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The optimal Control Problem

(CP) Minimize the cost functional

J(ϕ,v) =
β1

2

∫ T

0

∫
Ω

|ϕ− ϕQ|2 dx dt+
β2

2

∫
Ω

|ϕ(T )− ϕΩ|2 dx+
β3

2

∫ T

0

∫
Ω

|v|2 dx dt

subject to the state system

ϕt − div (m(ϕ)∇µ) = −v · ∇ϕ in Q := Ω× (0, T ) (P1)

µ = f ′(ϕ) + w in Q (P2)

w(x, t) =

∫
Ω

k(|x− y|)(1− 2ϕ(y, t)) dy in Q (P3)

m(ϕ)∇µ · n = 0 on Σ := ∂Ω× (0, T ) , ϕ(0) = ϕ0 in Ω ⊂ R3 (P4)

and to the constraint that the control velocity v belongs to a suitable closed, bounded and

convex subset of the space

V := {v ∈ L2(0, T ;H1
div(Ω)) ∩ L∞(Q)3 : ∃vt ∈ L2(0, T ;L3(Ω)3)}

where H1
div(Ω) := {v ∈ H1

0 (Ω)3 : div(v) = 0}
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Pan of the talk

� The state system:

� nonlocal vz local

� the nonlinearities: mobility and mixing potential

� The control problem: the choice of the velocity as control

� Well-posedness and stability

� First order necessary conditions

� Open related problems
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The state system: nonlocal vz local

The chemical potential µ represents the first variation of the free energy functionals:

� (in the local case, cf. [Elliott, Garcke ’96], [Boyer, ’99], [Abels, ’09], ... )

E(ϕ) =

∫
Ω

(
σ

2
|∇ϕ(x)|2 +

f(ϕ(x))

σ

)
dx

� (in the nonlocal case, cf. [Gajewski, Zacharias, ’03], ..., [Colli, Frigeri, Grasselli, ’12])

E(ϕ) =
1

4

∫
Ω

∫
Ω

J(x− y) (ϕ(x)− ϕ(y))2 dx dy +

∫
Ω

ηf(ϕ(x)) dx

� J : Rd → R is a smooth even function, e.g. J(x) = j3|x|−1 in 3D and

J(x) = −j2 log |x| in 2D

� it is justified as a macroscopic limit of microscopic phase segregation models with

particle conserving dynamics (cf. [Giacomin Lebowitz, ’97&’98])
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From nonlocal to local

Local Ginzburg-Landau potential “=” limn→∞ (Nonlocal van der Waals potential)

Choosing J(x, y) = nd+2J(|n(x− y)|2), with J nonnegative function supported in [0, 1]:∫
Ω

nd+2J(|n(x− y)|2) |ϕ(x)− ϕ(y)|2 dy =

∫
Ωn(x)

J(|z|2)

∣∣∣∣∣ϕ
(
x+ z

n

)
− ϕ(x)

1
n

∣∣∣∣∣
2

dz

n→∞−→
∫
Rd
J(|z|2) 〈∇ϕ(x), z〉2 dz =

σ

2
|∇ϕ(x)|2

where we denote

� σ = 2/d
∫
Rd J(|z|2)|z|2 dz and Ωn(x) = n(Ω− x) and we have used the identity

�
∫
Rd J(|z|2) 〈e, z〉2 dz = 1/d

∫
Rd J(|z|2)|z|2 dz for every unit vector e ∈ Rd

Big changes in the model and in the analysis:

� the fourth order equation becomes a second order equation =⇒ more chance to get

separation property and uniqueness

� the analysis is more challenging due to the less regularity of ϕ

A philosophical question: is diffusion local or nonlocal?
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Understand Diffusion by Nonlocality

By Louis Caffarelli, at the “Colloquium Magenes”, Pavia, March 20, 2013:

“Diffusion is a process where the variable under consideration, a particle density, a

temperature, a population tends to revert to its surrounding average.

The diffusion equation

ut −∆u = 0

does not seem to say much about diffusion, unless we realize that the “Laplacian” is in fact

the limit of an averaging process.

If we consider

∆u = lim
ε→0

cε
|Bε(x)|

∫
Bε(x)

(u(y)− u(x)) dy ,

the density at the point x compares itself with its values in a tiny surrounding ball. The

difference between the surrounding average and the value at x, properly scaled is the

“Laplacian”.

If the set to which u compares itself is not shrunk to zero, the process is an integral diffusion.

