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Setting

Typical structure of tumors grown in vitro:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar 100µm = 0:1mm

A continuum thermodynamically consistent model is introduced with the ansatz:

sharp interfaces are replaced by narrow transition layers - diffuse interfaces - arising

due to adhesive forces among the cell species

proliferating and dead tumor cells and healthy cells are present, along with a

nutrient (e.g. glucose or oxigene)

tumor cells are regarded as inertia-less fluids: include the velocity - satisfying a

Darcy type law with Korteveg term
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Advantages of diffuse interfaces in tumor growth models

Sharp interfaces =⇒ narrow transition layers in which tumor and healthy cells are mixed

The main advantages of the diffuse interface formulation are:

it eliminates the need to enforce complicated boundary conditions across the

tumor/host tissue and other species/species interfaces;

it eliminates the need to explicitly track the position of interfaces, as is required in

the sharp interface framework;

the mathematical description remains valid even when the tumor undergoes

toplogical changes (e.g. metastasis)
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E. Rocca (Università degli Studi di Pavia) Multiphase tumor growth December 18-20, 2017 5 / 39



Outline

1 Phase field models for tumor growth

2 FLRS: Multispecies model with different mobilities

3 Inspired by M. Dai, E. Feireisl, E.R., G. Schimperna, Nonlinearity (2017)

4 Comparison with other models

5 Perspectives and Open problems
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FLRS: S. Frigeri, K.-F. Lam, E.R., G. Schimperna, arXiv:1709.01469 (2017)

The model is a variant of the one introduced in [Y. Chen, S.M. Wise, V.B. Shenoy and

J.S. Lowengrub, Int. J. Numer. Meth. Biomed. Engng. (2014)]:

ϕp, ϕd , ϕh ∈ [0, 1]: the volume fractions of the cells:

I ϕp : proliferating tumor cell fraction

I ϕd : dead tumor cell fraction

I ϕh: healthy cell fraction

The variables above are naturally constrained by the relation ϕp + ϕd + ϕh = 1

hence it suffices to track the evolution of ϕp and ϕd and the vector ϕ := (ϕp, ϕd)>

lies in the simplex ∆ := {y ∈ R2 : 0 ≤ y1, y2, y1 + y2 ≤ 1} ⊂ R2

n: the nutrient concentration

u:=ui , i = 1, 2, 3: the tissue velocity field. We treat the tumor and host cells as

inertial-less fluids and assume that the cells are tightly packed and they march

together

Π: the cell-to-cell pressure
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FLRS: the balance law

Letting Ji , i ∈ {p, d , h}, denote the mass fluxes for the cells, then the general balance

law for the volume fractions, for matched densities of the components, reads as

∂tϕi + div(ϕiu) = −divJi + Si for i ∈ {p, d , h}

where we set Sh = 0, whereas Sp, Sd may depend on n, ϕp and ϕd

Assume: the tumor growth process tends to evolve towards (local) minima of the free

energy functional of Ginzburg–Landau type:

E(ϕp, ϕd) :=

∫
Ω

F (ϕp, ϕd) +
1

2
|∇ϕp|2 +

1

2
|∇ϕd |2 dx

where F = F0 + F1 is a multi-well configuration potential, e.g.

F0(ϕp, ϕd):= ϕp logϕp + ϕd logϕd + (1− ϕp − ϕd) log(1− ϕp − ϕd)

F1(ϕp, ϕd) :=
χ

2
(ϕd(1− ϕd) + ϕp(1− ϕp) + (1− ϕd − ϕp)(ϕd + ϕp))

The fluxes Ji are defined as follows:

Ji = −Mi∇µi , µi :=
δE

δϕi
= −∆ϕi + F,ϕi for i = p, d
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FLRS: the velocity and nutrient evolutions

We set Jh = −Jp − Jd , then upon summing up the three mass balances for i = p, d , h,

using the fact that ϕp + ϕd + ϕh = 1 and Sh = 0, we deduce the following relation:

div u = Sp + Sd =: St

The velocity field u is assumed to fulfill Darcy’s law:

u = −∇Π− ϕp∇µp − ϕd∇µd

where Π denotes the cell-to-cell pressure and the subsequent two terms have the meaning

of Korteweg forces

Since the time scale of nutrient diffusion is much faster (minutes) than the rate of cell

proliferation (days), the nutrient is assumed to evolve quasi-statically:

