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Setting

Tumors grown in vitro often exhibit “layered” structures:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar 100µm = 0:1mm

A continuum thermodynamically consistent model is introduced with the ansatz:

sharp interfaces are replaced by narrow transition layers arising due to adhesive forces

among the cell species: a diffuse interface separates tumor and healthy cell regions

proliferating tumor cells surrounded by (healthy) host cells, and a nutrient (e.g.

glucose)
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Advantages of diffuse interfaces in tumor growth models

Sharp interfaces =⇒ narrow transition layers in which tumor and healthy cells are mixed

The main advantages of the diffuse interface formulation are:

it eliminates the need to enforce complicated boundary conditions across the

tumor/host tissue and other species/species interfaces;

it eliminates the need to explicitly track the position of interfaces, as is required in

the sharp interface framework;

the mathematical description remains valid even when the tumor undergoes

toplogical changes (e.g. metastasis)
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Optimization over the treatment time: H. Garcke, K.F. Lam, E. Rocca,

Applied Mathematics & Optimization, 2017

Common treatment for tumors are

Chemotheraphy

Radiation therapy

Surgery

For treatment involving drugs, the patient is given several doses of drugs over a few days,

followed by a rest period of 3 - 4 weeks, and the cycle is repeated. Goal is to shrink the

tumor into a more manageable size for which surgery can be applied.

Unfortunately, cytotoxic drugs also harms the healthy host tissues, and can accumulate in

the body. Furthermore, drug clearance may also cause damage to various vital organs

(e.g. kidneys and liver).

Worst case scenario: Cytotoxins may have cancer-causing effects, and tumor cells can

mutate to become resistant to the drug.

Thus, aside from optimising the drug distribution, we should also consider optimising the

treatment time.
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Cahn–Hilliard + nutrient models with source terms

The simplest phase field model is a Cahn–Hilliard system with source terms for ϕ: the

difference in volume fractions (ϕ = 1: tumor phase, ϕ = −1: healthy tissue phase):

∂tϕ = ∆µ+M, µ = Ψ′(ϕ)−∆ϕ

The source term M accounts for biological mechanisms related to proliferation and

death. Introduce a Reaction-diffusion equation for the nutrient proportion σ:

∂tσ = ∆σ − S

where S models interaction with the tumor cells

In [Chen, Wise, Shenoy, Lowengrub (2014)], [Garcke, Lam, Sitka, Styles (2016)]:

M = h(ϕ)(Pσ −A), S = h(ϕ)Cσ

Here h(s) is an interpolation function such that h(−1) = 0 and h(1) = 1, and
I h(ϕ)Pσ - proliferation of tumor cells proportional to nutrient concentration
I h(ϕ)A - apoptosis of tumor cells
I h(ϕ)Cσ - consumption of nutrient by the tumor cells

A regular double-well potential Ψ, e.g., Ψ(s) = 1/4(1− s2)2
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Outline

1 Phase field models for tumor growth

2 The optimal control problem

3 First order optimality conditions

4 A multispecies model with velocity

5 Perspectives and Open problems
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State equations

We consider the Cahn–Hilliard + nutrient model with linear kinetics and Neumann

boundary conditions:

∂tϕ = ∆µ+ h(ϕ)(Pσ −A− αu)

µ = Ψ′(ϕ)−∆ϕ

∂tσ = ∆σ − Ch(ϕ)σ

Here h(s) is an interpolation function such that h(−1) = 0 and h(1) = 1, and

h(ϕ)Pσ - proliferation of tumor cells proportional to nutrient concentration

h(ϕ)A - apoptosis of tumor cells

h(ϕ)Cσ - consumption of nutrient by the tumor cells

h(ϕ)αu - elimination of tumor cells by cytotoxic drugs at a constant rate α,

u acts as a control here. In applications u : [0,T ]→ [0, 1] is spatially constant,

where u = 1 represents full dosage, u = 0 represents no dosage
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State equations

We consider the Cahn–Hilliard + nutrient model with linear kinetics and Neumann

boundary conditions:

∂tϕ = ∆µ+ h(ϕ)(Pσ −A− αu)

µ = Ψ′(ϕ)−∆ϕ

∂tσ = ∆σ − Ch(ϕ)σ

Here h(s) is an interpolation function such that h(−1) = 0 and h(1) = 1, and

h(ϕ)Pσ - proliferation of tumor cells proportional to nutrient concentration

h(ϕ)A - apoptosis of tumor cells

h(ϕ)Cσ - consumption of nutrient by the tumor cells

h(ϕ)αu - elimination of tumor cells by cytotoxic drugs at a constant rate α,

u acts as a control here. In applications u : [0,T ]→ [0, 1] is spatially constant,

where u = 1 represents full dosage, u = 0 represents no dosage
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Objective functional

For positive βT , βu and non-negative βQ , βΩ, βS , we consider

J(ϕ, u, τ) :=

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

∫
Ω

βΩ

2
|ϕ(τ)− ϕΩ|2

+

∫
Ω

βS
2

(1 + ϕ(τ)) +

∫ τ

0

∫
Ω

βu
2
|u|2 + βT τ

the variable τ denotes the unknown treatment time to be optimised,

ϕQ is a desired evolution of the tumor over the treatment,

ϕΩ is a desired final state of the tumor (stable equilibrium of the system),

the term 1+ϕ(τ)
2

measures the size of the tumor at the end of the treatment,

the constant βT penalizes long treatment times.

