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Outline

@ Phase field models for tumor growth

© Recent joint work with C. Cavaterra and H. Wu

© Well-posedness

© Long-term dynamics

e The optimal control problem

© Recent joint work with A. Miranville and G. Schimperna
@ Well-posedness

@ Dissipativity and existence of the attractor

e Open problems and Perspectives
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@ Phase field models for tumor growth

Rocca (Universita degli Studi di Pavia)



Setting

Tumors grown in vitro often exhibit “layered” structures:

Normal region
___ W Hypoxic region
|

Necrotic region

Nutrient source

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072-1080. Scale bar 100pum = 0:1mm
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A continuum model is introduced with the ansatz:

@ sharp interfaces are replaced by narrow transition layers arising due to adhesive forces

among the cell species: a diffuse interface separates tumor and healthy cell regions

@ proliferating tumor cells surrounded by (healthy) host cells, and a nutrient (e.g.

glucose).
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A continuum model is introduced with the ansatz:

@ sharp interfaces are replaced by narrow transition layers arising due to adhesive forces

among the cell species: a diffuse interface separates tumor and healthy cell regions

@ proliferating tumor cells surrounded by (healthy) host cells, and a nutrient (e.g.

glucose).
We investigate the long-time dynamics and optimal control problem of a two-phase
diffuse interface model that describes the growth of a tumor in presence of a nutrient and

surrounded by host tissues.
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Advantages of diffuse interfaces in tumor growth models
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Advantages of diffuse interfaces in tumor growth models

@ It eliminates the need to enforce complicated boundary conditions across the
tumor/host tissue and other species/species interfaces

@ It eliminates the need to explicitly track the position of interfaces, as is required in

the sharp interface framework

@ The mathematical description remains valid even when the tumor undergoes

toplogical changes (e.g. metastasis)
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tumor/host tissue and other species/species interfaces

@ It eliminates the need to explicitly track the position of interfaces, as is required in

the sharp interface framework

@ The mathematical description remains valid even when the tumor undergoes

toplogical changes (e.g. metastasis)

Regarding modeling of diffuse interface tumor growth we can quote, e.g.,

o Ciarletta, Cristini, Frieboes, Garcke, Hawkins, Hilhorst, Lam, Lowengrub, Oden,
Wise, also for their numerical simulations — complex changes in tumor
morphologies due to the interactions with nutrients or toxic agents and also due to

mechanical stresses
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tumor/host tissue and other species/species interfaces

@ It eliminates the need to explicitly track the position of interfaces, as is required in

the sharp interface framework

@ The mathematical description remains valid even when the tumor undergoes

toplogical changes (e.g. metastasis)

Regarding modeling of diffuse interface tumor growth we can quote, e.g.,

o Ciarletta, Cristini, Frieboes, Garcke, Hawkins, Hilhorst, Lam, Lowengrub, Oden,
Wise, also for their numerical simulations — complex changes in tumor
morphologies due to the interactions with nutrients or toxic agents and also due to
mechanical stresses

o Frieboes, Jin, Chuang, Wise, Lowengrub, Cristini, Garcke, Lam, Niirnberg, Sitka, for

the interaction of multiple tumor cell species described by multiphase mixture models
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Theoretical analysis: two-phase models

@ In terms of the theoretical analysis most of the recent literature is restricted to the
two-phase variant, i.e., to models that only account for the evolution of a tumor

surrounded by healthy tissue.
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@ In terms of the theoretical analysis most of the recent literature is restricted to the
two-phase variant, i.e., to models that only account for the evolution of a tumor

surrounded by healthy tissue.

o In this setting, there is no differentiation among the tumor cells that exhibit
heterogeneous growth behavior. Hence this kind of two-phase models are just able to
describe the growth of a young tumor before the onset of quiescence and necrosis.
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@ In this setting, there is no differentiation among the tumor cells that exhibit
heterogeneous growth behavior. Hence this kind of two-phase models are just able to
describe the growth of a young tumor before the onset of quiescence and necrosis.

