ERC Candidate@Unipv: esperienze a confronto e progettazione futura

Elisabetta Rocca

Dipartimento di Matematica

Supporto alla Progettazione per finanziamenti Europei alla Ricerca – INROAd Pavia, 25 gennaio 2017 – Aula Foscolo

FP7-IDEAS-ERC-StG Grant "EntroPhase" #256872 2011-2017

Fondazione Cariplo and Regione Lombardia Grant MEGAsTaR 2016-2019

Presentazione (in breve)

- 01.03.2016 oggi: Professore Associato in Analisi Matematica (settore MAT/05) presso il Dipartimento di Matematica (Unipv).
- 10.2013 02.2016: Head of research group Entropy Formulation of Evolutionary Phase Transitions presso il Weierstrass Institute for Applied Analysis and Stochastics - WIAS -Berlino.
- 10.2010 02.2016: Professore Associato in Analisi Matematica (settore MAT/05) presso il Dipartimento di Matematica dell'Università degli Studi di Milano.
- 1.1.2004 31.10.2010: Ricercatore in Analisi Matematica (settore MAT/05) presso il Dipartimento di Matematica dell'Università degli Studi di Milano.

Principali aree di ricerca:

- Analisi di equazioni alle derivate parziali
- Meccanica e termodinamica dei fluidi e dei continui
- Sistemi dinamici dissipativi
- Modelli biologici

L'esperienza di ERC Grant Holder

[•] PI del Progetto ERC - Starting Grant Entrophase "Entropy formulation of Evolutionary phase transitions"

Hosting Institutions:

Università di Milano: Aprile 2011 - Settembre 2013

• WIAS Berlin: Ottobre 2013 - Febbraio 2016

• Università di Pavia: Marzo 2016 - Marzo 2017

• Durata: 6 anni

• Finanziato per € 659.784,88

L'esperienza di ERC Grant Holder

[PI del Progetto ERC - Starting Grant Entrophase "Entropy formulation of Evolutionary phase transitions"

Hosting Institutions:

Università di Milano: Aprile 2011 - Settembre 2013

• WIAS Berlin: Ottobre 2013 - Febbraio 2016

Università di Pavia: Marzo 2016 - Marzo 2017

Durata: 6 anni

Finanziato per € 659.784,88

Staff:

• Michela Eleuteri (Post-Doc 09.2012-09.2013)

• Sergio Frigeri (Post-Doc 06.2011-09.2015)

• Riccardo Scala (Post-Doc 05.2015-08.2016)

L'Occasione che ha favorito il trasferimento del Progetto ERC a Pavia

L'avviso congiunto di Regione Lombardia e Fondazione Cariplo 2016

Una delle poche iniziative in Italia finalizzate a

- migliorare l'attrattività delle sedi italiane (lombarde) in termini di eccellenza scientifica, ambiente culturale, capacità di accoglienza dei migliori cervelli
- finanziare attività che ampliano l'orizzonte del grant ERC con iniziative nuove
- sostenere la competitività dei ricercatori che intendono candidarsi nelle call dell'ERC e prevedono di portare avanti la loro ricerca in Lombardia

L'Occasione che ha favorito il trasferimento del Progetto ERC a Pavia

L'avviso congiunto di Regione Lombardia e Fondazione Cariplo 2016

Una delle poche iniziative in Italia finalizzate a

- migliorare l'attrattività delle sedi italiane (lombarde) in termini di eccellenza scientifica, ambiente culturale, capacità di accoglienza dei migliori cervelli
- finanziare attività che ampliano l'orizzonte del grant ERC con iniziative nuove
- sostenere la competitività dei ricercatori che intendono candidarsi nelle call dell'ERC e prevedono di portare avanti la loro ricerca in Lombardia

In particolare, nell'ambito della sottomisura A – attrattività eccellenze: reclutare ricercatori

- di nazionalità italiana o straniera assegnatari di grant ERC nelle categorie starting, consolidator o advanced
- che abbiano originariamente indicato come HI un centro di ricerca estero
- disponibili a spostare la HI presso una Università o centro di ricerca sito in Lombardia