Expectation: An optimal control will be a pair (u∗, τ∗) and we will obtain two optimality

conditions.
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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth 4-6 décembre 2017 10 / 42



Regarding the terms appearing in the cost functional

J(ϕ, u, τ) :=

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

∫
Ω

βΩ

2
|ϕ(τ)− ϕΩ|2

+

∫
Ω

βS
2

(1 + ϕ(τ)) +

∫ τ

0

∫
Ω

βu
2
|u|2 + βT τ

A large value of |ϕ− ϕQ |2 would mean that the patient suffers from the growth of

the tumor, and a large value of |u|2 would mean that the patient suffers from high

toxicity of the drug;

The function ϕΩ can be a stable configuration of the system, so that the tumor does

not grow again once the treatment is completed or a configuration which is suitable

for surgery;

The variable τ can be regarded as the treatment time of one cycle, i.e., the amount

of time the drug is applied to the patient before the period of rest, or the treatment

time before surgery;

It is possible to replace βT τ by a more general function f (τ) where f : R+ → R+ is

continuously differentiable and increasing.
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Relaxed objective functional

However, we will not study the functional

J(ϕ, u, τ) :=

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

∫
Ω

βΩ

2
|ϕ(τ)− ϕΩ|2

+

∫
Ω

βS
2

(1 + ϕ(τ)) +

∫ τ

0

∫
Ω

βu
2
|u|2 + βT τ

but a relaxed version - in order to keep a control u just bounded without requiring more

regularity

Let r > 0 be fixed and let T ∈ (0,∞) denote a fixed maximal time in which the patient

is allowed to undergo a treatment, we define

Jr (ϕ, u, τ) :=

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

1

r

∫ τ

τ−r

∫
Ω

βΩ

2
|ϕ− ϕΩ|2

+
1

r

∫ τ

τ−r

∫
Ω

βS
2

(1 + ϕ) +

∫ T

0

∫
Ω

βu
2
|u|2 + βT τ
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|ϕ− ϕQ |2 +

1

r

∫ τ

τ−r

∫
Ω

βΩ

2
|ϕ− ϕΩ|2

+
1

r

∫ τ

τ−r

∫
Ω

βS
2

(1 + ϕ) +

∫ T

0

∫
Ω

βu
2
|u|2 + βT τ.

The optimal control problem is

min
(ϕ,u,τ)

Jr (ϕ, u, τ)

subject to τ ∈ (0,T ), u ∈ Uad = {f ∈ L∞(Ω× (0,T )) : 0 ≤ f ≤ 1}, and

∂tϕ = ∆µ+ h(ϕ)(Pσ −A− αu) in Ω× (0,T ) = Q,

µ = Ψ′(ϕ)−∆ϕ in Q,

∂tσ = ∆σ − Ch(ϕ)σ in Q,

0 = ∂nϕ = ∂nσ = ∂nµ on ∂Ω× (0,T ),

ϕ(0) = ϕ0, σ(0) = σ0 in Ω.
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Well-posedness of state equations

Theorem

Let ϕ0 ∈ H3, σ0 ∈ H1 with 0 ≤ σ0 ≤ 1, h ∈ C 0,1(R) ∩ L∞(R) non-negative, and Ψ is a

quartic potential, then for every u ∈ Uad there exists a unique triplet

ϕ ∈ L∞(0,T ;H2) ∩ L2(0,T ;H3) ∩ H1(0,T ; L2) ∩ C 0(Q),

µ ∈ L2(0,T ;H2) ∩ L∞(0,T ; L2),

σ ∈ L∞(0,T ;H1) ∩ L2(0,T ;H2) ∩ H1(0,T ; L2), 0 ≤ σ ≤ 1 a.e. in Q

satisfying the state equations.

Key points:

Boundedness of σ comes from a weak comparison principle applied to

∂tσ = ∆σ − Ch(ϕ)σ

and it is an essential ingredient for the existence proof

Proof utilises a Schauder fixed point argument
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Existence of a minimiser

Using that ϕ ∈ L1(0,T ; L1), Jr is bounded from below:

Jr (ϕ, u, τ) :=

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

1

r

∫ τ

τ−r

∫
Ω

βΩ

2
|ϕ− ϕΩ|2

+
1

r

∫ τ

τ−r

∫
Ω

βS
2

(1 + ϕ) +

∫ T

0

∫
Ω

βu
2
|u|2 + βT τ

≥ −βS
2r

∫ τ

τ−r

∫
Ω

|ϕ| ≥ −βS
2r
‖ϕ‖L1(0,T ;L1) ≥ −C .

Minimising sequence (un, τn) ∈ Uad × (0,T ), with corresponding state variables

(ϕn, µn, σn) such that

lim
n→∞

Jr (ϕn, un, τn) = inf
(φ,w,s)

Jr (φ,w , s).