0 = −∆n + ϕpn

where ϕpn models consumption by the proliferating tumor cells
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The goal and the main difficulties of FLRS

Goal: to study this multispecies model including different mobilities, singular potential

and non-Dirichlet b.c.s on the chemical potential. The main problems are:

we have two different Cahn-Hilliard equations with non-zero right hand sides:

∂tϕi − div(Mi∇µi −ϕiu) = Si and if we do not choose the Dirichlet b.c.s on µi then

we need to estimate the mean values of µi = −∆ϕi + F,ϕi containing a multiwell

logarithmic type potential F0

we need the mean values of ϕi (the proliferating and dead cells phases) to be away

from the potential bareers =⇒ ad hoc estimate based on ODEs technique

indeed, integrating the equations for ϕp and ϕd we obtain an evolution law for the

mean values yi := 1
|Ω|

∫
Ω
ϕi dx for i = p, d

the evolution of yp, yd are not automatically compatible with the physical constraint

and this has to be proved by assuming proper conditions on coefficients in Si and

making a careful choice of the boundary conditions

the choice (Mi∇µi − ϕiu) · n = 0 seems crucial
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E. Rocca (Università degli Studi di Pavia) Multiphase tumor growth December 18-20, 2017 10 / 39



FLRS: The weak notion of solution

Definition. (ϕp , ϕd , u, q, n) is a weak solution to the problem in (0,T )× Ω if the previous

equations hold, for a.e. t ∈ (0,T ) and for i = p, d , in the following weak sense:

〈∂tϕi , ζ〉+

∫
Ω
Mi∇µi · ∇ζ − ϕiu · ∇ζ dx =

∫
Ω
Siζ dx ∀ζ ∈ H1(Ω),∫

Ω
µiζ dx =

∫
Ω
∇ϕi · ∇ζ + ηiζ + F1,ϕi

(ϕp , ϕd )ζ dx ∀ζ ∈ H1(Ω),∫
Ω

u · ∇ξ dx = −
∫

Ω
(Sp + Sd )ξ dx ∀ξ ∈ H1

0 (Ω),∫
Ω

u · ζ dx =

∫
Ω
−∇Π · ζ − ϕp∇µp · ζ − ϕd∇µd · ζ dx ∀ζ ∈ (L2(Ω))d ,

0 = −∆n + ϕpn a.e. in Ω,

ηi = F0,ϕi
(ϕp , ϕd ) a.e. in Ω,

Sp = Σp(n, ϕp , ϕd ) + mppϕp + mpdϕd a.e. in Ω,

Sd = Σd (n, ϕp , ϕd ) + mdpϕp + mddϕd a.e. in Ω.

Moreover, there hold the initial conditions

ϕp(x , 0) = ϕp,0(x), ϕd (x , 0) = ϕd,0(x) a.e. in Ω,

where 〈·, ·〉 denotes the duality pairing between H1(Ω) and its dual H1(Ω)′.
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FLRS: Assumptions on the mass sources and on the initial data

Set Σ(n, ϕp, ϕd) := (Σp,Σd) and M = (mij), i , j ∈ {p, d}, the matrix of the coefficients

of the mass souces in the Cahn-Hilliard equations: (Sp, Sd) = Σ + M(ϕp, ϕd)T

Assumption on the mass sources:

Σ is globally Lipschitz and

that there exist a closed and sufficiently regular subset ∆0 contained in the open

simplex ∆ and constants Kp,−,Kp,+,Kd,−,Kd,+ ∈ R, with Kp,− ≤ Kp,+ and

Kd,− ≤ Kd,+, such that Σ(R3) ⊂ [Kp,−,Kp,+]× [Kd,−,Kd,+]

for any x = (xp, xd) ∈ [Kp,−,Kp,+]× [Kd,−,Kd,+], there holds

(My + x) · n < 0 for all y ∈ ∂∆0,
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FLRS: Examples of mass sources

Examples of mass sources in ∂tϕi − div(Mi∇µi − ϕiu) = Si for i ∈ {p, d} complying

with the assumptions in the “logarithmic” case are:

Sp = λMg(n)−λAϕp

Sd = λAϕp−λLϕd

for positive constants λM , λA, λL (with λM(λA + λL) < λAλL, λA < 2λL) and a bounded

positive function g such that 0 < g(s) ≤ 1, e.g., g(s) = max(nc ,min(s, 1)) for some

constant nc ∈ (0, 1).