@ Analytical results related to well-posedness, asymptotic limits, but also optimal
control and long-time behavior of solution, have been established in a number of
papers of a number of authors which include: Agosti, Ciarletta, Colli, Frigeri,
Garcke, Gilardi, Grasselli, Hilhorst, Lam, Marinoschi, Melchionna, E.R., Scala,
Sprekels, Wu, etc...
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> for tumor growth models based on the coupling of Cahn—Hilliard (for the tumor
density) and reaction—diffusion (for the nutrient) equations, and

> for models of Cahn-Hilliard-Darcy or Cahn-Hilliard-Brinkman type.
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@ In terms of the theoretical analysis most of the recent literature is restricted to the
two-phase variant, i.e., to models that only account for the evolution of a tumor

surrounded by healthy tissue.

@ In this setting, there is no differentiation among the tumor cells that exhibit
heterogeneous growth behavior. Hence this kind of two-phase models are just able to
describe the growth of a young tumor before the onset of quiescence and necrosis.

@ Analytical results related to well-posedness, asymptotic limits, but also optimal
control and long-time behavior of solution, have been established in a number of
papers of a number of authors which include: Agosti, Ciarletta, Colli, Frigeri,
Garcke, Gilardi, Grasselli, Hilhorst, Lam, Marinoschi, Melchionna, E.R., Scala,
Sprekels, Wu, etc...

> for tumor growth models based on the coupling of Cahn—Hilliard (for the tumor
density) and reaction—diffusion (for the nutrient) equations, and

> for models of Cahn-Hilliard-Darcy or Cahn-Hilliard-Brinkman type.

In this talk we concentrate on two recent results on optimal control and long-time

behavior of solution.
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© Recent joint work with C. Cavaterra and H. Wu
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Long-time dynamics and optimal control of a diffuse interface model for
tumor growth: joint work with C. Cavaterra and H. Wu (preprint
arXiv:1901.07500, 2019)
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Long-time dynamics and optimal control of a diffuse interface model for
tumor growth: joint work with C. Cavaterra and H. Wu (preprint
arXiv:1901.07500, 2019)

@ The state system consists of a Cahn-Hilliard type equation for the tumor cell
fraction and a reaction-diffusion equation for the nutrient

@ The possible medication that serves to eliminate tumor cells is in terms of drugs and

is introduced into the system through the nutrient
@ In this setting, the control variable acts as an external source in the nutrient equation

1 First, we consider the problem of “long-time treatment” under a suitable given
source and prove the convergence of any global solution to a single equilibrium as
t — +o0.

2 Then we consider the “finite-time treatment” of tumor, which corresponds to an
optimal control problem. Here we also allow the objective cost functional to depend
on a free time variable, which represents the unknown treatment time to be
optimized. We prove the existence of an optimal control and obtain first order
necessary optimality conditions for both the drug concentration and the treatment
time.
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The main modelling idea

One of the main aim of the control problem is to realize in the best possible way a
desired final distribution of the tumor cell, which is expressed by the target
function ¢q
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The main modelling idea

One of the main aim of the control problem is to realize in the best possible way a
desired final distribution of the tumor cell, which is expressed by the target
function ¢q

By establishing the Lyapunov stability of certain equilibria of the state system

(without external source), we see that ¢g can be taken as a stable configuration,
so that the tumor will not grow again once the finite-time treatment is completed
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The state system: Cahn—Hilliard + nutrient model with source terms

The PDE system is an approximation of the model proposed in [HZO: A. Hawkins-Daarud,
K.-G. van der Zee and J.-T. Oden (2011)] in Q@ :=Q x (0, T):

¢r — Bp = P(o)(o — ),
or—Do=—-P(o)o—p)+u

subject to initial and boundary conditions

p=—-0d+F'(¢)

¢|t:0 = ¢0, 0'|t:0 = 0o, in Q, 8,,¢ = al,/j, = 81,0' = 0, on 02 x (07 T)
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The PDE system is an approximation of the model proposed in [HZO: A. Hawkins-Daarud,
K.-G. van der Zee and J.-T. Oden (2011)] in @ :=Q x (0, T):