We extract a convergent subsequence un ⇀
∗ u∗ ∈ L∞(Q) and limit functions

(ϕ∗, µ∗, σ∗) satisfying the state equations and

ϕn → ϕ∗ in C 0([0,T ]; L2) ∩ L2(Q).

As {τn}n∈N is a bounded sequence, we extract a convergent subsequence

τn → τ∗ ∈ [0,T ].
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∗ u∗ ∈ L∞(Q) and limit functions

(ϕ∗, µ∗, σ∗) satisfying the state equations and

ϕn → ϕ∗ in C 0([0,T ]; L2) ∩ L2(Q).

Key point: All of the convergence are with respect to the interval [0,T ].

As {τn}n∈N is a bounded sequence, we extract a convergent subsequence

τn → τ∗ ∈ [0,T ].
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Existence of minimiser

To pass to the limit in:

Jr (ϕn, un, τn) :=

∫ τn

0

∫
Ω

βQ
2
|ϕn − ϕQ |2 +

1

r

∫ τn

τn−r

∫
Ω

βΩ

2
|ϕn − ϕΩ|2

+
1

r

∫ τn

τn−r

∫
Ω

βS
2

(1 + ϕn) +

∫ T

0

∫
Ω

βu
2
|un|2 + βT τn,

we make use of

χ[0,τn ](t)→ χ[0,τ∗](t), ϕn − ϕQ → ϕ∗ − ϕQ strongly in L2(Q)

to obtain

lim
n→∞

∫ τn

0

∫
Ω

|ϕn − ϕQ |2 = lim
n→∞

∫
Q

|ϕn − ϕQ |2 χ[0,τn ](t) =

∫ τ∗

0

∫
Ω

|ϕ∗ − ϕQ |2 .

Weak lower semi-continuity of the L2(Q) norm then yields

inf
(φ,w,s)

Jr (φ,w , s) ≥ lim inf
n→∞

Jr (ϕn, un, τn) ≥ Jr (ϕ∗, u∗, τ∗).

That is, (u∗, τ∗) is a minimiser.
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Existence of minimiser

To pass to the limit in:

Jr (ϕn, un, τn) :=

∫ τn

0

∫
Ω

βQ
2
|ϕn − ϕQ |2 +

1

r

∫ τn

τn−r

∫
Ω

βΩ

2
|ϕn − ϕΩ|2

+
1

r

∫ τn

τn−r

∫
Ω

βS
2

(1 + ϕn) +

∫ T

0

∫
Ω

βu
2
|un|2 + βT τn,

we make use of

χ[0,τn ](t)→ χ[0,τ∗](t), ϕn − ϕQ → ϕ∗ − ϕQ strongly in L2(Q)

to obtain

lim
n→∞

∫ τn

0

∫
Ω

|ϕn − ϕQ |2 = lim
n→∞

∫
Q

|ϕn − ϕQ |2 χ[0,τn ](t) =

∫ τ∗

0

∫
Ω

|ϕ∗ − ϕQ |2 .

Weak lower semi-continuity of the L2(Q) norm then yields

inf
(φ,w,s)

Jr (φ,w , s) ≥ lim inf
n→∞

Jr (ϕn, un, τn) ≥ Jr (ϕ∗, u∗, τ∗).

That is, (u∗, τ∗) is a minimiser.
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Fréchet differentiability with respect to the control

We set S(u) = (ϕ, µ, σ) as the solution operator on the interval [0,T ], and introduce the

linearized state variables (Φw ,Ξw ,Σw ) corresponding to w as solutions to

∂tΦ = ∆Ξ + h(ϕ)(PΣ− αw) + h′(ϕ)Φ(Pσ −A− αu),

Ξ = Ψ′′(ϕ)Φ−∆Φ,

∂tΣ = ∆Σ− C(h(ϕ)Σ + h′(ϕ)Φσ),

with Neumann boundary conditions and zero initial conditions.

Expectation: The Fréchet derivative of S at u ∈ Uad in the direction w is

DuS(u)w = (Φw ,Ξw ,Σw ).

Consequence: For the reduced functional Jr (u, τ) := Jr (ϕ, u, τ),

DuJr (u∗, τ)[w ] = βQ

∫ τ

0

∫
Ω

(ϕ∗ − ϕQ)Φw +

∫
Q

βuu∗w

+
1

2r

∫ τ

τ−r

∫
Ω

(βΩ(ϕ∗ − ϕΩ)Φw + βSΦw ) .
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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth 4-6 décembre 2017 18 / 42
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Fréchet differentiability with respect to time

For

Jr (ϕ, u, τ) =

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

1

r

∫ τ

τ−r

∫
Ω

βΩ

2
|ϕ− ϕΩ|2

+
1

r

∫ τ

τ−r

∫
Ω

βS
2

(1 + ϕ) +

∫ T

0

∫
Ω

βu
2
|u|2 + βT τ,

we have

DτJr (u, τ∗) = βT +
βQ
2
‖ϕ(τ∗)− ϕQ(τ∗)‖2

L2

+
βΩ

2r

(
‖(ϕ− ϕΩ)(τ∗)‖2

L2 − ‖(ϕ− ϕΩ)(τ∗ − r)‖2
L2

)
+

∫
Ω

βS
2r

(ϕ(τ∗)− ϕ(τ∗ − r)).