The biological effects we want to model are:

the growth of the proliferating tumor cells due to nutrient consumption at a

constant rate λM

the death of proliferating tumor cells at a constant rate λA, which leads to a source

term for the necrotic cells

the lysing/disintegration of necrotic cells at a constant rate λL
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E. Rocca (Università degli Studi di Pavia) Multiphase tumor growth December 18-20, 2017 13 / 39



FLRS: Existence of weak solutions

The main result of S. Frigeri, K.-F. Lam, E. R., G. Schimperna, arXiv:1709.01469 (2017)

Theorem

For every T > 0 here exists at least one weak solution (ϕp, µp, ηp, ϕd , µd , ηd , u, q, n) to

the multi-species tumor model on [0,T ] with the regularity

ϕi ∈ H1(0,T ;H1(Ω)′) ∩ L∞(0,T ;H1(Ω)) ∩ L2(0,T ;H2(Ω)),

with 0 ≤ ϕi ≤ 1, ϕp + ϕd ≤ 1 a.e. in Q, for i = p, d ,

µi ∈ L2(0,T ;H1(Ω)), ηi ∈ L2(Q),

u ∈ L2(Q) with div u ∈ L2(Q), Π ∈ L2(0,T ;H1
0 (Ω)),

n ∈ (1 + L2(0,T ;H2(Ω) ∩ H1
0 (Ω))), 0 ≤ n ≤ 1 a.e. in Q.

Notice that the boundary conditions:

(Mi∇µi − ϕiu) · n = 0, ∂nϕi = 0, q = 0, n = 1 on Γ

are incorporated in the definition of weak solutions
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FLRS: an idea of the proof

1 consider a regularized version of this problem by replacing the singular potential F0

by a regular one Fε, and by introducing some suitable truncation functions

2 present two independent methods to prove existence of a solution to the regularized
system:

2.1 a further regularization and a Schauder fixed point argument: only exploits elementary

existence and uniqueness results methods for PDEs

2.2 a Faedo-Galerkin scheme: more direct (no further regularizing terms are introduced),

and constructive (hence, it may be used for a numerical approximation of the problem)

3 derive the bounds - independent of the regularization parameters - in order to pass

to the limit in the approximation scheme via compactness tools: the main problem is

to bound the mean values of ϕi away from the potential bareers
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The bound of the mean values

Testing by 1 the mass balances

〈∂tϕi , ζ〉+

∫
Ω

Mi∇µi · ∇ζ − ϕiu · ∇ζ dx =

∫
Ω

Siζ dx ,

where (Sp, Sd) = (Σp,Σd) + M(ϕp, ϕd)T , leads to the following system of ODE’s:

d

dt
y(t) = (Σ)Ω(t) + My(t) ∀t ∈ [0,T ].

where y(t) := ((ϕp)Ω(t), (ϕd)Ω(t)), (Σ)Ω(t) = ((Σp)Ω(t), (Σd)Ω(t)). Using the

assumption

(x + My) · n < 0 for all y ∈ ∂∆0

we infer that the vector y(t) = ((ϕp)Ω(t), (ϕd)Ω(t)) ∈ int ∆0 for all t ∈ [0,T ]. Indeed, at

the time t = 0, y(0) ∈ int ∆0 by assumption. Suppose that ∃ t∗ such that y(t∗) ∈ ∂∆0.

Taking t = t∗ in the ODE, multiplying with n, we get

d

dt
y(t∗) · n < 0.

Hence y(t) cannot leave ∆0 and so there exist positive constants 0 < c1 < c2 < 1:

c1 ≤ (ϕp)Ω(t), (ϕd)Ω(t) ≤ c2, c1 ≤ (ϕp + ϕd)Ω(t) ≤ c2 ∀t ∈ [0,T ].

