Au gmw(x'/ — u(x) dy

the density at the point x compares itself with its values in a tiny surrounding ball. The
difference between the surrounding average and the value at x, properly scaled is the
“Laplacian”.

If the set to which u compares itself is not shrunk to zero, the process is an integral
diffusion. More generally, for a positive symmetric kernel, it can be

Lux) = [ Jxy)(uly) — () dy
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Our main aim: deal with the case of Cahn-Hilliard equation with non constant mobility
m and nonlocal phase dynamics (cf. [Giacomin Lebowitz, '97&'98])
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Our main aim: deal with the case of Cahn-Hilliard equation with non constant mobility
m and nonlocal phase dynamics (cf. [Giacomin Lebowitz, '97&'98])

The state variables are
- the order parameter ¢
- the velocity field u

and the corresponding initial-boundary value problem (in Q x (0, T)) is

¢ +u- Vo =div(m(e)Vu)

p=ap—Jxp+F(p)

u: —vAu+ (u-Vu+ Vr = uVe+h, div(u)=0
on _
On
u(0) =uo, ¢(0)=¢o inQ

0, u=0 ondQx(0,T)

where

@ m denotes the non-constant mobility

1 the chemical potential

(Jx@)(x) := [qJ(x = y)e(y)dy, a(x) := [ J(x — y)dy, x € Q2 (nonlocal operator)
F the (density of) potential energy (logarithmic or double-well potential)

v the viscosity and 7 the pressure

E. Rocca (Universita di Milano) Nonlocal Cahn-Hilliard-Navier-Stokes February 6, 2013 8/32



First part: The existence results
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First part: The existence results

@ The non degenerate mobility:
> assumptions on m, J and F
> weak solution notion
> existence of weak solution and energy inequality (3D)/identity (2D)
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First part: The existence results

@ The non degenerate mobility:

> assumptions on m, J and F
> weak solution notion
> existence of weak solution and energy inequality (3D)/identity (2D)

@ The degenerate mobility:

> assumptions on m and F
> weak solution notion
> existence of weak solution and energetic inequality (3D)/identity (2D)
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The non degenerate mobility: assumptions

(H1) m e CY}(R) and there exist mi, m, > 0 such that my < m(s) < m, for all s € R;

loc
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The non degenerate mobility: assumptions

(H1) m e CY}(R) and there exist mi, m, > 0 such that my < m(s) < m, for all s € R;

loc

(H2) J(- — x) € WHH(Q) for a.a x € Q, J(x) = J(—x), a(x) := / J(x — y)dy >0 and
Q

a* —sup/|J(x— y)|dy < oo, b —sup/\VJx—y)|dy<oo
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The non degenerate mobility: assumptions

(H1) m e CY}(R) and there exist mi, m, > 0 such that my < m(s) < m, for all s € R;

loc

(H2) J(- — x) € WHH(Q) for a.a x € Q, J(x) = J(—x), a(x) := / J(x —y)dy >0 and
Q

—sup/ |[J(x — y)|dy < oo, b —sup/ [VJ(x — y)|dy < oo;

x€Q

(H3) (quadratic perturbation of a strictly convex function) F € C2}(R) and there exists
co > 0 such that

F"(s) + a(x) > co, VseR, ae x€Q;
(H4) There exist ¢; > (a" — a.)/2 (a. = infxea [, J(x — y)dy) and ¢ € R such that
F(s) > as’ — o, Vs e R;

(H5) (fulfilled by arbitrary polynomially growing potentials) There exist ¢z > 0, ¢z > 0
and r € (1,2] such that

[F'(s)|" < cs3|F(s)| + ca, Vs eR
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Definition 1: the non degenerate mobility — notion of weak solutions
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Definition 1: the non degenerate mobility — notion of weak solutions

Let uo € (L*(Q))aiv, wo € L*(R) such that F(wo) € L*(Q), h € L*(0, T; H*():,), and
0 < T < oo be given.
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Definition 1: the non degenerate mobility — notion of weak solutions
Let uo € (L3(Q))div, o € L*(Q) such that F(po) € LY(Q), h € L*(0, T; H*(Q)},), and
0 < T < oo be given.
Then, a couple [u, ¢] is a weak solution to the PDE system on [0, T] if
ue L0, T; L*(Q)aw) N L0, T; H(Q)ai), » € L(0, T; L2(Q)) N L*(0, T; H(Q))
ur e L300, T; HH(Q)5,), ¢ € LY3(0, T; HH(Q)), if d =3,
ur € 700, T; HY(Q)5), e € L2700, T; HY(Q)®) (1,6 € (0,1)), if d=2
pi=ap— Jx o+ F'(p) € L*(0, T; H(Q))
and the following variational formulation is satisfied for a.a. t € (0, T)
(pe, ) + (m(9) Vi, Vi) = (up, VY), Vv € H'(Q)
(ut,v) + v(Vu, Vv) + b(u,u,v) = —(oV,v) + (h,v), Y € H (Q)ai

together with the initial conditions u(0) = ug, ¢(0) = o in Q and where

b(u,v,w) := /(u “V)v-w, Yu,v,w € H'(Q)an
Q
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Theorem 1: the non degenerate mobility — existence of solutions in 3D
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Theorem 1: the non degenerate mobility — existence of solutions in 3D
Let uo € L*(Q)div, o € L*(Q) such that F(wo) € LY(Q), h € L*(0, T; H'(Q)5,), and
suppose that (H1)-(H5) are satisfied.
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Theorem 1: the non degenerate mobility — existence of solutions in 3D

Let uo € L*(Q)div, o € L*(Q) such that F(wo) € LY(Q), h € L*(0, T; H'(Q)5,), and
suppose that (H1)-(H5) are satisfied. Then, for every given T > 0, there exists a weak
solution [u, ¢] satisfying the energy inequality

t t
£(u(0). () + [ (Il + IV/m()Vul)dr < Eluo. o) + [ (h(r).uper
0
for every t > 0, where we have set

E(u(0) #() = 31O + 7 [ [ Jx =)t 0) = oty ) ey + [ Flo(e)) e
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Theorem 1: the non degenerate mobility — existence of solutions in 3D

Let uo € L*(Q)div, o € L*(Q) such that F(wo) € LY(Q), h € L*(0, T; H'(Q)5,), and
suppose that (H1)-(H5) are satisfied. Then, for every given T > 0, there exists a weak
solution [u, ¢] satisfying the energy inequality

t t
£(u(0). () + [ (Il + IV/m()Vul)dr < Eluo. o) + [ (h(r).uper
0
for every t > 0, where we have set

E(u(0) #() = 31O + 7 [ [ Jx =)t 0) = oty ) ey + [ Flo(e)) e

Furthermore, assume that [(H4): F(s) > c1s° — ] is replaced by

(H7) (fulfilled by the classical double well) F € C2!(R) and there exist ¢s > 0, cs > 0 and
p > 2 such that