Note that the control u does not appear explicitly.

E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth 4-6 décembre 2017 19 / 42
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First order optimality conditions

Introducing the adjoint system

−∂tp = ∆q + Ψ′′(ϕ∗)q − Ch′(ϕ∗)σ∗r + h′(ϕ∗)(Pσ∗ −A− αu∗)p

+ βQ(ϕ∗ − ϕQ) +
1

2r
χ(τ∗−r,τ∗)(t)(2βΩ(ϕ∗ − ϕΩ) + βS),

q = ∆p,

−∂tr = ∆r − Ch(ϕ∗)r + Ph(ϕ∗)p

with Neumann boundary conditions and final time condition r(τ∗) = p(τ∗) = 0. We have

Theorem

The optimal control (u∗, τ∗) satisfy∫ T

0

∫
Ω

βuu∗(v − u∗)−
∫ τ∗

0

∫
Ω

h(ϕ∗)αp(v − u∗) ≥ 0 ∀v ∈ Uad,

and

βT +
βQ
2
‖(ϕ∗ − ϕQ)(τ∗)‖2

L2 +
βS
2r

∫
Ω

ϕ∗(τ∗)− ϕ(τ∗ − r) dx

+
βΩ

2r

(
‖(ϕ∗ − ϕΩ)(τ∗)‖2

L2 − ‖(ϕ− ϕΩ)(τ∗ − r)‖2
L2

)
= 0.
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2) ∩ L∞(0, τ∗;H

1) ∩ H1(0, τ∗; L
2) ∩ C 0([0, τ∗]; L

2).

Theorem

The optimal control (u∗, τ∗) satisfy∫ T

0

∫
Ω

βuu∗(v − u∗)−
∫ τ∗

0

∫
Ω

h(ϕ∗)αp(v − u∗) ≥ 0 ∀v ∈ Uad,

and

βT +
βQ
2
‖(ϕ∗ − ϕQ)(τ∗)‖2

L2 +
βS
2r

∫
Ω

ϕ∗(τ∗)− ϕ(τ∗ − r) dx

+
βΩ

2r

(
‖(ϕ∗ − ϕΩ)(τ∗)‖2

L2 − ‖(ϕ− ϕΩ)(τ∗ − r)‖2
L2

)
= 0.
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Issues with the original functional

To deal with the original functional:

J(ϕ, u, τ) =

∫ τ

0

∫
Ω

βQ
2
|ϕ− ϕQ |2 +

∫
Ω

βΩ

2
|ϕ(τ)− ϕΩ|2 +

∫ τ

0

∫
Ω

βu
2
|u|2 + βT τ.

Then, the optimality condition for τ∗ is

0 = DτJ |(u∗,τ∗) =

∫
Ω

βQ
2
|(ϕ∗ − ϕQ)(τ∗)|2 +

βΩ

2
(ϕ∗(τ∗)− ϕΩ)∂tϕ∗(τ∗) +

βu
2
|u∗(τ∗)|2 dx

+ βT .

Issues: For the above expression to be well-defined, we need

∂ttϕ∗ ∈ L2(0,T ; L2), u∗ ∈ H1(0,T ; L2).

If we define Uad = {u ∈ H1(0,T ; L2) : 0 ≤ u ≤ 1, ‖∂tu‖L2(Q) ≤ K} for fixed K > 0, and

impose ϕ0 ∈ H5, σ0 ∈ H3, then we get ϕ ∈ H2(0,T ; L2) ∩W 1,∞(0,T ;H1).

However, to require the a-priori boundedness of ∂tu is difficult to verify in applications.
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Other control-type results

SMC. In [Colli, Gilardi, Marinoschi, E.R., Appl Math Optim, to appear] we introduce a

sliding mode control (SMC) law % sign(ϕ− ϕ∗) in the chemical potential which

forces the system to reach within finite time the sliding manifold (that we chose in

order that the tumor phase remains constant in time ϕ ≡ ϕ∗)

Different sources. In the phase field model we introduced

∂tϕ = ∆µ+M,

µ = Ψ′(ϕ)−∆ϕ

∂tσ = ∆σ − S,

we can choose different form of M and S: linear phenomenological laws for

chemical reactions cf. [Hawkins–Daarud, Prudhomme, van der Zee, Oden (2012)],

[Frigeri, Grasselli, E.R. (2015)]:

M = S = h(ϕ)(σ − µ)

In [Colli, Gilardi, E.R., Sprekels, Nonlinearity (2017)]: the optimal control with respect

to the drug distribution which acts as a control in the nutrient equation
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FLRS: A multispecies model with velocities - with Frigeri, Lam, Schimperna

Typical structure of tumors grown in vitro:

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072–1080. Scale bar 100µm = 0:1mm

A continuum thermodynamically consistent model is introduced with the ansatz:

sharp interfaces are replaced by narrow transition layers arising due to adhesive forces

among the cell species: a diffuse interface separates tumor and healthy cell regions

proliferating and dead tumor cells and healthy cells are present, along with a

nutrient (e.g. glucose or oxigene)

tumor cells are regarded as inertia-less fluids: include the velocity - satisfying a