¢ —Dp=PO)o ),  pu=-D¢+F(¢)
ot — Ao = 7P(())((7 — //) +u

subject to initial and boundary conditions

¢|t:0 = (150, U|t:0 = oo, in Q7 8,,(1) = 81,/1, = 81,0' = 0, on 02 x (07 T)

The state variables are:

> the tumor cell fraction ¢: ¢ ~ 1 (tumorous phase), ¢ ~ —1 (healthy tissue phase)
> the nutrient concentration o: ¢ ~ 1 and o =~ 0 indicate a nutrient-rich or
nutrient-poor extracellular water phase

@ F is typically a double-well potential with equal minima at ¢ = £1

P > 0 denotes a suitable regular proliferation function

The choice of reactive terms is motivated by the linear phenomenological constitutive laws
for chemical reactions

The control variable u serves as an external source in the equation for o and can be
interpreted as a medication
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Energy identity

The system turns out to be thermodynamically consistent. In particular, when u = 0 the
unknown pair (¢, o) is a dissipative gradient flow for the total free energy:

£(6,0) :/Q B|V¢\2+F(¢)] dx+%/ﬂo2dx.

Moreover generally, under the presence of the external source u, we observe that any

smooth solution (¢, o) to the problem satisfies the following energy identity:

%g(¢,a)+/ﬂ (V4P +[of + P(&)( — o] dx:/Quadx,

which motives the twofold aim of the present contribution.
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Our results

1. We prove that any global weak solution will converge to a single equilibrium as
t — 400 and provide an estimate on the convergence rate.

E. Rocca (Universita degli Studi di Pavia) February 19, 2019 13 / 54



Our results

1. We prove that any global weak solution will converge to a single equilibrium as
t — +oo and provide an estimate on the convergence rate. Our result indicates that
after certain medication (or even without medication, i.e., u = 0), the tumor will
eventually grow to a steady state as time evolves.

E. Rocca (Universita degli Studi di Pavia) February 19, 2019 13 / 54



Our results

1. We prove that any global weak solution will converge to a single equilibrium as
t — +oo and provide an estimate on the convergence rate. Our result indicates that
after certain medication (or even without medication, i.e., u = 0), the tumor will
eventually grow to a steady state as time evolves. However, since the potential
function F is nonconvex (double-well), the problem may admit infinite many steady
states so that for the moment one cannot identify which exactly the unique
asymptotic limit as t — +oo will be.
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Our results

1. We prove that any global weak solution will converge to a single equilibrium as
t — 400 and provide an estimate on the convergence rate. Our result indicates that
after certain medication (or even without medication, i.e., u = 0), the tumor will
eventually grow to a steady state as time evolves. However, since the potential
function F is nonconvex (double-well), the problem may admit infinite many steady
states so that for the moment one cannot identify which exactly the unique
asymptotic limit as t — +oo will be.

2. Denoting by T € (0, +00) a fixed maximal time in which the patient is allowed to
undergo a medical treatment, we derive necessary optimality conditions for

(CP) Minimize the cost functional

J@.our) = 5Z [ [ 16— oof dede + @/W(r)—wdx

aQ//|J*UQ| dxdt + = /(1+¢(T ))dx + = //|u| dxdt + pr7

subject to the state system and the the control constraint
UEUa ={uel™(Q): tUmin <uU< Umax a.e.in Q}, 7€(0,T)
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Comments on the cost functional

@)= F [ [ 16— sof axdr + 5 [ 1o(r) —onl” ax

T T
—i—a—Q//\U—UQ|2dth+&/(1+¢(7))dx+ &/ /|U|2dth+,BTT
2 0 JQ 2 Q 2 0 JQ
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Comments on the cost functional