F'(s)+a(x) > cs|s|” > — 5, VS ER, ae. x€Q, a(x):= / J(x — y)dy
Q
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Theorem 1: the non degenerate mobility — existence of solutions in 3D
Let to € L*(Q)aiv, wo € L*(Q) such that F(po) € LY(Q), h € L3(0, T; H(Q)3), and
suppose that (H1)-(H5) are satisfied. Then, for every given T > 0, there exists a weak
solution [u, ¢] satisfying the energy inequality

EQu(e). o) + [ (VI + 1Vl dr < Eun,on) + [ hir),ujar
for every t > 0, where we have set
E(u(0) #() = 31O + 7 [ [ Jx =)t 0) = oty ) ey + [ Flo(e)) e
Furthermore, assume that [(H4): F(s) > c1s° — ] is replaced by

(H7) (fulfilled by the classical double well) F € C2!(R) and there exist ¢s > 0, cs > 0 and
p > 2 such that

F'(s)+a(x) > cs|s|” > — 5, VS ER, ae. x€Q, a(x):= / J(x — y)dy
Q

Then, for every T > 0 there exists a weak solution [u, ¢] satisfying
o € L¥(0, T L2(2)),
pe € L2(0, T;HY(Q)"), if d=2 or (d=3andp>3),
ue € L2(0, T; H'(Q)5,), if d=2

The proof follows the line of [Colli, Frigeri, Grasselli, '12]
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Theorem 1: The non degenerate mobility — existence of solutions in 2D
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Theorem 1: The non degenerate mobility — existence of solutions in 2D
Assume that d = 2 and [(H4): F(s) > c1s* — ] is replaced by
(H7) F € C2}(R) and there exist ¢s > 0, ¢s > 0 and p > 2 such that

loc

F"(s) + a(x) > cs|s|” % — c, VseR, ae xeQ
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Theorem 1: The non degenerate mobility — existence of solutions in 2D
Assume that d = 2 and [(H4): F(s) > c1s* — ] is replaced by
(H7) F € C2}(R) and there exist cs > 0, cs > 0 and p > 2 such that

F"(s) + a(x) > cs|s|” % — c, VseR, ae xeQ

Then,
@ any weak solution satisfies the energy identity

%5(U:¢)+V||VU||2+ IV/m(@)Vul?* = (h(t),u),  t>0
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Theorem 1: The non degenerate mobility — existence of solutions in 2D
Assume that d = 2 and [(H4): F(s) > c1s* — ] is replaced by
(H7) F € C2}(R) and there exist cs > 0, cs > 0 and p > 2 such that
F'(s) + a(x) > cs|s|P > — s, VseR, ae x€Q
Then,
@ any weak solution satisfies the energy identity

d
55(U7¢)+V\|Vull2+ IV/m(e)Vul® = (h(t),u),  t>0
In particular we have
u € C([0,00); L*(Q)av), € C([0,00); L*(R)), / F(#) € C([0, 00))
Q
o If in addition h € L2,(0, 00; H*(Q)%:,), then any weak solution satisfies also the
dissipative estimate
E(u(t), (1)) < E(uo, po)e™ ™ + F(mo)|Q| + K, vt >0,

where my = (o, 1) and k, K are two positive constants which are independent of
the initial data, with K depending on Q, v, J, F and ||hHL§b(0,OO;H1(Q) )

*
div

The proof follows the line of [Colli, Frigeri, Grasselli, '12]
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The degenerate mobility: assumptions

We shall now suppose that the mobility m is degenerate and that the double-well
potential F is singular in (—1,1) with 1 and —1 as singular points.
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The degenerate mobility: assumptions

We shall now suppose that the mobility m is degenerate and that the double-well
potential F is singular in (—1,1) with 1 and —1 as singular points.

More precisely, we assume that (cf. [Elliott, Garcke, '96], [Gajewski, Zacharias, '03],
[Giacomin, Lebowitz, '97&'98]) :

(D1) me C'([~1,1]), m > 0 and that m(s) =0 if and only if s = —1 or s = 1,
F € C?(-1,1) and

mF" € C([-1,1])
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The degenerate mobility: assumptions

We shall now suppose that the mobility m is degenerate and that the double-well
potential F is singular in (—1,1) with 1 and —1 as singular points.

More precisely, we assume that (cf. [Elliott, Garcke, '96], [Gajewski, Zacharias, '03],
[Giacomin, Lebowitz, '97&98]) :

(D1) m e C*([~1,1]), m > 0 and that m(s) =0 if and only if s = —1 or s = 1,
F € C*(-1,1) and

mF" € C([-1,1])
(D2) F=F+ F, > € C*([~1,1]) and there exists a» > 4(a* — a. — by), where
by = minFy’ and ¢ > 0 such that

Fi(s)>a, Vse(—1,—-1+e]U[l—eco1)

(D3) There exists eg > 0 such that FIH is non-decreasing in [1 — g9, 1) and non-increasing

in (=1, -1+ &)
(D4) There exists cg > 0 such that

"

F (s)+ a(x) > o, Vs € (—1,1), ae x€Q

E. Rocca (Universita di Milano) Nonlocal Cahn-Hilliard-Navier-Stokes February 6, 2013

14/ 32



Examples of m and F

It is easy to see that (D1)—(D4) are satisfied in the physically relevant case where the
mobility and the double-well potential are given by

m(s) = ki(1 — 52)7 F(s) = 7%52 + g((l + s)log(l+s)+ (1 —s)log(l— s))

where 0 < 6 < f.. Indeed, setting F1(s) := (6/2)((1 + s) log(1 + s) + (1 — s) log(1 — s))
and F»(s) = —(#./2)s?, then we have

mF' = ki >0

and so (D1) is fulfilled, while (D4) holds if and only if infoa > 6. — 6.
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Examples of m and F

It is easy to see that (D1)—(D4) are satisfied in the physically relevant case where the
mobility and the double-well potential are given by

m(s) = ki(1 — 52)7 F(s) = 7%52 + g((l + s)log(l+s)+ (1 —s)log(l— s))

where 0 < 6 < f.. Indeed, setting F1(s) := (6/2)((1 + s) log(1 + s) + (1 — s) log(1 — s))
and F»(s) = —(#./2)s?, then we have

mFl” = k6 >0
and so (D1) is fulfilled, while (D4) holds if and only if infoa > 6. — 6.
Another example is given by
m(s) = k(s)(1 —s°)", F(s) = —kss” + Fi(s)

where k € C*([~1,1]) such that 0 < k3 < k(s) < ks for all s € [-1,1], and Fi is a
C?(—1,1) convex function such that

Fl(s)=Us)(1-s")",  Vse(-1,1)

where m > 1 and £ € C*([-1,1])

E. Rocca (Universita di Milano) Nonlocal Cahn-Hilliard-Navier-Stokes February 6, 2013 15 / 32



Definition 2: The degenerate mobility — notion of weak solutions

E. Rocca (Universita di Milano) Nonlocal Cahn-Hilliard-Navier-Stokes



Definition 2: The degenerate mobility — notion of weak solutions

In the case the mobility degenerates we are not able to control the gradient of the
chemical potential  in some L? space = we shall have to suitably reformulate a new
definition of weak solution in such a way that u does not appear any more
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Definition 2: The degenerate mobility — notion of weak solutions