Darcy type law with Korteveg term
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S. Frigeri, K.-F. Lam, E. R., G. Schimperna, arXiv:1709.01469 (2017)

The model is a variant of the one introduced in [Y. Chen, S.M. Wise, V.B. Shenoy and

J.S. Lowengrub, Int. J. Numer. Meth. Biomed. Engng. (2014)]:

ϕp, ϕd , ϕh ∈ [0, 1]: the volume fractions of the cells:

I ϕp : proliferating tumor cell fraction

I ϕd : dead tumor cell fraction

I ϕh: healthy cell fraction

The variables above are naturally constrained by the relation ϕp + ϕd + ϕh = 1

hence it suffices to track the evolution of ϕp and ϕd and the vector ϕ := (ϕp, ϕd)>

lies in the simplex ∆ := {y ∈ R2 : 0 ≤ y1, y2, y1 + y2 ≤ 1} ⊂ R2

n: the nutrient concentration (it was σ before)

u:=ui , i = 1, 2, 3: the tissue velocity field. We treat the tumor and host cells as

inertial-less fluids and assume that the cells are tightly packed and they march

together

q: the cell-to-cell pressure
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FLRS: the balance law

Letting Ji , i ∈ {p, d , h}, denote the mass fluxes for the cells, then the general balance

law for the volume fractions reads as

∂tϕi + div(ϕiu) = −divJi + Si for i ∈ {p, d , h}

where we set Sh = 0, whereas Sp, Sd may depend on n, ϕp and ϕd

Assume: the tumor growth process tends to evolve towards (local) minima of the free

energy functional of Ginzburg–Landau type:

E(ϕp, ϕd) :=

∫
Ω

F (ϕp, ϕd) +
1

2
|∇ϕp|2 +

1

2
|∇ϕd |2 dx

where F = F0 + F1 is a multi-well configuration potential, e.g.

F0(ϕp, ϕd):= ϕp logϕp + ϕd logϕd + (1− ϕp − ϕd) log(1− ϕp − ϕd)

F1(ϕp, ϕd) :=
χ

2
(ϕd(1− ϕd) + ϕp(1− ϕp) + (1− ϕd − ϕp)(ϕd + ϕp))

The fluxes Ji are defined as follows:

Ji = −Mi∇µi , µi :=
δE

δϕi
= −∆ϕi + F,ϕi for i = p, d
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FLRS: the velocity and nutrient evolutions

We set Jh = −Jp − Jd , then upon summing up the three mass balances for i = p, d , h,

using the fact that ϕp + ϕd + ϕh = 1 and Sh = 0, we deduce the following relation:

div u = Sp + Sd =: St

The velocity field u is assumed to fulfill Darcy’s law:

u = −∇q − ϕp∇µp − ϕd∇µd

where q denotes the cell-to-cell pressure and the subsequent two terms have the meaning

of Korteweg forces

Since the time scale of nutrient diffusion is much faster (minutes) than the rate of cell

proliferation (days), the nutrient is assumed to evolve quasi-statically:

0 = −∆n + ϕpn

where ϕpn models consumption by the proliferating tumor cells
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The goal and the main difficulties of FLRS

Goal: to study this multispecies model including different mobilities, singular potential

and non-Dirichlet b.c.s on the chemical potential. The main problems are:

we have two different Cahn-Hilliard equations with non-zero right hand sides:

∂tϕi − div(Mi∇µi −ϕiu) = Si and if we do not choose the Dirichlet b.c.s on µi then

we need to estimate the mean values of µi = −∆ϕi + F,ϕi containing a multiwell

logarithmic type potential F0

we need the mean values of ϕi (the proliferating and dead cells phases) to be away

from the potential bareers =⇒ ad hoc estimate based on ODEs technique

indeed, integrating the equations for ϕp and ϕd we obtain an evolution law for the

mean values yi := 1
|Ω|

∫
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ϕi dx for i = p, d

such a relation does not involve directly the singular part F0. Hence, the evolution of
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FLRS: The weak notion of solution

Definition. (ϕp , ϕd , u, q, n) is a weak solution to the problem in (0,T )× Ω if the previous

equations hold, for a.e. t ∈ (0,T ) and for i = p, d , in the following weak sense:

〈∂tϕi , ζ〉+

∫
Ω
Mi∇µi · ∇ζ − ϕiu · ∇ζ dx =

∫
Ω
Siζ dx ∀ζ ∈ H1(Ω),∫

Ω
µiζ dx =

∫
Ω
∇ϕi · ∇ζ + ηiζ + F1,ϕi

(ϕp , ϕd )ζ dx ∀ζ ∈ H1(Ω),∫
Ω

u · ∇ξ dx = −
∫

Ω
(Sp + Sd )ξ dx ∀ξ ∈ H1

0 (Ω),∫
Ω

u · ζ dx =

∫
Ω
−∇q · ζ − ϕp∇µp · ζ − ϕd∇µd · ζ dx ∀ζ ∈ (L2(Ω))d ,

0 = −∆n + ϕpn a.e. in Ω,

ηi = F0,ϕi
(ϕp , ϕd ) a.e. in Ω,

Sp = Σp(n, ϕp , ϕd ) + mppϕp + mpdϕd a.e. in Ω,

Sd = Σd (n, ϕp , ϕd ) + mdpϕp + mddϕd a.e. in Ω.