E. Rocca (Università degli Studi di Pavia) Multiphase tumor growth December 18-20, 2017 16 / 39



The bound of the mean values

Testing by 1 the mass balances

〈∂tϕi , ζ〉+

∫
Ω

Mi∇µi · ∇ζ − ϕiu · ∇ζ dx =

∫
Ω

Siζ dx ,

where (Sp, Sd) = (Σp,Σd) + M(ϕp, ϕd)T , leads to the following system of ODE’s:

d

dt
y(t) = (Σ)Ω(t) + My(t) ∀t ∈ [0,T ].

where y(t) := ((ϕp)Ω(t), (ϕd)Ω(t)), (Σ)Ω(t) = ((Σp)Ω(t), (Σd)Ω(t)).

Using the

assumption

(x + My) · n < 0 for all y ∈ ∂∆0

we infer that the vector y(t) = ((ϕp)Ω(t), (ϕd)Ω(t)) ∈ int ∆0 for all t ∈ [0,T ]. Indeed, at

the time t = 0, y(0) ∈ int ∆0 by assumption. Suppose that ∃ t∗ such that y(t∗) ∈ ∂∆0.

Taking t = t∗ in the ODE, multiplying with n, we get

d

dt
y(t∗) · n < 0.

Hence y(t) cannot leave ∆0 and so there exist positive constants 0 < c1 < c2 < 1:

c1 ≤ (ϕp)Ω(t), (ϕd)Ω(t) ≤ c2, c1 ≤ (ϕp + ϕd)Ω(t) ≤ c2 ∀t ∈ [0,T ].
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Outline

1 Phase field models for tumor growth

2 FLRS: Multispecies model with different mobilities

3 Inspired by M. Dai, E. Feireisl, E.R., G. Schimperna, Nonlinearity (2017)

4 Comparison with other models

5 Perspectives and Open problems

E. Rocca (Università degli Studi di Pavia) Multiphase tumor growth December 18-20, 2017 17 / 39



Comparison with [M. Dai, E. Feireisl, E.R., G. Schimperna, Analysis of a

diffuse interface model of multispecies tumor growth, Nonlinearity (2017)]

we already had a multispecied model including velocities but

we considered equal mobilities in the mass balances

and homogeneous Dirichlet boundary conditions on the chemical potential

the resulting PDE system is completely different
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DFRSS: The state variables

φi , i = p, d , h: the volume fractions of the cells:

I φp = P: proliferating tumor cell fraction

I φd : dead tumor cell fraction

I φh: healthy cell fraction

The variables are naturally constrained by the relation
∑

i=p,d,h φi = φh + Φ = 1

we can forget of φh as before but here it turns out convenient to consider as

variables: P (proliferating cells) and Φ = P + φd (tumor cells: proliferating + dead)

along with

n: the nutrient concentration

u:=ui , i = 1, 2, 3: the tissue velocity field. We treat the tumor and host cells as

inertial-less fluids and assume that the cells are tightly packed and they march

together

Π: the cell-to-cell pressure
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DFRSS: Mass conservation and choice of the energy

The volume fractions obey the mass conservation (advection-reaction-diffusion)

equations, where we have taken matched densities of the components:

∂tφi + divx(uφi ) = −divxJi + ΦSi

Assuming:

the total energy adhesion takes into account only of diffuse interfaces between

tumor and healthy phases:

E =

∫
Ω

(
F(Φ) +

1

2
|∇xΦ|2

)
dx

and F is a logarithmic type mixing potential acting only on the variable Φ

all the mobilities of the system to be the SAME constant (1 for simplicity) and so

the flux JΦ becomes:

JΦ := −∇x

(
δE

δΦ

)
= −∇x

(
F ′(Φ)−∆Φ

)
:= −∇xµ

the tumor mass source is ST := Sd + Sp,

we recover the convective Cahn-Hilliard equation for Φ in the form

∂tΦ + divx(uΦ)− divx(∇xµ) = ΦST , µ = F ′(Φ)−∆Φ
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E. Rocca (Università degli Studi di Pavia) Multiphase tumor growth December 18-20, 2017 20 / 39



DFRSS: The transport equation for the proliferating cells fraction

The volume fraction of dead tumor cells φd would satisfy an equation similar to the one

of Φ.