Le tematiche di ricerca dell'ERC Grant EntroPhase

Obiettivo principale: ottenere rilevanti risultati matematici per modelli ad interfaccia diffusa relativi alle applicazioni in

- 1. Biologia Modelli per crescite tumorali
- 2. Fluidodinamica per fluidi complessi Cristalli Liquidi

In particolare, l'obiettivo è di studiare le proprietà analitiche dei relativi sistemi EDP come esistenza di soluzioni deboli (entropiche), comportamento asintotico delle soluzioni, controllo ottimale e "sharp interface" limit

Le tematiche di ricerca dell'ERC Grant EntroPhase

Obiettivo principale: ottenere rilevanti risultati matematici per modelli ad interfaccia diffusa relativi alle applicazioni in

- 1. Biologia Modelli per crescite tumorali
- 2. Fluidodinamica per fluidi complessi Cristalli Liquidi

In particolare, l'obiettivo è di studiare le proprietà analitiche dei relativi sistemi EDP come esistenza di soluzioni deboli (entropiche), comportamento asintotico delle soluzioni, controllo ottimale e "sharp interface" limit

Lo scopo della modellazione matematica:

- contribuire alla prevenzione, la diagnosi e il trattamento della malattia tramite lo sviluppo di protocolli di terapia individualizzati per ridurre al minimo la sofferenza del paziente, massimizzando l'efficacia del trattamento (controllo ottimo)
- 2. contribuire allo sviluppo futuro nella tecnologia dei display a cristalli liquidi: sono materiali anisotropi, hanno ad esempio un comportamento diverso a seconda della direzione del campo elettrico o magnetico applicata al direttore. L'introduzione della dipendenza dal campo magnetico ed elettrico nei modelli matematici è un problema aperto che sarebbe particolarmente utile in vista di applicazioni (modellazione e analisi matematica)

1. Modelli ad interfaccia diffusa per crescite tumorali

- ullet L'interfaccia separa il nutriente σ e le cellule sane arphi=-1 dalle cellule tumorali arphi=1
- Il parametro $\varphi\in[-1,1]$ è la frazione di cellula tumorale (per tumori ad una fase): $\varphi=1$: fase tumorale $\varphi=-1$: fase sana
- ullet Le EDP sono di tipo Cahn-Hilliard per arphi e di tipo reazione-diffusione per σ
- Problemi: buona positura, modelli multifase, modelli che tengano conto delle velocità, controllo ottimo: ottimizzare la quantità di farmaco u e il tempo di trattamento in vista di una ottimale distribuzione di cellule tumorali φ

Modelling

Typical structure of tumours grown in vitro:

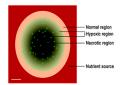


Figure: Zhang et al. Integr. Biol., 2012, 4, 1072-1080. Scale bar 100 µm = 0.1 mm

We will ignore the development of "layers" and assume only proliferating tumour and healthy cells are present, along with a nutrient (e.g. glucose).

For T>0, in a bounded domain $\Omega\subset\mathbb{R}^3$ with C^3 -boundary Γ , we consider the following Cahn–Hilliard model for tumor growth,

$$\partial_t \varphi = \Delta \mu + (P\sigma - A - \alpha u)h(\varphi) \text{ in } \Omega \times (0, T) =: Q,$$
 (1.1a)

$$\mu = A\Psi'(\varphi) - B\Delta\varphi$$
 in Q , (1.1b)

$$\partial_t \sigma = \Delta \sigma - C \sigma h(\varphi) + B(\sigma_S - \sigma) \text{ in } Q,$$
 (1.1c)

$$\partial_{\nu} \varphi = \partial_{\nu} \mu = \partial_{\nu} \sigma = 0$$
 on $\Gamma \times (0, T)$, (1.1d)

$$\varphi(0) = \varphi_0, \ \sigma(0) = \sigma_0 \quad \text{in } \Omega.$$
 (1.1e)

Here, α is a positive constant, φ denotes the difference in volume fraction, where $\varphi = 1$ represents the tumor phase and $\varphi = -1$ represents the healthy tissue phase. The function μ is a chemical potential associated to φ , $\Psi'(\varphi)$ is the derivative of a potential $\Psi(\varphi)$ with equal minima at $\varphi = \pm 1$, σ denotes the concentration of an unspecified chemical species acting as nutrient for the tumor cells, while u denotes the concentration of cytotoxic drugs.