In the case the mobility degenerates we are not able to control the gradient of the
chemical potential  in some L? space = we shall have to suitably reformulate a new
definition of weak solution in such a way that u does not appear any more

Let uo € L*(Q)aiv, o € L*(R) with F(po) € L}(Q) and 0 < T < +oc be given.
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Definition 2: The degenerate mobility — notion of weak solutions

In the case the mobility degenerates we are not able to control the gradient of the
chemical potential  in some L? space = we shall have to suitably reformulate a new
definition of weak solution in such a way that u does not appear any more

Let uo € L*(Q)div, o € L*(Q) with F(po) € L'(Q) and 0 < T < +oc be given. A couple
[u, @] is a weak solution on [0, T] corresponding to [ug, o] if

@ u,  satisfy
u € L=(0, T; L2(Q)aw) N L*(0, T; H(Q)aiv)
ur € Y30, T; H(Q)5,) (if d =3), ur € L2(0, T; H(Q)5,) (if d =2)
p € LZ(0, T LA(Q) N L2(0, T HY(Q)), e € L0, T H/(Q)")
p € L7(Qr), lo(x,t)| <1 ae (x,t) € Qr:=Q2x(0,T)
o for every o) € H'(Q), every v € H*(Q)q4i, and for almost any t € (0, T) we have

<sot,w>+/Qm(s0)F”(s0)Vso-V¢+/ﬂm(<p)avgo-vw

+ / m(@)($Va — VI %) - Vip = (up, Vi)
Q

(ut, v) + v(Vu, Vv) + b(u,u,v) = ((ap — J * ©)V,v) + (h,v)
u(0) = o, #(0) = o
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Theorem 2: the degenerate mobility — existence of solutions
Introduce the function M € C?(—1,1) defined by m(s)M’(s) = 1, M(0) = M’(0) = 0

Assume (D1)-(D4), (H2). Let h € L2(0, T; H'(Q)%), uo € L*(Q)div, wo € L=(Q) such
that F(go) € L*(Q) and M(p0) € L*(Q)
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Theorem 2: the degenerate mobility — existence of solutions

Introduce the function M € C?(—1,1) defined by m(s)M’(s) = 1, M(0) = M’(0) = 0
Assume (D1)-(D4), (H2). Let h € L2(0, T; H'(Q)%), uo € L*(Q)div, wo € L=(Q) such
that F(go) € L*(Q) and M(p0) € L*(Q)

Then, for every T > 0 there exists a weak solution z := [u, ¢] on [0, T] such that

P(t) =0 for all t € [0, T] and ¢ € L>(0, T; LP(£2)), where p < 6 for d = 3 and
2<p<ooford=2
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Theorem 2: the degenerate mobility — existence of solutions
Introduce the function M € C?(—1,1) defined by m(s)M"(s) = 1, M(0) = M’(0) =0

Assume (D1)-(D4), (H2). Let h € L2(0, T; H'(Q)%), uo € L*(Q)div, wo € L=(Q) such
that F(go) € L*(Q) and M(p0) € L*(Q)

Then, for every T > 0 there exists a weak solution z := [u, ¢] on [0, T] such that
P(t) =0 for all t € [0, T] and ¢ € L*(0, T; L?(R2)), where p < 6 for d = 3 and
2<p<ooford=2

In addition, if d = 2, the weak solution z := [u, @] satisfies the the energetic equality
1d
35t P+ 160 + [ m@F IVl + [ am(@) Vel +vVul?

=/m(s@)(VJ*sO—soVa)~Vs0+/(aw—J*s0)u-VsO+<h,U>
Q Q
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Theorem 2: the degenerate mobility — existence of solutions
Introduce the function M € C?(—1,1) defined by m(s)M"(s) = 1, M(0) = M’(0) =0

Assume (D1)-(D4), (H2). Let h € L2(0, T; H'(Q)%), uo € L*(Q)div, wo € L=(Q) such
that F(go) € L*(Q) and M(p0) € L*(Q)

Then, for every T > 0 there exists a weak solution z := [u, ¢] on [0, T] such that
P(t) =0 for all t € [0, T] and ¢ € L*(0, T; L?(R2)), where p < 6 for d = 3 and
2<p<ooford=2

In addition, if d = 2, the weak solution z := [u, @] satisfies the the energetic equality
1d
35t P+ 160 + [ m@F IVl + [ am(@) Vel +vVul?

=/m(s@)(VJ*sO—@Va)~Vs0+/(aso—J*s0)u-VsO+<h,U>
Q Q

If d =3 and if (H7) is satisfied with p > 3, z satisfies the following energetic inequality

L (I + lle() / [ P vl + / [ am()Iver

+u/ Vul2< S (luoll* + ol //Qm(so)(w*sow:»)-v@
0

+/ /(agp—J*np)chp—i—/(h,u)dT vt >0
o Ja 0
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An idea of the proof

@ Approximate with a regular potential F. and a non degenerate mobility m.
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An idea of the proof

@ Approximate with a regular potential F. and a non degenerate mobility m.
@ Due to Theorem 1 we have an energy estimate:

ue L0, T; L*(Q)a) N L0, T; H(Q)ai)
0 e L=(0,T; L*(Q))
VmVp € L*(0, T; L*(Q))
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An idea of the proof

@ Approximate with a regular potential F. and a non degenerate mobility m.
@ Due to Theorem 1 we have an energy estimate:

ue L0, T; L*(Q)a) N L0, T; H(Q)ai)
@ € L0, T; L*(Q))
VmVp e 120, T; L3(Q))
o Take ¢ = M’(¢p), where m(s)M"(s) = 1, M(0) = M’(0) = 0, in the approximated
Cahn-Hilliard equation
(o6, 1) + (M) Vi, Vi) = (up, Vi)
getting from = ap — J x o + F'(¢p) the term

[ (o @950 = [ o+ F NIVl + oVaTp - V5 o¥0) =0
Q Q

on the left hand side. Using the assumption: a + F” > ¢, we get
p € L%(0, T: H'(Q))
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An idea of the proof

@ Approximate with a regular potential F. and a non degenerate mobility m.
@ Due to Theorem 1 we have an energy estimate:

ue L0, T; L*(Q)a) N L0, T; H(Q)ai)
@ € L0, T; L*(Q))
VmVp e 120, T; L3(Q))
o Take ¢ = M’(¢p), where m(s)M"(s) = 1, M(0) = M’(0) = 0, in the approximated
Cahn-Hilliard equation
(o6, 1) + (M) Vi, Vi) = (up, Vi)
getting from = ap — J x o + F'(¢p) the term

[ (o @950 = [ o+ F NIVl + oVaTp - V5 o¥0) =0
Q Q

on the left hand side. Using the assumption: a + F” > ¢, we get
p € L%(0, T: H'(Q))
@ By comparison then we get in 3D

o1, uV € L300, T; HH(Q)*) and so u; € L*3(0, T; H*(Q)51)
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An idea of the proof