However, we prefer to couple the equation for Φ with the one for P = Φ− φd

which - assuming all the mobilities of the system to be the SAME constant - then

becomes a transport equation:

∂tP + divx(uP) = Φ(ST − SD)

where the mass souces (as before) take into account of proliferation and death of cells

due to different biological processes

The main difference here is that for P we have a transport equation and so we

couple a Cahn-Hilliard type equation for Φ with a transport equation for P and the

nutrient and velocity evolution

Moreover the singular potential here is a function of only one variable Φ while in

FLRS it depends on both the proliferating and dead cells phases
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DFRSS: The boundary conditions

The other main difference with respect to FLRS is the choice of boundary conditions:

In DFRSS we chose the b.c.s of [CWSL: Y. Chen, S.M. Wise, V.B Shenoy, J.S.

Lowengrub, Int. J. Numer. Methods Biomed. Eng. (2014)] for µ, Π, n, and Φ (ν is the

outer normal unit vector to ∂Ω):

µ = Π = 0, n = 1, ∇xΦ · ν = 0

On the other hand, under the homogeneous Neumann boundary conditions

suggested in [CWSL] for P, we could not show that the system had weak solutions

For this reason, we chose the boundary conditions:

Pu · ν ≥ 0

They are natural in connection with the transport equation for P

∂tP + divx(uP) = Φ(ST − Sd)

The proliferation function at the boundary has to be nonnegative on the set where

the velocity u satisfies u · ν > 0. By maximum principle, then P ≥ 0 in Ω

As P ≥ 0, the boundary condition Pu · ν ≥ 0 means P = 0 whenever u · ν < 0 i.e.

on the part of the inflow part of the boundary
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E. Rocca (Università degli Studi di Pavia) Multiphase tumor growth December 18-20, 2017 22 / 39



DFRSS: The boundary conditions

The other main difference with respect to FLRS is the choice of boundary conditions:

In DFRSS we chose the b.c.s of [CWSL: Y. Chen, S.M. Wise, V.B Shenoy, J.S.

Lowengrub, Int. J. Numer. Methods Biomed. Eng. (2014)] for µ, Π, n, and Φ (ν is the

outer normal unit vector to ∂Ω):

µ = Π = 0, n = 1, ∇xΦ · ν = 0

On the other hand, under the homogeneous Neumann boundary conditions

suggested in [CWSL] for P, we could not show that the system had weak solutions

For this reason, we chose the boundary conditions:

Pu · ν ≥ 0

They are natural in connection with the transport equation for P

∂tP + divx(uP) = Φ(ST − Sd)

The proliferation function at the boundary has to be nonnegative on the set where

the velocity u satisfies u · ν > 0. By maximum principle, then P ≥ 0 in Ω

As P ≥ 0, the boundary condition Pu · ν ≥ 0 means P = 0 whenever u · ν < 0 i.e.

on the part of the inflow part of the boundary
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DFRSS: The PDEs

In summary, in Ω× (0,T ), we have the following system of equations:

(Cahn− Hilliard) ∂tΦ + divx(uΦ)− divx(∇xµ) = ΦST , µ = −∆Φ + F ′(Φ)

(Darcy) u = −∇xΠ + µ∇xΦ, divxu = ST

(Transport) ∂tP + divx(uP) = Φ(ST − Sd)

(Reac− Diff) −∆n + nP = Tc(n,Φ)

where

(Source− Tumor) ST (n,P,Φ) = nP − λ3(Φ− P)

(Source− Dead) Sd(n,P,Φ) = (λ1 + λ2H(nN − n))P − λ3(Φ− P)

(Nutrient− Capill) Tc(n,Φ) = [ν1(1− Q(Φ)) + ν2Q(Φ)] (nc − n)

coupled with the boundary conditions on ∂Ω× (0,T ): µ = Π = 0, n = 1, ∇xΦ · ν = 0,

Pu · ν ≥ 0 and with the initial conditions Φ(0) = Φ0, P(0) = P0 in Ω
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DFRSS: Existence of weak solutions

The main result of [M. Dai, E. Feireisl, E.R., G. Schimperna, M. Schonbek, Analysis of a

diffuse interface model of multispecies tumor growth, Nonlinearity (2017)] reads as

follows

Theorem

Let T > 0 be given. Under suitable assumptions on the nonlinear function F and on the

initial data the weak formulation of our initial-boundary value problem admits at least

one solution on the time interval [0,T ]
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Comparison with other models including velocities