Lu(x) =

∫
J(x, y)(u(y)− u(x)) dy .”
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The nonlinearities

The singular potential f is taken in the typical logarithmic form:

f(ϕ) = ϕ log(ϕ) + (1− ϕ) log(1− ϕ)

and the mobility m, which degenerates at the pure phases ϕ = 0 and ϕ = 1:

m(ϕ) =
c0

f ′′(ϕ)
= c0ϕ(1− ϕ) with some constant c0 > 0

which entails that we have the relations

m(ϕ)f ′′(ϕ) ≡ c0 , m(ϕ)∇µ = c0∇ϕ+m(ϕ)∇w

and the nonlocal CH-equation ϕt − div (m(ϕ)∇µ) = −v · ∇ϕ becomes

ϕt − c0∆ϕ− div

(
m(ϕ)∇

(∫
Ω

k(|x− y|)(1− 2ϕ(y, t)) dy

))
= −v · ∇ϕ

Actually, we could consider the more general case when

f ∈ C4(0, 1) is strictly convex in (0, 1), Im(f ′)−1 = [0, 1],
1

f ′′
is strictly concave in (0, 1)

m ∈ C2([0, 1]) satisfies m(ϕ)f ′′(ϕ) ≥ c0 > 0 for every ϕ ∈ [0, 1]
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The convolution kernel

Assume that

(H1)
∫

Ω

∫
Ω
k(|x− y|) dxdy =: k0 < +∞, supx∈Ω

∫
Ω
|k(|x− y|)| dy =: k̄ < +∞

(H2) ∀ p ∈ [1,+∞] ∃ kp > 0 :
∥∥−2

∫
Ω
k(|x− y|) z(y) dy

∥∥
W1,p(Ω)

≤ kp ‖z‖Lp(Ω)

for all z ∈W 1,p(Ω)

(H3) For p ∈ {2, 3} there is some sp > 0 such that for all z ∈W 1,p(Ω) it holds∥∥−2
∫

Ω
k(|x− y|) z(y) dy

∥∥
W2,p(Ω)

≤ sp ‖z‖W1,p(Ω)

Examples:

� the classical Newton potential:

k(x) = κ |x|−1, x 6= 0, where κ > 0 is a constant

� the usual mollifiers, and the Gaussian kernels:

k(x) = κ2 exp
(
−|x|2/κ3

)
, x ∈ R3, where κ2 > 0 and κ3 are constants
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The literature on the state system

� [ELLIOTT, GARCKE ’96]: existence of a weak solution to the local Cahn–Hilliard equation

with degenerate mobility and singular potentials endowed with no-flux boundary

conditions: no uniqueness proof is known in case of degenerate mobility and singular

potential

� [GAJEWSKI, ZACHARIAS, ’03]: existence and uniqueness to the nonlocal Cahn–Hilliard

system with degenerate mobility and singular potential

� [LONDEN, PETZELTOVÁ, ’11]: convergence to single equilibria and separation properties

for the nonlocal Cahn–Hilliard system with degenerate mobility and singular potential
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The literature on the control problem

First-order necessary optimality conditions for optimal control of local Cahn–Hilliard equations:

� [WANG, NAKAGIRI, ’00]: the case of polynomially growing potentials f with constant

mobility m

� [HINTERMÜLLER, WEGNER, ’14]: the case of the double obstacle potential f = I[0,1]

with constant mobility m: by means of a regularization procedure

� [ZHAO, LIU, ’13, ’14]: the convective 1D case and the 2D case, where the boundary

conditions ϕ = ∆ϕ = 0 were prescribed in place of the usual no-flux conditions for ϕ

and the chemical potential. Notice that in all of the abovementioned contributions a

distributed control was assumed which was not related to the fluid velocity

Optimal control problems for certain classes of PDEs coupled with nonlocal boundary

conditions: [Druet, Klein, Sprekels, Tröltzsch, and Yousept, ’11], [Philip, ’10], [Meyer, Yousept,

’09], [Meyer, Philip, Tröltzsch, ’06]

!!! no analytical contribution on optimal control problems for nonlocal phase field models of

convective Cahn-Hilliard type and, more generally, for nonlocal PDEs not on the boundary
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The choice of the velocity field as control

Novelty: the use of the fluid velocity field as the control parameter =⇒ through the convective

term there arises a nonlinear coupling between control and state in product form that renders

the analysis difficult =⇒ the choice of the regular space for velocities is justified

Applications: growth of bulk semiconductor crystals, e.g., the block solidification of large

silicon crystals for photovoltaic applications.

In this industrial process a mixture of several species of atoms (inpurities) dissolved in the

silicon melt has to be moved by the flow (i.e., by the velocity field v) to the boundary of the

solidifying silicon in order to maximize the purified high quality part of the resulting silicon ingot.