Moreover, there hold the initial conditions

ϕp(x , 0) = ϕp,0(x), ϕd (x , 0) = ϕd,0(x) a.e. in Ω,

where 〈·, ·〉 denotes the duality pairing between H1(Ω) and its dual H1(Ω)′.
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FLRS: Assumptions on the mass sources and on the initial data

Set Σ(n, ϕp, ϕd) := (Σp,Σd) and M = (mij), i , j ∈ {p, d}, the matrix of the coefficients

of the mass souces in the Cahn-Hilliard equations: (Sp, Sd) = Σ + M(ϕp, ϕd)T

Assumption on the mass sources:

Σ is globally Lipschitz and

that there exist a closed and sufficiently regular subset ∆0 contained in the open

simplex ∆ and constants Kp,−,Kp,+,Kd,−,Kd,+ ∈ R, with Kp,− ≤ Kp,+ and

Kd,− ≤ Kd,+, such that Σ(R3) ⊂ [Kp,−,Kp,+]× [Kd,−,Kd,+]

for any x = (xp, xd) ∈ [Kp,−,Kp,+]× [Kd,−,Kd,+], there holds

(My + x) · n < 0 for all y ∈ ∂∆0,

where n denotes the outer unit normal vector to ∆0

Assumptions on the initial data :

ϕp,0, ϕd,0 ∈ H1(Ω) with 0 ≤ ϕp,0, 0 ≤ ϕd,0, ϕp,0 + ϕd,0 ≤ 1 a.e. in Ω,

the mean values satisfy ( 1
|Ω|

∫
Ω
ϕp,0(x) dx , 1

|Ω|

∫
Ω
ϕd,0(x) dx) ∈ int ∆0 and

F0(ϕp,0, ϕd,0) ∈ L1(Ω)
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FLRS: Examples of mass sources

Examples of mass sources in ∂tϕi − div(Mi∇µi − ϕiu) = Si for i ∈ {p, d} complying

with the assumptions in the “logarithmic” case are:

Sp = λMg(n)−λAϕp

Sd = λAϕp−λLϕd

for positive constants λM , λA, λL (with λM(λA + λL) < λAλL, λA < 2λL) and a bounded

positive function g such that 0 < g(s) ≤ 1, e.g., g(s) = max(nc ,min(s, 1)) for some

constant nc ∈ (0, 1).

The biological effects we want to model are:

the growth of the proliferating tumor cells due to nutrient consumption at a

constant rate λM

the death of proliferating tumor cells at a constant rate λA, which leads to a source

term for the necrotic cells

the lysing/disintegration of necrotic cells at a constant rate λL
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FLRS: Existence of weak solutions

The main result of S. Frigeri, K.-F. Lam, E. R., G. Schimperna, arXiv:1709.01469 (2017)

Theorem

For every T > 0 here exists at least one weak solution (ϕp, µp, ηp, ϕd , µd , ηd , u, q, n) to

the multi-species tumor model on [0,T ] with the regularity

ϕi ∈ H1(0,T ;H1(Ω)′) ∩ L∞(0,T ;H1(Ω)) ∩ L2(0,T ;H2(Ω)),

with 0 ≤ ϕi ≤ 1, ϕp + ϕd ≤ 1 a.e. in Q, for i = p, d ,

µi ∈ L2(0,T ;H1(Ω)), ηi ∈ L2(Q),

u ∈ L2(Q) with div u ∈ L2(Q), q ∈ L2(0,T ;H1
0 (Ω)),

n ∈ (1 + L2(0,T ;H2(Ω) ∩ H1
0 (Ω))), 0 ≤ n ≤ 1 a.e. in Q.

Notice that the boundary conditions:

(Mi∇µi − ϕiu) · n = 0, ∂nϕi = 0, q = 0, n = 1 on Γ

are incorporated in the definition of weak solutions
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FLRS: an idea of the proof

1 consider a regularized version of this problem by replacing the singular potential F0

by a regular one Fε, and by introducing some suitable truncation functions

2 present two independent methods to prove existence of a solution to the regularized
system:

2.1 a further regularization and a Schauder fixed point argument: only exploits elementary

existence and uniqueness results methods for PDEs

2.2 a Faedo-Galerkin scheme: more direct (no further regularizing terms are introduced),

and constructive (hence, it may be used for a numerical approximation of the problem)

3 derive the bounds - independent of the regularization parameters - in order to pass

to the limit in the approximation scheme via compactness tools: the main problem is

to bound the mean values of ϕi away from the potential bareers
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The bound of the mean values

Denoting y(t) := ((ϕp)Ω(t), (ϕd)Ω(t)), (Σ)Ω = ((Σp)Ω, (Σd)Ω), then by testing by 1 the

mass balances

〈∂tϕi , ζ〉+

∫
Ω

Mi∇µi · ∇ζ − ϕiu · ∇ζ dx =

∫
Ω

Siζ dx ,

where (Sp, Sd) = (Σp,Σd) + M(ϕp, ϕd)T , leads to the following system of ODE’s:

d

dt
y(t) = (Σ)Ω(t) + My(t) ∀t ∈ [0,T ].