Numerical simulations of diffuse-interface models for tumor growth have been

carried out in several papers (cf., e.g., [Cristini, Lowengrub, Cambridge Univ. Press,

2010] and more recently [H. Garcke, K.-F. Lam, E. Sitka, V. Styles, Math. Models Methods

Appl. (2016)], [H. Garcke, K.F. Lam, R. Nuernberg, and E. Sitka, preprint (2017)])

However, a rigorous mathematical analysis of the resulting PDEs is still in its
beginning and mostly for one species models with regular potentials (cf. the model
introduced in [H. Garcke, K.F. Lam, E. Sitka, and V. Styles, Math. Models Methods Appl.

(2016)] and the subsequent analytical results) :

1. the so-called Cahn-Hilliard-Hele-Shaw system ([J. Lowengrub, E. Titi, K. Zhao,

European J. Appl. Math. (2013)], [X. Wang, H. Wu, Asymptot. Anal. (2012)], [X.

Wang, Z. Zhang, Ann. Inst. H. Poincaré Anal. Nonlinéaire (2013)]) in which the

nutrient n, the source of tumor ST and the fraction SD of the dead cells are neglected

2. [J. Jang, H. Wu, S. Zheng, J. Differential Equations (2015)] where ST is not 0 but it’s

not depending on the other variables but just on time and space
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Perspectives and Open problems

1. The sharp interface limit as ε↘ 0 in the coupled Cahn-Hilliard-Darcy system where

∂tΦ + divx(uΦ)− divx(∇xµ) = 0, µ = −ε2∆Φ + F ′(Φ)

In [S. Melchionna, E. Rocca, Interfaces and Free Boundaries, to appear]: Varifold

solutions at the limit as ε↘ 0 in case we just consider the Cahn-Hilliard-Darcy

system coupling the Φ equation to the u equation (neglecting the nutrient)

2. To add the mechanics in Lagrangean coordinates in the problem: for example

considering the tumor sample as a porous media (ongoing project with P. Krejč́ı and

J. Sprekels)

3. The case with different densities: we are studying a Hele-Shaw-Cahn-Hilliard model

introduced by [Lee, Lowengrub and Goodman (2001)] in cooperaton with Andrea

Giorgini (a post doc in Pavia) and P. Colli, G. Schimperna, and M. Grasselli. Other

models with different assumptions are available (cf. [L. Dedè, H. Garcke, K.-F. Lam, J.

Math. Fluid Mech., to appear])
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Perspectives and Open problems

1. The sharp interface limit as ε↘ 0 in the coupled Cahn-Hilliard-Darcy system where

∂tΦ + divx(uΦ)− divx(∇xµ) = 0, µ = −ε2∆Φ + F ′(Φ)

In [S. Melchionna, E. Rocca, Interfaces and Free Boundaries, to appear]: Varifold

solutions at the limit as ε↘ 0 in case we just consider the Cahn-Hilliard-Darcy

system coupling the Φ equation to the u equation (neglecting the nutrient)

2. To add the mechanics in Lagrangean coordinates in the problem: for example

considering the tumor sample as a porous media (ongoing project with P. Krejč́ı and

J. Sprekels)

3. The case with different densities: we are studying a Hele-Shaw-Cahn-Hilliard model

introduced by [Lee, Lowengrub and Goodman (2001)] in cooperaton with Andrea

Giorgini (a post doc in Pavia) and P. Colli, G. Schimperna, and M. Grasselli. Other

models with different assumptions are available (cf. [L. Dedè, H. Garcke, K.-F. Lam, J.

Math. Fluid Mech., to appear])
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Many thanks to all of you for the attention!

BUT A SPECIAL THANKS GOES TO ...
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EDUARD!!!