2. Modelli per cristalli liquidi

Due teorie: [sinistra:] Oseen-Frank - limitata a cristalli liquidi nematici con una sola direzione preferenziale di allineamento molecolare: il vettore d rappresenta la direzione preferita di allineamento molecolare [destra:] Landau-De Gennes che può rappresentare fasi monoassiali e biassiali. Lo stato del cristallo liquido nematico è modellato da una matrice simmetrica a traccia nulla nota come Q-tensore

In [E. Feireisl, M. Frémond, E.R., G. Schimperna, ARMA 2012] we have coupled the incompressible Nevier-Stokes equation

$$\operatorname{div} \mathbf{v} = 0, \quad \mathbf{v}_t + \mathbf{v} \cdot \nabla_x \mathbf{v} + \nabla_x p = \operatorname{div} \mathbb{S} + \operatorname{div} \sigma^{nd} + \mathbf{g}$$

$$\mathbb{S} = \nu(\theta) \left(\nabla_{\mathbf{x}} \mathbf{v} + \nabla_{\mathbf{x}}^{t} \mathbf{v} \right), \quad \sigma^{nd} = -\nabla_{\mathbf{x}} d \odot \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta d) \otimes \nabla_{\mathbf{x}} d + (\partial_{\theta} W(d) - \Delta$$

and the evolution of the director field $\it d$, representing preferred orientation o molecules in a neighborhood of any point of a reference domain

$$d_t + \mathbf{v} \cdot \nabla_{\mathbf{x}} d - \mathbf{d} \cdot \nabla_{\mathbf{x}} \mathbf{v} = \Delta d - \partial_d W(d)$$

with an entropic formulation of the inernal energy balance displaying higher order nonlinearities on the right hand side:

$$\theta_t + \mathbf{v} \cdot \theta + \text{div } \mathbf{q} = \mathbb{S} : \nabla_{\mathbf{v}} \mathbf{v} + |\Delta d - \partial_d W(d)|^2$$

 ${\rm div}_x {\bf u} = 0;$

MOMENTUM EQUATION:

 $\partial_t \mathbf{u} + \operatorname{div}_x(\mathbf{u} \otimes \mathbf{u}) = \operatorname{div}_x \sigma + \mathbf{g};$

Order parameter evolution:

$$\partial_t \mathbb{Q} + \operatorname{div}_x(\mathbb{Q}\mathbf{u}) - \mathbb{S}(\nabla_x \mathbf{u}, \mathbb{Q}) = \Gamma(\vartheta)\mathbb{H};$$

Total energy balance:

$$\begin{split} &\sigma_t\left(\frac{1}{2}|\mathbf{u}|^2+e\right)+\mathrm{div}_x\left(\left(\frac{1}{2}|\mathbf{u}|^2+e\right)\mathbf{u}\right)+\mathrm{div}_x\mathbf{q}\\ &=\mathrm{div}_x(\sigma\mathbf{u})+\mathrm{div}_x\Big(\Gamma(\vartheta)\nabla_x\mathbb{Q}\,;\mathbb{H}\Big)+\mathbf{g}\cdot\mathbf{u}, \end{split}$$

Il finanziamento di Regione Lombardia e Fondazione Cariplo: sottomisura A

[Secondinatore Scientifico del Progetto Fondazione Cariplo and Regione Lombardia MEGAsTaR "Matematica d'Eccellenza in biologia ed ingegneria come accelleratore di una nuova strateGia per l'ATtRattività dell'ateneo pavese"

Durata e Staff:

- Durata: 3 anni (rinnovabile per altri 6 mesi)
- Finanziato per € 200.000
- Sofia Baggini, Andrea Carini, Marta Filibian (Servizio Ricerca e Terza Missione)
- 1 Post-Doc e 1 Borsista per l'ufficio ricerca nel 2017