@ Approximate with a regular potential F. and a non degenerate mobility m.
@ Due to Theorem 1 we have an energy estimate:

ue L0, T; L*(Q)a) N L0, T; H(Q)ai)
0 e L=(0,T; L*(Q))
VmVp € 130, T; L*(Q))

o Take ¢ = M’(¢p), where m(s)M"(s) = 1, M(0) = M’(0) = 0, in the approximated
Cahn-Hilliard equation

(pe,¥) + (m(p) Vi, Vi) = (up, V1))
getting from = ap — J x o + F'(¢p) the term

[ (o @950 = [ o+ F NIVl + oVaTp - V5 o¥0) =0
Q Q

on the left hand side. Using the assumption: a + F"” > ¢y, we get
¢ e 20, T; H(Q)
@ By comparison then we get in 3D
o1, uV € L300, T; HH(Q)*) and so u; € L*3(0, T; H*(Q)51)

@ We pass to the limit as € \, 0 obtaining the weak formulation stated in Theorem 2
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Theorem 3: The case of strongly degenerate mobility

Assume, in addition to the previous hypotheses, that m’(1) = m’(—1) =0
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Theorem 3: The case of strongly degenerate mobility

Assume, in addition to the previous hypotheses, that m’(1) = m’(—1) =0

Then, the weak solution z = [u, ¢] fulfills also the following integral inequality

£(z(1) + /(V||Vu|| +HﬁH)dT<s(zo /t<h,u)d7

for all t > 0, where the mass flux 7 is such that
_J

J € [*(Qr),
m(p

€ Lz(QT)

~

and is given by

T = —m()V(ap — J* ) — m(©)F"(©)Ve
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Theorem 3: The case of strongly degenerate mobility

Assume, in addition to the previous hypotheses, that m’(1) = m’(—1) =0

Then, the weak solution z = [u, ¢] fulfills also the following integral inequality

£(z(1) + /(V||Vu|| +HﬁH)dT<s(zo /0t<h,u)d7

for all t > 0, where the mass flux 7 is such that
_J

J € [*(Qr),
m(p

€ Lz(QT)

~

and is given by

T = —m()V(ap — J* ) — m(©)F"(©)Ve

Note that in this case it can be proved that the sets {x € Q: ¢(x,t) = 1} and
{x € Q: ¢(x,t) = —1} have both measure zero for a.a. t >0
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A comparison with the case of constant mobility

@ Theorem 2, in comparison with the analogous result for the case of constant
mobility (cf. [Frigeri, Grasselli, '12]) does not require the condition |p,| < 1!!
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A comparison with the case of constant mobility

@ Theorem 2, in comparison with the analogous result for the case of constant
mobility (cf. [Frigeri, Grasselli, '12]) does not require the condition |p,| < 1!!

@ The assumptions on g imply only the less strict condition |7, <1

@ This is due due to the different weak solution formulation with respect to the case
of constant mobility
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A comparison with the case of constant mobility

@ Theorem 2, in comparison with the analogous result for the case of constant
mobility (cf. [Frigeri, Grasselli, '12]) does not require the condition |p,| < 1!!

@ The assumptions on g imply only the less strict condition |7, <1

@ This is due due to the different weak solution formulation with respect to the case
of constant mobility

@ Therefore, if F is bounded (e.g. F is the logarithmic potential) and at t = 0 the
fluid is in a pure phase, i.e. o =1 a.e. in Q, and furthermore up = u(0) is given in
L?(Q)div, then the couple

u=u(x,t), v =p(xt)=1, ae inQ, aa. t,

where u is solution of the Navier-Stokes equations with non-slip boundary condition
explicitly satisfies the weak formulation

o This possibility is excluded in the model with constant mobility since in such
model the chemical potential i (and hence F'()) appears explicitly
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The degenerate vs. the strongly degenerate mobility case

o If M (1) # 0 and m’(—1) # 0, then both F and M (s.t. m(s)M"(s) =1,
M(0) = M’(0) = 0) are bounded in [~1, 1] = the conditions F(yo) € L'(Q2) and
M(go) € L*(Q) of Theorem 2 are satisfied by every initial datum g such that
|ool < 1in Q = the existence of pure phases is allowed
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The degenerate vs. the strongly degenerate mobility case

o If m'(1) # 0 and m’(—1) # 0, then both F and M (s.t. m(s)M"(s) =1,
M(0) = M’(0) = 0) are bounded in [~1, 1] = the conditions F(yo) € L'(Q2) and
M(go) € L*(Q) of Theorem 2 are satisfied by every initial datum g such that
|po] <1 in Q = the existence of pure phases is allowed

o If m'(1) = m’(—1) = 0 (in this case we say that m is strongly degenerate), then it
can be proved that the conditions F(yo) € L'(R2) and M(yo) € L*(Q) imply that the
sets {x € Q: po(x) =1} and {x € Q: po(x) = —1} have both measure zero —-
|#o] < 1 and furthermore it can be seen that also the sets {x € Q: p(x, t) =1} and
{x € Q: p(x,t) = —1} have both measure zero for a.a. t > 0 = pure phases are
not allowed (even on subsets of Q of positive measure)
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Theorem 4: The case of more regular chemical potential

(Cf. [Gajewski, Zacharias, '03])
Take the assumptions of Theorem 2 with J such that

Ny := sup/|VJ(x— 218 dy) " < 00,

where k =6/5ifd=3and Kk > 1if d =2.
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Theorem 4: The case of more regular chemical potential

(Cf. [Gajewski, Zacharias, '03])
Take the assumptions of Theorem 2 with J such that

Nd:_ sup/|VJx— |dy) N<oo,

x€Q

where k = 6/5 if d = 3 and x > 1 if d = 2. In addition, assume that F; € C3(—1,1) and
that the following conditions are fulfilled for some ag, S0 > 0 and p € [0,1)

m(s)F{'(s) > a0 >0,  [m*(s)F"(s)| < fo,  Vse[-1,1]
Fi(s)F{"(s)>0  Vse(-1,1)
pF'(s)+ F(s)+a(x) >0 Vse(-1,1), forae x€Q

Let o be such that

F'(0) € L*(Q)
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Theorem 4: The case of more regular chemical potential

(Cf. [Gajewski, Zacharias, '03])
Take the assumptions of Theorem 2 with J such that

Nd:f sup/|Vfo |dy) R<oo,
x€N

where k = 6/5 if d = 3 and x > 1 if d = 2. In addition, assume that F; € C3(—1,1) and
that the following conditions are fulfilled for some ag, S0 > 0 and p € [0,1)

m(s)F;'(s) > ao > 0, |m*(s)F{" (s)| < Bo, Vs € [-1,1]
Fi(s)F{"(s)>0  Vse(-1,1)
pF'(s)+ F(s)+a(x) >0 Vse(-1,1), forae x€Q

Let o be such that
F'(iw0) € L(Q)
Then, the weak solution z = [u, ¢] of Theorem 2 satisfies

pe L™, T, L3(Q)  Vwue L0, T;L*(Q)
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Theorem 4: The case of more regular chemical potential