Using the assumption

(My + x) · n < 0 for all y ∈ ∂∆0

we infer that the vector y(t) = ((ϕp)Ω(t), (ϕd)Ω(t)) ∈ int ∆0 for all t ∈ [0,T ]. Indeed, at

the time t = 0, y(0) ∈ int ∆0 by assumption. Suppose that ∃ t∗ such that y(t∗) ∈ ∂∆0.

Taking t = t∗ in the ODE, multiplying with n, we get

d

dt
y(t∗) · n < 0.

Hence y(t) cannot leave ∆0 and so there exist positive constants 0 < c1 < c2 < 1:

c1 ≤ (ϕp)Ω(t), (ϕd)Ω(t) ≤ c2, c1 ≤ (ϕp + ϕd)Ω(t) ≤ c2 ∀t ∈ [0,T ].
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mass balances

〈∂tϕi , ζ〉+

∫
Ω

Mi∇µi · ∇ζ − ϕiu · ∇ζ dx =

∫
Ω

Siζ dx ,

where (Sp, Sd) = (Σp,Σd) + M(ϕp, ϕd)T , leads to the following system of ODE’s:

d

dt
y(t) = (Σ)Ω(t) + My(t) ∀t ∈ [0,T ].

Using the assumption

(My + x) · n < 0 for all y ∈ ∂∆0
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the time t = 0, y(0) ∈ int ∆0 by assumption. Suppose that ∃ t∗ such that y(t∗) ∈ ∂∆0.

Taking t = t∗ in the ODE, multiplying with n, we get
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dt
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Hence y(t) cannot leave ∆0 and so there exist positive constants 0 < c1 < c2 < 1:
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Comparison with some other models including velocities

Numerical simulations of diffuse-interface models for tumor growth have been

carried out in several papers (cf., e.g., [Cristini, Lowengrub, Cambridge Univ. Press,

2010] and more recently [H. Garcke, K.-F. Lam, E. Sitka, V. Styles, Math. Models Methods

Appl. (2016)], [H. Garcke, K.F. Lam, R. Nuernberg, and E. Sitka, preprint (2017)])

However, a rigorous mathematical analysis of the resulting PDEs is still in its
beginning and mostly for one species models with regular potentials (cf. the model
introduced in [H. Garcke, K.F. Lam, E. Sitka, and V. Styles, Math. Models Methods Appl.

(2016)] and the subsequent analytical results) :

1. the so-called Cahn-Hilliard-Hele-Shaw system ([J. Lowengrub, E. Titi, K. Zhao,

European J. Appl. Math. (2013)], [X. Wang, H. Wu, Asymptot. Anal. (2012)], [X.

Wang, Z. Zhang, Ann. Inst. H. Poincaré Anal. Nonlinéaire (2013)]) in which the

nutrient n, the source of tumor ST and the fraction SD of the dead cells are neglected

2. [J. Jang, H. Wu, S. Zheng, J. Differential Equations (2015)] where ST is not 0 but it’s

not depending on the other variables but just on time and space

3. [M. Dai, E. Feireisl, E. R., G. Schimperna, M. Schonbek, Nonlinearity (2017)] where

we consider the same model of FLRS with equal mobilities (this changes a lot the

system) and Dirichlet boundary conditions for µ
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Perspectives and Open problems - the case with velocities

1. The sharp interface limit as ε↘ 0 in the coupled Cahn-Hilliard-Darcy system where

∂tΦ + divx(uΦ)− divx(∇xµ) = 0, µ = −ε2∆Φ + F ′(Φ)

In [S. Melchionna, E. Rocca, Interfaces and Free Boundaries, to appear]: Varifold

solutions at the limit as ε↘ 0 in case we just consider the Cahn-Hilliard-Darcy

system coupling the Φ equation to the u equation (neglecting the nutrient)

2. To add the mechanics in the problem: for example considering the tumor sample as

a porous media (ongoing project with P. Krejč́ı and J. Sprekels)

3. The case with different densities: we are studying a model introduced by [Lee,

Lowengrub and Goodman (2001)] in cooperaton with Andrea Giorgini (a post doc in

Pavia) and P. Colli, G. Schimperna, and M. Grasselli. Other models with different

assumptions are available (cf. [L. Dedè, H. Garcke, K.-F. Lam, J. Math. Fluid Mech., to

appear])
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Perspectives and Open problems - the case with velocities

1. The sharp interface limit as ε↘ 0 in the coupled Cahn-Hilliard-Darcy system where

∂tΦ + divx(uΦ)− divx(∇xµ) = 0, µ = −ε2∆Φ + F ′(Φ)

In [S. Melchionna, E. Rocca, Interfaces and Free Boundaries, to appear]: Varifold

solutions at the limit as ε↘ 0 in case we just consider the Cahn-Hilliard-Darcy

system coupling the Φ equation to the u equation (neglecting the nutrient)

2. To add the mechanics in the problem: for example considering the tumor sample as

a porous media (ongoing project with P. Krejč́ı and J. Sprekels)
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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth 4-6 décembre 2017 37 / 42
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Perspectives and Open problems - the case without velocities

1. The sharp interface limit. In [E.R., R. Scala, J. Nonlinear Sci. (2017)]: Γ-convergence

for a gradient type system (neglecting velocities):
ϕt −∆µ = 2σ + ϕ− µ

σt −∆σ = −2σ − ϕ+ µ

µ = 1
ε

Ψ′(ϕ)− ε∆ϕ

I We assumed the regularity of the limit interface, hence there is a death time T∗ until

the evolution is regular. After the death time the evolution is undetermined!