Il finanziamento di Regione Lombardia e Fondazione Cariplo: sottomisura A

[Coordinatore Scientifico del Progetto Fondazione Cariplo and Regione Lombardia MEGAsTaR "Matematica d'Eccellenza in biologia ed ingegneria come accelleratore di una nuova strateGia per l'ATtRattività dell'ateneo pavese"

Durata e Staff:

- Durata: 3 anni (rinnovabile per altri 6 mesi)
- Finanziato per € 200.000
- Sofia Baggini, Andrea Carini, Marta Filibian (Servizio Ricerca e Terza Missione)
- 1 Post-Doc e 1 Borsista per l'ufficio ricerca nel 2017

Duplice finalità:

- MEGAsTaR: iniziativa pilota per l'incremento dell'attrattività e la promozione della progettualità d'eccellenza all'Università di Pavia:
 - l'insediamento dell'Institutional Horizon 2020 Committe (iniziativa istituzionale INROAd) sovrintendere alla formazione di ricercatori di talento
- MEGAsTaR: dal punto di vista scientifico si prefigge obiettivi sfidanti nel campo della modellazione matematica di problemi di natura biologica ed ingegneristica, in sinergia con il piano strategico di Ateneo

Le sfide scientifiche di Cariplo-Regione Lombardia MEGAsTaR - complementari all'ERC Grant

Contribuire allo sviluppo di una collaborazione tra l'area modellistico-matematica e altre aree di Ateneo, quali l'area biomedica - crescite tumorali - e successivamente anche l'area ingegneristico-industriale-architettonica - Additive Manifacturing (AM) e stampa 3D

Le sfide scientifiche di Cariplo-Regione Lombardia MEGAsTaR - complementari all'ERC Grant

Contribuire allo sviluppo di una collaborazione tra l'area modellistico-matematica e altre aree di Ateneo, quali l'area biomedica - crescite tumorali - e successivamente anche l'area ingegneristico-industriale-architettonica - Additive Manifacturing (AM) e stampa 3D

Strategia: Il progetto si svilupperà in un primo momento

- all'interno del Dipartimento di Matematica per poi muoversi
- all'interno dell'Ateneo e
- in ambito lombardo saranno fondamentali le collaborazioni con l'Università degli Studi di Milano, con il Politecnico di Milano e con l'Università di Brescia
- Infine, in ambito europeo verranno mantenute fondamentali collaborazioni con riconosciuti istituti di ricerca ed università (ad esempio, il WIAS a Berlino, l'Università di Vienna, il Mathematical Institute di Praga, etc.)

La sfida scientifica futura stimolata da Cariplo - Regione Lombardia

- Modellazione matematica delle crescite tumorali: prevenzione, diagnosi e trattamento del cancro con lo sviluppo di protocolli di terapia per ridurre al minimo la sofferenza del paziente, massimizzando l'efficacia del trattamento attraverso
 - problemi di controllo ottimo
 - modelli più raffinati: che includano ad esempio il campo di velocità o il caso multifase

Vantaggio: Sistemi complessi, dominati da un gran numero di processi e dinamiche altamente nonlineari, difficili da affrontare con i soli metodi sperimentali: la loro comprensione può essere migliorata tramite opportuni modelli matematici e simulazioni numeriche

2. Applicazioni dei risultati ottenuti in ambito fisico ed ingegneristico: importante la collaborazione con il progetto strategico della Stampa 3D e delle tecnologie Additive Manifacturing (AM). Diversi aspetti vanno coinvolti a livello modellistico: effetti termici, cambiamenti di fase, adesione, fenomeni multiscala
La sfida: investigare la possibilità di impiegare modelli di tipo analogo a quelli utilizzati in ambito biomedico o per fluidi complessi al fine di rendere più efficaci i metodi numerici e sperimentali attualmente impiegati

Connessione tra i diversi ambiti: Sistemi di EDP nonlineari di tipo Cahn-Hilliard o Allen-Cahn sono potenzialmente adatti a descrivere molteplici fenomeni apparentemente diversi tra loro, quali transizione di fase e problemi a frontiera libera tipici di molte tecnologie tra cui quella dell'AM

http://matematica.unipv.it/rocca/