(Cf. [Gajewski, Zacharias, '03])
Take the assumptions of Theorem 2 with J such that

Nd:f sup/|Vfo |dy) R<oo,
x€N

where k = 6/5 if d = 3 and x > 1 if d = 2. In addition, assume that F; € C3(—1,1) and
that the following conditions are fulfilled for some ag, S0 > 0 and p € [0,1)

m(s)F;'(s) > ao > 0, |m*(s)F{" (s)| < Bo, Vs € [-1,1]
Fi(s)F"(s) >0  Vse(-1,1)
pF'(s)+ F(s)+a(x) >0 Vse(-1,1), forae x€Q

Let o be such that
F'(iw0) € L(Q)
Then, the weak solution z = [u, ¢] of Theorem 2 satisfies

pel®0,T;[3(Q) Vue 0, T;*(Q))

As a consequence, z = [u, @] now also satisfies the Definition 1 of weak solutions, the
energy inequality and, for d = 2, the energy identity
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An idea of the proof
Write the weak formulation of approximated the Cahn-Hilliard equation as

(@, ) + (m()V(Fic(#)), V) = (me(0)V(J * ©), Vi) (w-CH)
+ (me(@)V(ap + Fa:(9)), V) = (up, V1)), Vi € H'(Q)
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An idea of the proof
Write the weak formulation of approximated the Cahn-Hilliard equation as
(@' ) + (me(D)V(F(9)), Vo) = (me(9)V (I * 9), Vi) (w-CH)
+(me(9)V(ap + F2(9)), VY) = (up, V), Vo € H'(Q)
Take
¥ = Fi.(9)FL(p) € H'(Q)

as test function in (w-CH).

E. Rocca (Universita di Milano) Nonlocal Cahn-Hilliard-Navier-Stokes February 6, 2013 23 /32



An idea of the proof
Write the weak formulation of approximated the Cahn-Hilliard equation as

(@, 1) + (me(@)V(Fi=(9), V) = (me(9)V(J * 0), V) (w-CH)

+ (me(@)V(ap + Fa:(9)), V) = (up, V1)), Vi € H'(Q)
Take

¥ = F.()Fic(¢) € H(Q)
as test function in (w-CH). By the incompressibility condition we deduce

[w-vorLFLe) = [ u

Q
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An idea of the proof
Write the weak formulation of approximated the Cahn-Hilliard equation as
(@' ) + (me(D)V(F(9)), Vo) = (me(9)V (I * 9), Vi) (w-CH)

+ (me(@)V(ap + Fa:(9)), V) = (up, V1)), Vi € H'(Q)
Take

¥ = F.()Fic(¢) € H(Q)
as test function in (w-CH). By the incompressibility condition we deduce

/Q(u.w)F{g(so)F{é(sO) =/Q“'V(@) =0

Furthermore, by applying a chain rule formula to the convex function G. := F;2, we have

(¢ RN = 5 [ Rt
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An idea of the proof
Write the weak formulation of approximated the Cahn-Hilliard equation as

(@', 1) + (m(9)V(Fi=(#)), V¥) = (me(@)V(J * ¢), V) (w-CH)
+ (me(9)V(ap + F(9)), Vo) = (up, V), Vo € H(Q)
Take
¥ = Fi.(9)FL(p) € H'(Q)
as test function in (w-CH). By the incompressibility condition we deduce

@ VR R - /Qu-v(@) ~0

2

Furthermore, by applying a chain rule formula to the convex function G. := F;2, we have
(¢ RN = 5 [ Rt

Using then the condition m.F{. > «y, from the second term in (w-CH), we get

a0 / VAL (o) < / me(P)FLL ()| V Fre ()2
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An idea of the proof
Write the weak formulation of approximated the Cahn-Hilliard equation as

(@', 1) + (m(9)V(Fi=(#)), V¥) = (me(@)V(J * ¢), V) (w-CH)
+ (m=(p)V(ap + Fo(9)), V) = (up, V), Vi € H(Q)
Take
¥ = Fi-(p)FlL(¢) € H'(Q)
as test function in (w-CH). By the incompressibility condition we deduce

[ vorF) = [uv(FLE) <o

Furthermore, by applying a chain rule formula to the convex function G. := F{2, we have

! !
¢ FlORL) = § 5 [ IR

Using then the condition m.F{. > «y, from the second term in (w-CH), we get

a0 / VAL (o) < / me(P)FLL ()| V Fre ()2

By means of some technical arguments and using the assumptions on F and, in
particular, the condition F'(yo) € L*(2), we get

F'(¢) e L(0, T; L*(Q)) N L*(0, T; H(Q)) = p € L™(0, T; L*(Q)) N L*(0, T; H*(Q))
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Second part: The global attractor in 2D for the degenerate case

Let d = 2 and supppose that the external force is time-independent, i.e. h € H*(Q)%,

E. Rocca (Universita di Milano) Nonlocal Cahn-Hilliard-Navier-Stokes February 6, 2013 24 /32



Second part: The global attractor in 2D for the degenerate case

Let d = 2 and supppose that the external force is time-independent, i.e. h € H*(Q)%,

Introduce the set G, of all weak solutions (in the sense of Definition 2) corresponding
to all initial data zo = [uo, Yo] € Xmy, Where the phase space X, is the metric space

defined by
Xy = L2()aiv X Vimy
with YVm, given by
Vo = {p € L=(Q) || <1 ae. inQ, F(p) € LY(Q), [p]<mo},
and mg € [0, 1] is fixed. The metric on X, is

d(z,z1) = [Juz — w|| + [[2 — @l

for every z1 := [u1, 1] and z := [uz, 2] in Xm,.
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Second part: The global attractor in 2D for the degenerate case

Let d = 2 and supppose that the external force is time-independent, i.e. h € H*(Q)%,

Introduce the set Gm, of all weak solutions (in the sense of Definition 2) corresponding

to all initial data zo = [uo, Yo] € Xmy, Where the phase space X, is the metric space
defined by

Xy = L2()aiv X Vimy
with YVm, given by
Vmy ={p €L®(Q) 1 |o| <1 ae. inQ, F(p)eLY(Q), B <m},
and mg € [0, 1] is fixed. The metric on X, is
d(z2,z1) := [lu2 — ]| + [lp2 — ],
for every z1 := [u1, 1] and z := [u2, p2] in Xm,. Assume moreover that
(D5) m, F satisfy (Al) and there exists g > 0 and p € [0,1) such that
m(s)F{'(s) > ao, Vs € [-1,1]
pF'(s) + F'(s) + a(x) > 0, Vs € (—1,1) ae. inQ
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Existence of the global attractor in 2D

Let d =2, h € HY(Q)},, and suppose that (D2)—(D5) hold.
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Existence of the global attractor in 2D

Let d = 2, h € H(Q),, and suppose that (D2)—(D5) hold. Then

® Gmy = {g :]0,00) = X} is a generalized semiflow on X, i.e. a “solution in
the sense of Ball” satisfying:

>
>
>

E. Rocca (Universita di Milano)

existence (Vz € X, there exists at least one g € Gny: g(0) = z)
translated of solutions are solutions

concatenation: if ¢, ¥ € Gm,, t > 0, with ¢(0) = ¢(t) then 6 € G, where

o(r) = {qf)(ﬂ') for 7 € [0, t]

T )w(r—1t) fort<T

upper semicontinuity with respect to initial data (if & € Gmy, gj(O) — z then there
exists a subsequence gj, and g € Gm, s.t. g(0) = z and gj, (t) — g(t) for each t > 0)
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Existence of the global attractor in 2D

Let d = 2, h € H(Q),, and suppose that (D2)—(D5) hold. Then

® Gmy = {g :]0,00) = X} is a generalized semiflow on X, i.e. a “solution in
the sense of Ball” satisfying:

>
>
>

existence (Vz € X, there exists at least one g € Gm,: g(0) = z)
translated of solutions are solutions

concatenation: if ¢, 1 € Gm,, t > 0, with ¢(0) = ¢(t) then 6 € G, where

o(r) = {qb(ﬂ-) for 7 € [0, t]

T )w(r—1t) fort<T

upper semicontinuity with respect to initial data (if gj € Gm,, gj(0) — z then there
exists a subsequence gj, and g € Gm, s.t. g(0) = z and gj, (t) — g(t) for each t > 0)

® Gm, is point dissipative (there is a bdd set By such that for any g € G, g(t) € Bo
for t sufficiently large),

E. Rocca (Universita di Milano)

Nonlocal Cahn-Hilliard-Navier-Stokes February 6, 2013 25 /32



Existence of the global attractor in 2D
Let d = 2, h € H(Q),, and suppose that (D2)—(D5) hold. Then
® Gm, = {g:[0,00) = Xn,} is a generalized semiflow on X, i.e. a “solution in
the sense of Ball” satisfying:

> existence (Vz € X, there exists at least one g € Gm,: g(0) = z)
> translated of solutions are solutions
> concatenation: if ¢, ¥ € Gm,, t > 0, with ¢(0) = ¢(t) then 6 € G, where

e for 7 € [0, t]
0(r) = {1/)(7' —t) fort<rT

> upper semicontinuity with respect to initial data (if gj € Gmy, g;(0) — z then there
exists a subsequence gj, and g € Gm, s.t. g(0) = z and gj, (t) — g(t) for each t > 0)

® Gm, is point dissipative (there is a bdd set By such that for any g € G, g(t) € Bo
for t sufficiently large), eventually bounded (given any bdd B C X, there exists
7 > 0 with g"(B) bdd, with g7 (t) := g(t + 7)),
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Existence of the global attractor in 2D
Let d = 2, h € H(Q),, and suppose that (D2)—(D5) hold. Then
® Gm, = {g:[0,00) = Xn,} is a generalized semiflow on X, i.e. a “solution in
the sense of Ball” satisfying:

> existence (Vz € X, there exists at least one g € Gm,: g(0) = z)
> translated of solutions are solutions
> concatenation: if ¢, ¥ € Gm,, t > 0, with ¢(0) = ¢(t) then 6 € G, where

e for 7 € [0, t]
0(r) = {1/)(7' —t) fort<rT

> upper semicontinuity with respect to initial data (if gj € Gmy, g;(0) — z then there
exists a subsequence gj, and g € Gm, s.t. g(0) = z and gj, (t) — g(t) for each t > 0)
® Gm, is point dissipative (there is a bdd set By such that for any g € G, g(t) € Bo
for t sufficiently large), eventually bounded (given any bdd B C X, there exists
7 > 0 with g"(B) bdd, with g"(t) := g(t + 7)), and compact
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Existence of the global attractor in 2D
Let d = 2, h € H(Q),, and suppose that (D2)—(D5) hold. Then
® Gm, = {g:[0,00) = Xn,} is a generalized semiflow on X, i.e. a “solution in
the sense of Ball” satisfying:

> existence (Vz € X, there exists at least one g € Gm,: g(0) = z)
> translated of solutions are solutions
> concatenation: if ¢, ¥ € Gm,, t > 0, with ¢(0) = ¢(t) then 6 € G, where

e for 7 € [0, t]
0(r) = {1/)(7' —t) fort<rT

> upper semicontinuity with respect to initial data (if gj € Gmy, g;(0) — z then there
exists a subsequence gj, and g € Gm, s.t. g(0) = z and gj, (t) — g(t) for each t > 0)
® Gm, is point dissipative (there is a bdd set By such that for any g € G, g(t) € Bo
for t sufficiently large), eventually bounded (given any bdd B C X, there exists
7 > 0 with g"(B) bdd, with g"(t) := g(t + 7)), and compact

@ As a consequence of [Ball, '97&'98], we have: G, possesses a global attractor
(compact, invariant set that attracts all bounded sets)
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Existence of the global attractor in 2D
Let d = 2, h € H(Q),, and suppose that (D2)—(D5) hold. Then

® Gmy = {g :]0,00) = X} is a generalized semiflow on X, i.e. a “solution in
the sense of Ball” satisfying:

> existence (Vz € X, there exists at least one g € Gm,: g(0) = z)

> translated of solutions are solutions
> concatenation: if ¢, ¥ € Gm,, t > 0, with ¢(0) = ¢(t) then 6 € G, where

o(r) = {qb(ﬂ-) for 7 € [0, t]

T )w(r—1t) fort<T

upper semicontinuity with respect to initial data (if gj € Gm,, gj(0) — z then there

exists a subsequence gj, and g € Gm, s.t. g(0) = z and gj, (t) — g(t) for each t > 0)

® Gm, is point dissipative (there is a bdd set By such that for any g € G, g(t) € Bo
for t sufficiently large), eventually bounded (given any bdd B C X, there exists
7 > 0 with g"(B) bdd, with g"(t) := g(t + 7)), and compact

@ As a consequence of [Ball, '97&'98], we have: G, possesses a global attractor
(compact, invariant set that attracts all bounded sets)

We point out that the existence of the global attractor is established without the

restriction || < 1 on the generalized semiflow. In particular, this result does not
require the separation property

E. Rocca (Universita di Milano)

Nonlocal Cahn-Hilliard-Navier-Stokes February 6, 2013 25 /32
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An idea of the proof
1) Upper semicontinuity with respect to initial data:
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An idea of the proof
1) Upper semicontinuity with respect to initial data: take then z; = [uj, p;] € G, such that
2j(0) — zp in Xyy. Our aim is to prove that

3z € Gm, with z(0) = zp and a subsequence {z;, } : z, (t) = z(t) in X, for all t >0
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An idea of the proof

1) Upper semicontinuity with respect to initial data: take then z; = [uj, p;] € G, such that
2j(0) — zp in Xyy. Our aim is to prove that

3z € Gm, with z(0) = zp and a subsequence {z;, } : z, (t) = z(t) in X, for all t >0