I think we met in Poitiers at the AIMS Conference in 2006

In 2007 I had the great opportunity to spend one month at the Nečas Center and

the occasion to work with Eduard and Hana. I learnt from him a lot and I got a lot

of inspiration

In the years after 2007 Eduard came several times in Milan, Berlin and Pavia. A lot

of cooperations started with him, Giulio Schimperna, and also Arghir Zarnescu,

Mimi Dai, and Maria Schonbek on two-phase immiscible fluids, liquid cristals, and

finally on tumor growth

We also had the occasion to attend his lessons for a PhD course he gave in Milan
this year and into two Schools:

I in Cetraro in 2015 (which we also organized together) and in Milan in 2013

I attracting numerous students from many different countries
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But I think that what one can immediately appreciate in the cooperation with Eduard is

the energy - somethimes entropy ... - that he emanates at the blackboard!

and we hope to be able to profit of his spirit still A LOT!

HAPPY BIRTHDAY EDUARD!
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DFRSS: Assumptions on the potential F

We suppose that the potential F supports the natural bounds

0 ≤ Φ(t, x) ≤ 1

To this end, we take F = C + B, where B ∈ C 2(R) and

C : R 7→ [0,∞] convex, lower-semi continuous, C(Φ) =∞ for Φ < 0 or Φ > 1

Moreover, we ask that

C ∈ C 1(0, 1), lim
Φ→0+

C′(Φ) = lim
Φ→1−

C′(Φ) =∞

A typical example of such C is the logarithmic potential

C(Φ) =


Φ log(Φ) + (1− Φ) log(1− Φ) for Φ ∈ [0, 1],

∞ otherwise
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DFRSS: Assumptions on the other data

Regarding the functions the constants in the definitions of ST and SD

(Source− Tumor) ST (n,P,Φ) = nP − λ3(Φ− P)

(Source− Dead) SD(n,P,Φ) = (λ1 + λ2H(nN − n))P − λ3(Φ− P)

(Nutrient− Capill) Tc(n,Φ) = [ν1(1− Q(Φ)) + ν2Q(Φ)] (nc − n)

we assume Q,H ∈ C 1(R) and

λi ≥ 0 for i = 1, 2, 3, H ≥ 0

[ν1(1− Q(Φ)) + ν2Q(Φ)] ≥ 0, 0 < nc < 1

Finally, we suppose Ω be a bounded domain with smooth boundary in R3 and impose the

following conditions on the initial data:

Φ0 ∈ H1(Ω), 0 ≤ Φ0 ≤ 1, C(Φ0) ∈ L1(Ω)

P0 ∈ L2(Ω), 0 ≤ P0 ≤ 1 a.e. in Ω
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DFRSS: Weak formulation
(Φ, u,P, n) is a weak solution to the problem in (0,T )× Ω if

(i) these functions belong to the regularity class:

Φ ∈ C0([0,T ];H1(Ω)) ∩ L2(0,T ;W 2,6(Ω))

C(Φ) ∈ L∞(0,T ; L1(Ω)), hence, in particular, 0 ≤ Φ ≤ 1 a.a. in (0,T )× Ω

u ∈ L2((0,T )× Ω;R3), div u ∈ L∞((0,T )× Ω)

Π ∈ L2(0,T ;W 1,2
0 (Ω)), µ ∈ L2(0,T ;W 1,2

0 (Ω))

P ∈ L∞((0,T )× Ω), 0 ≤ P ≤ 1 a.a. in (0,T )× Ω

n ∈ L2(0,T ;W 2,2(Ω)), 0 ≤ n ≤ 1 a.a. in (0,T )× Ω

(ii) the following integral relations hold:∫ T

0

∫
Ω

[Φ∂tϕ+ Φu · ∇xϕ+ µ∆ϕ+ ΦSTϕ] dx dt = −
∫

Ω
Φ0ϕ(0, ·) dx

for any ϕ ∈ C∞c ([0,T )× Ω), where

µ = −∆Φ + F ′(Φ), u = −∇xΠ + µ∇xΦ

divxu = ST a.a. in (0,T )× Ω; ∇xΦ · ν|∂Ω = 0∫ T

0

∫
Ω

[P∂tϕ+ Pu · ∇xϕ+ Φ(ST − SD)ϕ] dx dt ≥ −
∫

Ω
P0ϕ(0, ·) dx

for any ϕ ∈ C∞c ([0,T )× Ω), ϕ|∂Ω ≥ 0

−∆n + nP = Tc (n,Φ) a.a. in (0,T )× Ω; n|∂Ω = 1
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DFRSS: Idea of the proof

Approximation: regularize the equations

Perform uniform a priori estimates

Use compactness arguments in order to pass to the limit
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DFRSS: The maximum principle