@)= F [ [ 16— sof axdr + 5 [ 1o(r) —onl” ax
70/0’/9\0700|2dxdt+ /(1+¢(T) )dx + = //|u| dxdt + Br7

o 7 € (0, T] represents the treatment time of one cycle, i.e., the amount of time the
drug is applied to the patient before the period of rest, or the treatment time before
surgery, ¢g and oq represent a desired evolution for the tumor cells and for the
nutrient, ¢q stands for desired final distribution of tumor cells

@ The first three terms of J are of standard tracking type and the fourth term of J
measures the size of the tumor at the end of the treatment

@ The fifth term penalizes large concentrations of the cytotoxic drugs, and the sixth
term of J penalizes long treatment times
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The choice of ¢q

After the treatment, the ideal situation will be either the tumor is ready for surgery or the
tumor will be stable for all time without further medication (i.e., u = 0) . This goal can

be realized by making different choices of the target function ¢q in the above optimal
control problem (CP).

@ For the former case, one can simply take ¢q to be a configuration that is suitable for
surgery.

@ While for the later case, which is of more interest to us, we want to choose ¢q as a

“stable” configuration of the system, so that the tumor does not grow again once
the treatment is complete.

For this purpose, we prove that any local minimizer of the total free energy £ is Lyapunov
stable provided that u = 0.
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After the treatment, the ideal situation will be either the tumor is ready for surgery or the
tumor will be stable for all time without further medication (i.e., u = 0) . This goal can
be realized by making different choices of the target function ¢q in the above optimal
control problem (CP).

@ For the former case, one can simply take ¢q to be a configuration that is suitable for
surgery.
@ While for the later case, which is of more interest to us, we want to choose ¢q as a

“stable” configuration of the system, so that the tumor does not grow again once
the treatment is complete.

For this purpose, we prove that any local minimizer of the total free energy £ is Lyapunov
stable provided that u = 0. As a consequence, these local energy minimizers serve as
possible candidates for the target function ¢q. Then after completing a successful
medication, the tumor will remain close to the chosen stable configuration for all time.
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The mathematical difficulties

The study of long-time behavior is nontrivial, since the nonconvexity of the free energy £
indicates that the set of steady states may have a rather complicated structure.
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The study of long-time behavior is nontrivial, since the nonconvexity of the free energy £
indicates that the set of steady states may have a rather complicated structure.

o For the single Cahn-Hilliard equation this difficulty can be overcome by employing
the tojasiewicz-Simon approach: a key property that plays an important role in the

analysis of the Cahn-Hilliard equation is the conservation of mass, i.e.,

/¢>(t)dx:/¢>odx for t>0.
Q Q
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However, for our coupled system this property no longer holds, which brings us new

difficulties in analysis.
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The mathematical difficulties
The study of long-time behavior is nontrivial, since the nonconvexity of the free energy £
indicates that the set of steady states may have a rather complicated structure.
o For the single Cahn-Hilliard equation this difficulty can be overcome by employing
the tojasiewicz-Simon approach: a key property that plays an important role in the

analysis of the Cahn-Hilliard equation is the conservation of mass, i.e.,

/¢(t)dx:/¢odx for t>0.
Q Q

However, for our coupled system this property no longer holds, which brings us new
difficulties in analysis.

@ Besides, quite different from the Cahn-Hilliard-Oono system considered in which the
mass [, ¢(t) dx is not preserved due to possible reactions, here in our case it is not
obvious how to control the mass changing rate:

i [oax= [ PO - max.

Similar problem happens to the nutrient as well, that is

d
— [ cdx=— [ P(¢)(c —pu)dx+ [ udx.
dt Jo Q Q
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The problem of mass conservation
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The problem of mass conservation

@ The observation that the total mass can be determined by the initial data and the

external source:

@)+ o) dx = [ (o +on) dx+/ot/ﬂudxd7-, T

allows us to derive a suitable version of the tojasiewicz-Simon type inequality.
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@ On the other hand, we can control the mass changing rates of ¢ and o by using the
extra dissipation related to reactive terms in the basic energy law, i.e.,
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The problem of mass conservation

@ The observation that the total mass can be determined by the initial data and the

external source:

A}Mﬂ+UU»dX:[k%+a@dx+Ai£udx&: T

allows us to derive a suitable version of the tojasiewicz-Simon type inequality.