Each weak solution z; = [u}, @] satisfies the energy equation which implies

d 1
= (Il + 11 ) + (@ = ol Vgl + vV < ¢+ cllugl? + gy
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An idea of the proof

1) Upper semicontinuity with respect to initial data: take then z; = [uj, p;] € G, such that
2j(0) — zp in Xyy. Our aim is to prove that

3z € Gm, with z(0) = zp and a subsequence {z;, } : z, (t) = z(t) in X, for all t >0
Each weak solution z; = [u}, @] satisfies the energy equation which implies
d 1
= (sl + il + (1 = P)aoll Fg I + vV < ¢+ el + - Il gy

By comparison, we also get ||uj'4H,_z(0,T;H1(Q)§/,V), el 20, 7511 ()) < €
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An idea of the proof

1) Upper semicontinuity with respect to initial data: take then z; = [uj, p;] € G, such that
2j(0) — zp in Xyy. Our aim is to prove that

3z € Gm, with z(0) = zp and a subsequence {z;, } : z, (t) = z(t) in X, for all t >0
Each weak solution z; = [u}, @] satisfies the energy equation which implies
< (Il +1g5l) + (1 = paoll Tyl + VIV < -+ clluglP + o [0l gy
By comparison, we also get [|ujl2(o, 7.m1(0)% ) 197 ]l12(0, 7:H1(0)+) < € and hence for a.e. t >0
uj(t) — u(t) strongly in  L2(Q)gs,
wj(t) = o(t) strongly in  L%(R)
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An idea of the proof

1) Upper semicontinuity with respect to initial data: take then z; = [uj, p;] € G, such that
2j(0) — zp in Xyy. Our aim is to prove that

3z € Gm, with z(0) = zp and a subsequence {z;, } : z, (t) = z(t) in X, for all t >0

Each weak solution z; = [uj, ;] satisfies the energy equation which implies
d 1
= (Il + 17112) + (@ = paol Vs P + vl VuiI < € + eyl + - [l s

By comparison, we also get ||uj’-H,_2(0,T;,_,1(Q)§N), €l 20, 7511 (2)+) < € and hence for a.e. t >0

uj(t) — u(t) strongly in  L%(Q)div
wj(t) = o(t) strongly in  L%(Q)

By standard compactness results, we deduce that z := [u, ¢] € G, and z(0) = zp. We can also
see that zj(t) — z(t) in Xm, for all t > 0 by using the energy equality and the continuity in
[0, 00) of E(2(t)) = [lu(t)|I* + Il ().
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An idea of the proof
1) Upper semicontinuity with respect to initial data: take then z; = [uj, p;] € G, such that
2j(0) — zp in Xyy. Our aim is to prove that

3z € Gm, with z(0) = zp and a subsequence {z;, } : z, (t) = z(t) in X, for all t >0

Each weak solution z; = [uj, ;] satisfies the energy equation which implies
1
2 2 2 2 2 2
= (gl + 1211P) + (1 = Paoll Tl + v Vusl? < ¢+ el + o [0y, .
By comparison, we also get ||uj’-H,_2(0,T;,_,1(Q)§ y: 1631l 20, ;11 (@)*) < € and hence for a.e. t >0
uj(t) — u(t) strongly in  L%(Q)div

wj(t) = o(t) strongly in  L%(Q)
By standard compactness results, we deduce that z := [u, ¢] € G, and z(0) = zp. We can also
see that zj(t) — z(t) in Xm, for all t > 0 by using the energy equality and the continuity in
[0, 00) of E(2(t)) = [lu(t)|I* + Il ().
2) Dissipativity and eventual boundedness: From the energy identity and by means of Poincaré
inequality we get

lull® + lle = 2oll?) + (1 = p)aoCrlle = Boll* + vAullul* < C + *IIhIIHl(Q

a
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An idea of the proof
1) Upper semicontinuity with respect to initial data: take then z; = [uj, p;] € G, such that
2j(0) — zp in Xyy. Our aim is to prove that

3z € Gm, with z(0) = zp and a subsequence {z;, } : z, (t) = z(t) in X, for all t >0

Each weak solution z; = [uj, ;] satisfies the energy equation which implies
1
2 2 2 2 2 2
= (gl + 1211P) + (1 = Paoll Tl + v Vusl? < ¢+ el + o [0y, .
By comparison, we also get ||uj’-H,_z(oyT;,_,1(Q)§ y: 1631l 20, ;11 (@)*) < € and hence for a.e. t >0
uj(t) — u(t) strongly in  L%(Q)div

wj(t) = o(t) strongly in  L%(Q)
By standard compactness results, we deduce that z := [u, ¢] € G, and z(0) = zp. We can also
see that zj(t) — z(t) in Xm, for all t > 0 by using the energy equality and the continuity in
[0, 00) of E(2(t)) = [lu(t)|I* + Il ().
2) Dissipativity and eventual boundedness: From the energy identity and by means of Poincaré
inequality we get

o — (lull® + [l = BolI?) + (1 = p)aoCplle — Boll* + vAr|lul* < G + *||h||H1(Q
This estimate easily yields
2C:
d(2(t),0) < d*(20,0)e ™" + =2 + [Pl  ¥e>0
n
where d(z2,21) := [Juz — u1]| + [[2 — 1|
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Third part: The convective nonlocal Cahn-Hilliard equation with
degenerate mobility

Assume that (D1)—(D4) are satisfied. Let u € L2_([0, 00); H*(Q)ai N L°(R)9) be given
and let h € HY(Q)%,, @o € L=(Q) such that F(po) € L*(Q2) and M(p0) € L*(RQ)
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Third part: The convective nonlocal Cahn-Hilliard equation with
degenerate mobility

Assume that (D1)—(D4) are satisfied. Let u € L2_([0, 00); H*(Q)ai N L°(R)9) be given
and let h € HY(Q)%,, @o € L=(Q) such that F(po) € L*(Q2) and M(p0) € L*(RQ)

Then, for every T > 0 there exists a weak solution ¢ to
(et) + [ mQF (V- Vot [ m(e)aVp- Vi

+ [ me)eva- Vi) Vo = (e, V)
Q

and such that (t) = %o for all t € [0, T]
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Third part: The convective nonlocal Cahn-Hilliard equation with
degenerate mobility

Assume that (D1)—(D4) are satisfied. Let u € L% ([0, 00); H*(Q)aw N L=(2)?) be given
and let h € HY(Q)%,, @o € L=(Q) such that F(po) € L*(Q2) and M(p0) € L*(RQ)

Then, for every T > 0 there exists a weak solution ¢ to
(et) + [ mQF (V- Vot [ m(e)aVp- Vi

+ [ me)eva- Vi) Vo = (e, V)
Q

and such that (t) = @ for all t € [0, T

Furthermore, ¢ € L*(0, T; LP(2)), where p < 6 for d =3 and 2 < p < oo for d = 2. In
addition, the following energy identity holds

sl + [ mF @IVel + [ am(@)Tel + [ m(e)(eVa=Vixg) Vo =0

for a.a. t >0 and in D'(0, c0)
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The convective nonlocal Cahn-Hilliard equation: uniqueness and attractor