The transport equation for the density function P is

∂tP + u · ∇xP = −PST + Φ(ST − Sd) = P [−ST + Φ (n − (λ1 + λ2H(nN − n)))]

Thus, provided

P(0, ·) = P0 ≥ 0, and P(t, x) ≥ 0 for x ∈ ∂Ω, u · ν > 0

we can deduce by maximum principle arguments that

P ≥ 0

In order to obtain positivity of n we need

(−∆n =)− nP + Tc(n, ϕ) = −nP + [ν1(1− Q(Φ)) + ν2Q(Φ)] (nc − n)

to be positive (non-negative) whenever n < 0. Then we assume

[ν1(1− Q(Φ)) + ν2Q(Φ)] ≥ 0, 0 < nc < 1

This assumption also implies that n ≤ 1, so we may conclude that

0 ≤ n(t, x) ≤ 1
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DFRSS: The upper bound for P

Hence, using Φ, n ∈ [0, 1], and evaluating the expression on the right-hand side of

∂tP + u · ∇xP = −PST + Φ(ST − Sd) = P [−ST + Φ (n − (λ1 + λ2H(nN − n)))]

for P = 1, due to −Φ (λ1 + λ2H(nN − n)) ≤ 0, yields

P [λ3(Φ− P)− nP + Φ (n − (λ1 + λ2H(nN − n)))] ≤ λ3(Φ− 1) + n(Φ− 1)

Consequently, provided

0 ≤ P(0, ·) = P0 ≤ 1, and 0 ≤ P(t, x) ≤ 1 for x ∈ ∂Ω, u · ν > 0

it follows that

0 ≤ P(t, x) ≤ 1
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DFRSS: Main estimates on Φ

Testing by µ the Cahn-Hilliard equation

(Cahn− Hilliard) ∂tΦ + divx(uΦ)− divx(∇xµ) = ΦST , µ = −∆Φ + F ′(Φ)

and by u the (Darcy − law) : u = −∇xΠ + µ∇xΦ, gives

d
dt

∫
Ω

[
1

2
|∇xΦ|2 + F(Φ)

]
dx +

∫
Ω

[
|∇xµ|2 + |u|2

]
dx =

∫
Ω

ΠST dx ≤ ‖ST ‖L∞(Ω)‖Π‖L1(Ω)

Seeing that Π solves the Dirichlet problem

−∆Π = ST − divx(µ∇xΦ), Π|∂Ω = 0

we deduce that

‖Π(t, ·)‖H1(Ω) ≤ ‖ST (t, ·)‖L2(Ω) + ‖µ∇xΦ‖L2(Ω;R3)

where, by means of Gagliardo-Nirenberg interpolation inequality,

‖µ∇xΦ‖L2(Ω;R3) ≤ c‖µ(t, ·)‖L4(Ω)

(
‖Φ(t, ·)‖1/2

L∞(Ω)

(
‖µ‖1/2

L2(Ω)
+ ‖∇Φ‖1/2

L2(Ω)

)
+ c
)

Applying a standard Grönwall’s lemma and by comparison arguments, we deduce

sup
t∈(0,T )

‖Φ‖H1(Ω) +

∫ T

0

[
‖∇xµ‖2

L2(Ω;R3) + |u|2 + ‖Φ‖2
W 2,6(Ω)

]
dt ≤ c
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DFRSS: Main estimates on u

Note that we already know

divxu = ST bounded in L∞((0,T )× Ω) and u bounded in L2((0,T )× Ω;R3)

Next, we compute from the (Darcy − law) : u = −∇xΠ + µ∇xΦ the

curlxu = ∇xµ ∧∇xΦ ∈ L2(0,T ; L1(Ω)) ∩ L1(0,T ; L2(Ω))

Hence, in view of the fact that divx(ϕu) and curl(ϕu) for any test function ϕ ∈ C∞(R3)

are bounded in L1(0,T ; L2(R3)), we then obtain that ϕu is bounded in L1(0,T ;H1(R3))

and so u satisfies ∫ T

0

‖u‖H1
loc

(Ω;R3) dt ≤ c

These estimates are sufficient in order to pass to the limit in the regularized system and

to obtain our weak solutions
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