I We made a technical hypothesis on the convergence of the measures

ε

2
|∇ϕε|2 +

Ψ(ϕε)

ε
⇀ 2cΨdH2xΓ

This is unknown in general, but is proved under higher regularity of the chemical

potential µε and conjectured by Tonegawa to hold in the general case

2. The convergence to stationary solutions by means of suitable Simon-Lojasiewicz

techniques of the first model presented: the function ϕΩ is a stable configuration of

the system, so that the tumor does not grow again once the treatment is completed

(joint project with C. Cavaterra and H. Wu)
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E. Rocca (Università degli Studi di Pavia) Diffuse interface models of tumor growth 4-6 décembre 2017 38 / 42
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Many thanks to all of you for the attention!

http://matematica.unipv.it/rocca/
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Issues with the well-posedness

The state equations

∂tϕ = ∆µ+ h(ϕ)(Pσ −A− αu),

µ = Ψ′(ϕ)−∆ϕ,

∂tσ = ∆σ − Ch(ϕ)σ.

satisfies the energy identity

d
dt

∫
Ω

(
Ψ(ϕ) +

1

2
|∇ϕ|2 +

1

2
|σ|2
)

︸ ︷︷ ︸
=:E

+

∫
Ω

(
|∇µ|2 + |∇σ|2 + h(ϕ)C |σ|2

)

=

∫
Ω

h(ϕ) (Pσ −A− αu)µ.

We can estimate the right-hand side as

δ‖µ‖2
L2 +

C

δ
(P2‖σ‖2

L2 + . . . ) for some δ > 0,

leading to

E(t) +

∫ t

0

∫
Ω

(
|∇µ|2 + |∇σ|2

)
≤ E(0) +

∫ t

0

∫
Ω

(
δ |µ|2 + other terms...

)
.

To apply Poincaré inequality to the ‖µ‖L2(L2) on the RHS, we need to estimate the square

of the mean of µ using

µ = Ψ′(ϕ)−∆ϕ.

If |Ψ′(s)| ≤ C(1 + |s|p) for some p, then we have∥∥∥∥ 1

|Ω|

∫
Ω

µ

∥∥∥∥2

L2(L2)

≤ C(1 + ‖ϕ‖2p

L2p(L2p)
) + other terms ...

But, to control ‖ϕ‖2p

L2p(L2p)
in the absence of any a priori estimate, we need p = 1! I.e., Ψ

can only be a quadratic potential [Garcke, L.].
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Issues with the well-posedness

If σ is bounded in Q, then∣∣∣∣∫
Ω

h(ϕ)(Pσ −A− αu)µ

∣∣∣∣ ≤ C‖µ‖L1

and by the Poincaré inequality, we have

‖µ‖L1 ≤ C‖∇µ‖L1 + C

∣∣∣∣ 1

|Ω|

∫
Ω

µ

∣∣∣∣ .

Then one obtains

E(t) +

∫ t

0

∫
Ω

(
|∇µ|2 + |∇σ|2

)
≤ E(0) + C

∫ t

0

(
δ‖∇µ‖L1 + ‖Ψ′(ϕ)‖L1 + other terms...

)
.

With an assumption like ∣∣Ψ′(s)
∣∣ ≤ C1Ψ(s) + C2,

we obtain a priori estimates for potentials with higher polynomial growth.
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and by the Poincaré inequality, we have

‖µ‖L1 ≤ C‖∇µ‖L1 + C

∣∣∣∣ 1

|Ω|

∫
Ω

µ

∣∣∣∣ .
Then one obtains

E(t) +

∫ t

0

∫
Ω

(
|∇µ|2 + |∇σ|2

)
≤ E(0) + C

∫ t

0

(
δ‖∇µ‖L1 + ‖Ψ′(ϕ)‖L1 + other terms...

)
.

With an assumption like ∣∣Ψ′(s)
∣∣ ≤ C1Ψ(s) + C2,

we obtain a priori estimates for potentials with higher polynomial growth.
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The Schauder argument

Given φ ∈ L2(Q), consider the mapping

M1 : L2(Q)→ L∞(0,T ;H1) ∩ L2(0,T ;H2) ∩ H1(0,T ; L2) ∩ L∞(Q),

φ 7→ σ,

where σ solves

∂tσ = ∆σ − Ch(φ)σ.

Then define the mapping

M2 : L2(Q)→ L∞(0,T ;H2) ∩ L2(0,T ;H3) ∩ H1(0,T ; L2),

φ 7→ ϕ,

where ϕ solves

∂tϕ = ∆µ− h(ϕ)(PM1(φ)−A− αu), µ = Ψ′(ϕ)−∆ϕ.

The solution to the fixed point problem

z = M2(z)

yields a triplet (ϕ, µ, σ) which solves the state equations.
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