Let the hypotheses of the previous Theorem be satisfied and the following conditions (cf.
(D5)) are fulfilled for some ap > 0 and p € [0,1)

m(s)F{'(s) > a0 >0 Vs € [-1,1]
pF'(s)+ F(s)+a(x) >0 Vsec(-1,1), forae xcQ
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The convective nonlocal Cahn-Hilliard equation: uniqueness and attractor

Let the hypotheses of the previous Theorem be satisfied and the following conditions (cf
(D5)) are fulfilled for some ap > 0 and p € [0,1)

m(s)F{'(s) > a0 >0 Vs € [-1,1]

pF'(s)+ F(s)+a(x) >0 Vsec(-1,1), forae xcQ

Then, the weak solution is unique.
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The convective nonlocal Cahn-Hilliard equation: uniqueness and attractor

Let the hypotheses of the previous Theorem be satisfied and the following conditions (cf.
(D5)) are fulfilled for some ap > 0 and p € [0,1)

m(s)F{'(s) > a0 >0 Vs € [-1,1]
pF'(s)+ F'(s)+a(x) >0 Vse(-1,1), forae x€Q

Then, the weak solution is unique.

Hence, we can define a semiflow S(t) on Ym,, mo € [0, 1], endowed with the metric
induced by the L2—norm.
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The convective nonlocal Cahn-Hilliard equation: uniqueness and attractor

Let the hypotheses of the previous Theorem be satisfied and the following conditions (cf.
(D5)) are fulfilled for some ap > 0 and p € [0,1)

m(s)F{'(s) > ap >0 Vs € [-1,1]
pF'(s)+ F'(s)+a(x) >0 Vse(-1,1), forae x€Q

Then, the weak solution is unique.

Hence, we can define a semiflow S(t) on Vm,, mo € [0, 1], endowed with the metric
induced by the L2—norm.

It is then immediate to check that the arguments used in the proofs of the previous
results can be adapted to the present situation. Hence we have that: given u € L°°(Q)¢
independent of time, then, the dynamical system ()m,, S(t)) possesses a connected
global attractor

Note that: up to our knowledge uniqueness of solutions is an open issue for the local
case as well as for the complete nonlocal system including Navier-Stokes even in
dimension two.
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An idea of the proof of uniqueness
Rewrite the Cahn-Hilliard equation as

(pe, ) + (VAL 9), V) = ([(9)Va, Vi) + (m(p)(¢Va = VI 9), Vi) = (up, V),
for all ¢ € HY(Q), where A(x, s) := A1(s) + Aa(s) + a(x)I(s) and

M) i= [ R @do, Mas) = [ m)F e, 1= [ m(o)do,

for all s € [-1,1].
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An idea of the proof of uniqueness
Rewrite the Cahn-Hilliard equation as

(pe, ) + (VAL 9), V) = ([(9)Va, Vi) + (m(p)(¢Va = VI 9), Vi) = (up, V),
for all ¢ € HY(Q), where A(x, s) := A1(s) + Aa(s) + a(x)I(s) and
Ai(s) == /05 m(o)F;'(o)do, No(s) := /05 m(o)F' (o)do, M(s):= /05 m(o)do,

for all s € [—1,1]. Take the difference between the two identities, set ¢ := @1 — 2 and
1 = Ny (notice that B = 0):

%%H/\h/wlﬁ + (A(p2) = A1), ) — ((T(p2) — F(p1))Va, VN p)

+ ((m(2) = m(1))(92Va — VI x @2) + m(p1)(¢pVa — VJ x ), VN)
= (up, VNy)
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An idea of the proof of uniqueness
Rewrite the Cahn-Hilliard equation as

(pe, ) + (VAL 9), V) = ([(9)Va, Vi) + (m(p)(¢Va = VI 9), Vi) = (up, V),
for all ¢ € HY(Q), where A(x, s) := A1(s) + Aa(s) + a(x)I(s) and

M) = [ m@)F (@) N = [T )R @)do, T(s) = [ mlo)de,

for all s € [—1,1]. Take the difference between the two identities, set ¢ := @1 — 2 and
1 = Ny (notice that B = 0):

%%HNusz + (A(p2) = A1), ) — ((T(p2) — F(p1))Va, VN p)

+ ((m(p2) — m(1))(p2Va — VJ x 02) + m(1)(¢Va — VI x @), VN)
= (up, VNy)

On account of m(s)F{'(s) > ao > 0, pFy'(s) + F3'(s) + a(x) > 0, we find
(AC,92) = ACo1), ) 2(1 = p) /Q m(fp2 + (1 — 0)¢1) ' (002 + (1 — 0) 1)

> (1 — p)awlle]?

and the other terms can be estimated in order to apply Gronwall.
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Conclusions

We have proved in [Frigeri, Grasselli, E.R., preprint arXiv:1303.6446, 2013]

@ Existence of solutions for the nonlocal 3D Navier-Stokes Cahn-Hilliard model with
nondegenerate and with degenerate mobility

@ Existence of the attractor in the 2D case

@ Well-posedness and existence of the attractor for the 3D nonlocal convective
Cahn-Hilliard equation
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Conclusions
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@ Existence of solutions for the nonlocal 3D Navier-Stokes Cahn-Hilliard model with
nondegenerate and with degenerate mobility
@ Existence of the attractor in the 2D case

@ Well-posedness and existence of the attractor for the 3D nonlocal convective
Cahn-Hilliard equation

There are still a lot of open problems like

The case of non-smooth potentials like F(¢) = -1,1()

The case of unmatched densities (cf. [Abels, Depner, Garcke, 2013] for the local
case) or of compressible fluids (cf. [Abels, Feireisl, 2008] for the local case)

@ The non isothermal case (cf. [Eleuteri, E.R., Schimperna, work in progress] for the
local case)
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Thanks for your attention!

cf. http://www.mat.unimi.it/users/rocca/
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Some comparisons with other results: local vs nonlocal

Results Local CH Nonlocal CH Local CHNS Nonlocal CHNS

Uniqueness| 3D: True for non- | 3D: True for | 2D: True for | Open even in 2D
degenerate mobility | constant mobility | nondegenerate
(e.g. [Elliott, '89, | (e.g. [Colli, | mobility [Abels,

Novick Cohen, '9, | Krej&i, E.R., | '09, Boyer, '99]
[Elliott, Luckhaus, | Sprekels, '04])
'01])
Open for degener- | 3D: True for de- | Open for degen- | Open even in 2D
ate mobility and | generate mobility | erate mobility
singular potential and singular po- | and singular
tential [Gajewski, | potential
Zacharias, '03,
[Grasselli, Frigeri,
E.R., '13]

Separation | 2D: True with log- | 3D: true for de- | Open 3D: true for de-
aritmich  potential | generate mobility generate mobility
and constant mo- | and singular po- and singular po-
bility  [Miranville, | tential [Londen, tential
Zelik, '04] , 3D: | Petzeltova, '11]

Open for the loga-
rithmic potential
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