In other words, the flow pattern acts as a control to optimize the final distribution of the

impurities.
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The set of admissible controls

(H4) Vad := {v = (v1, v2, v3) ∈ V : ṽ1i ≤ vi ≤ ṽ2i a.e. in Q, i = 1, 2, 3,

‖v‖L2(0,T ;H1
div

(Ω)3) + ‖vt‖L2(0,T ;L3(Ω)3) ≤ V
}

where V > 0 is a given constant and ṽ1i , ṽ2i ∈ L∞(Q), i = 1, 2, 3, are given threshold

functions; we generally assume that Vad 6= ∅.
Observe that Vad is a bounded, closed, and convex subset of V , which is certainly contained

in some bounded open subset of V . For convenience, we fix such a set once and for all, noting

that any other such set could be used instead:

(H5) VR ⊂ V is an open set satisfying Vad ⊂ VR such that, for all v ∈ VR,

‖v‖L2(0,T ;H1(Ω)3) + ‖v‖L∞(Q)3 + ‖vt‖L2(0,T ;L3(Ω)3) ≤ R
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The state system: well-posedness and global stability

Assume (H1)–(H5) and ϕ0 ∈ H2(Ω) be such that there is some κ0 > 0 such that

0 < κ0 ≤ ϕ0 ≤ 1− κ0 < 1 a.e. in Ω, and it holds a.e. in Ω that

0 =
(
c0∇ϕ0 + m(ϕ0)∇

∫
Ω

k(|x− y|)(1− 2ϕ0(y)) dy
)
· n

= m(ϕ0)∇µ(·, 0) · n.

Then, the system (P1)–(P4) for any v ∈ VR a unique solution triple (ϕ,w, µ) such that

ϕ ∈ C1([0, T ];L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2(Ω)) ∩ C0(Q).

Moreover, there is κ ∈ (0, 1), which does not depend on the choice of v ∈ VR, such that

0 < κ ≤ ϕ ≤ 1− κ < 1 a.e. in Q .

Finally, there exists a constant K∗2 > 0, which only depends on the data of the state system

and on R, such that it holds:∫ t

0

‖(ϕ1 − ϕ2)t(s)‖2L2(Ω) ds+ max
0≤s≤t

‖(ϕ1 − ϕ2)(s)‖2H1(Ω) ≤

K∗2

∫ t

0

‖(v1 − v2)(s)‖2L3(Ω)3 ds
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Existence for (CP)

Owing to the previous results, the control-to-state operator

S : VR → C1([0, T ];L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2(Ω))

v 7→ ϕ

is well defined and Lipschitz continuous as a mapping from VR (viewed as a subset of

L2(0, T ;L3(Ω)3)) into H1(0, T ;L2(Ω)) ∩ C0([0, T ];H1(Ω)).

Then we have the first result:

Theorem 1. Suppose that the previous hypotheses are fulfilled. Then the problem (CP) admits

a solution v̄ ∈ Vad
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The linearized system

Assume that v̄ ∈ VR is fixed and that (ϕ̄, w̄, µ̄) is the associated triple solving the state

system, i.e., ϕ̄ = S(v̄), w̄ = K(ϕ̄), µ̄ = f ′(ϕ̄) + w̄.

Suppose that an arbitrary h ∈ V is given.
Consider the linearized system obtained by linearizing the state system at ϕ̄ = S(v̄):

ξt − c0 ∆ξ − div

(
m′(ϕ̄) ξ∇w̄ − 2m(ϕ̄)∇

(∫
Ω
k(|x− y|) ξ(y, · ) dy

))
= −h · ∇ϕ̄ − v̄ · ∇ξ a.e. in Q

w̄(x, t) =

∫
Ω
k(|x− y|)(1− 2ϕ̄(y, t)) dy a.e. in Q

(
c0∇ξ +m′(ϕ̄) ξ∇w̄ − 2m(ϕ̄)∇

(∫
Ω
k(|x− y|) ξ(y, · ) dy

))
· n = 0 a.e. on Σ

ξ(0) = 0 a.e. in Ω

We expect that the unique solution

ξ = DS(v̄)h

where DS(v̄) denotes the Fréchet derivative of S at v̄.
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Differentiability of the control-to-state operator

Let the previous hypotheses be satisfied. Then the control-to-state operator

S : VR → C1([0, T ];L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2(Ω)), v 7→ ϕ

is Fréchet differentiable in VR from V into Y := C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)),

and, for every v̄ ∈ VR, DS(v̄) ∈ L(V,Y) is defined as follows: for every h ∈ V we have

DS(v̄)h = ξh

where ξh is the unique solution to the linearized system with ϕ̄ = S(v̄).

Assume that the previous hypotheses are fulfilled, and let v̄ ∈ Vad be an optimal control for

problem (CP) with associated state ϕ̄ = S(v̄). Then we have for every v ∈ Vad the inequality

β1

∫ T

0

∫
Ω

(ϕ̄− ϕQ) ξh dx ds + β2

∫
Ω

(ϕ̄(T )− ϕΩ) ξh(T ) dx (VAR)

+ β3

∫ T

0

∫
Ω

v̄ · (v − v̄) dxds ≥ 0

where ξh is the unique solution to the linearized system associated with h = v − v̄
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The adjoint system

In order to establish the necessary first-order optimality conditions for (CP), we need to

eliminate ξh from inequality (VAR). To this end, we introduce the adjoint system which formally

reads as follows:

− pt − c0 ∆p−∇p ·
[
v̄ +m′(ϕ̄)∇

(∫
Ω

k(|x− y|)(1− 2ϕ̄(y, t)) dy
)]

− 2

∫
Ω

∇p(y, t)m(ϕ̄(y, t)) · ∇k(|x− y|) dy = β1(ϕ̄− ϕQ) in Q

∂p

∂n
= 0 on Σ

p(T ) = β2(ϕ̄(T )− ϕΩ) a.e. in Ω

The adjoint system has a unique solution

p ∈ H1(0, T ;H1(Ω)∗) ∩ C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω))
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The first order optimality conditions

We are now in the position to eliminate ξh from (VAR).

Assume that the previous hypotheses are fulfilled, and let v̄ ∈ Vad be an optimal control for

problem (CP) with associated state ϕ̄ = S(v̄) and adjoint state p. Then we have for every

v ∈ Vad the inequality

β3

∫ T

0

∫
Ω

v̄ · (v − v̄) dxdt +

∫ T

0

∫
Ω

p(v − v̄) · ∇ϕ̄dxdt ≥ 0

Proof. We only note that we have

β1

∫ T

0

∫
Ω

(ϕ̄− ϕQ) ξh dxdt + β2

∫
Ω

(ϕ̄(T )− ϕΩ) ξh(T ) dx

= β1

∫ T

0

∫
Ω

(ϕ̄− ϕQ) ξh dx dt +

∫ T

0

(
〈pt(t), ξh(t)〉 + 〈ξht (t), p(t)〉

)
dt

=

∫ T

0

∫
Ω

p (v − v̄) · ∇ϕ̄ dx dt

where the last equality easily follows from expressing pt(t) and ξht (t) via the adjoint equation

and the linearized system and then integrating by parts
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Comparison with the local case

Moreover, since Vad is a nonempty, closed, and convex subset of L2(Q)3, we can infer that

for β3 > 0 the optimal control v̄ is the L2(Q)3-orthogonal projection of−β−1
3 p∇ϕ̄ onto Vad

In particular, if the function ṽ = (ṽ1, ṽ2, ṽ3) ∈ L2(Q)3, which is given by

ṽi(x, t) := max
{
ṽ1i(x, t), min

{
ṽ2i(x, t), −β

−1
3 p(x, t) ∂iϕ̄(x, t)

}}
for i = 1, 2, 3, and almost every (x, t) ∈ Q, belongs to Vad, then ṽ = v̄ , and the optimal

control v̄ turns out to be a pointwise projection

However the requirement ṽ ∈ Vad implies that we should have ṽt ∈ L2(0, T ;L3(Ω)3),

which in general cannot be expected since we only can guarantee the regularity

pt ∈ L2(0, T ;H1(Ω)∗)

Therefore, the information about the optimal control that can be recovered from the projection

property may be rather weak, in general. This is in contrast to the non-convective local case

(see, e.g., [Hintermüller, Wegner, ’12]) and to the convective local 2D case (see [Zhao, Liu, ’14],

where different boundary conditions are considered); it is in fact the price to be paid for

considering the three-dimensional case with the flow velocity as the control parameter.
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Open related problems

Other interesting problems would be related to:

� the case of more general potentials and mobilities and

� the optimal control problem related to the coupling of (P1)–(P4) with a Navier–Stokes

system governing the evolution of the velocity v:

vt − 2 div
(
ν(ϕ)Dv

)
+ (v · ∇)v +∇π = µ∇ϕ+ u, div(v) = 0

� The existence of weak solutions to such coupled systems and their long-time

behavior have recently been studied in [Frigeri, Grasselli, Krejčí, ’13] and [Frigeri,

Grasselli, Rocca, ’13] in the two- and three-dimensional cases

� The analysis of the associated control problem in the 2D case has been recently

done in [Frigeri, E.R., Sprekels, ’14] in case of regular potentials and constant

mobilities
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