@ On the other hand, we can control the mass changing rates of ¢ and o by using the
extra dissipation related to reactive terms in the basic energy law, i.e.,

Jo PO) (st — o) dx.

@ Based on the above mentioned special structure of the system, by introducing a new
version of Lojasiewicz-Simon inequality we are able to prove that every global weak
solution (¢, o) of the problem will converge to a certain single equilibrium (oo, 0oo)
as t — 4-oco and, moreover, we obtain a polynomial decay of the solution.
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The problem of mass conservation

@ The observation that the total mass can be determined by the initial data and the

external source:

@)+ o) dx = [ (o +on) dx+/ot/9udxd7, T

allows us to derive a suitable version of the tojasiewicz-Simon type inequality.

@ On the other hand, we can control the mass changing rates of ¢ and o by using the
extra dissipation related to reactive terms in the basic energy law, i.e.,
Jo P(&)(1 — 0)? dx.

@ Based on the above mentioned special structure of the system, by introducing a new
version of Lojasiewicz-Simon inequality we are able to prove that every global weak
solution (¢, o) of the problem will converge to a certain single equilibrium (oo, 0oo)

as t — 4-oco and, moreover, we obtain a polynomial decay of the solution.

o Besides, a nontrivial application of the tojasiewicz-Simon approach further leads to
the Lyapunov stability of local minimizers of the free energy £ (we only consider the
case u = 0 for the sake of simplicity).
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Comparison with other results in the literature

@ To the best of our knowledge, the only contribution in the study of long-time
behavior for this problem is given in [FGR: Frigeri, Grasselli, R. (2015)] with u =0,

where, however, the main focus is the existence of a global attractor
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@ In the context of PDE constraint optimal control for diffuse interface tumor models,
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1 [CGRS: Colli, Gilardi, R., Sprekels (2017)] where the objective functional is with the

special (simpler) choices s = 81 = ag = 0, and the state system is exactly the same
but no dependence on 7 is studied.
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1 [CGRS: Colli, Gilardi, R., Sprekels (2017)] where the objective functional is with the
special (simpler) choices s = 81 = ag = 0, and the state system is exactly the same
but no dependence on 7 is studied.

2 [GLR: Garcke, Lam, R. (2017)] where a different diffuse interface model is studied.
There the distributed control appears in the ¢ equation, which is a Cahn-Hilliard type
equation with a source of mass on the right hand side, but not depending on p. Due
to the presence of the control in the Cahn-Hilliard equation, in [GLR] only the case of
a regularized objective cost functional can be analyzed for bounded controls.
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Comparison with other results in the literature

@ To the best of our knowledge, the only contribution in the study of long-time
behavior for this problem is given in [FGR: Frigeri, Grasselli, R. (2015)] with u =0,
where, however, the main focus is the existence of a global attractor

@ In the context of PDE constraint optimal control for diffuse interface tumor models,
in the literature we have basically two recent works:

1 [CGRS: Colli, Gilardi, R., Sprekels (2017)] where the objective functional is with the
special (simpler) choices s = 81 = ag = 0, and the state system is exactly the same
but no dependence on 7 is studied.

2 [GLR: Garcke, Lam, R. (2017)] where a different diffuse interface model is studied.
There the distributed control appears in the ¢ equation, which is a Cahn-Hilliard type
equation with a source of mass on the right hand side, but not depending on p. Due
to the presence of the control in the Cahn-Hilliard equation, in [GLR] only the case of
a regularized objective cost functional can be analyzed for bounded controls.

With our work we aim to provide a contribution to the theory of free terminal time
optimal control in the context of diffuse interface tumor models, where the control is

applied in the nutrient equation.
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© Well-posedness
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Well-posedness (cf, [CGRS, Theorem 2.1])
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Well-posedness (cf, [CGRS, Theorem 2.1])

Let ¢po € HX(Q) N H*(Q) and o € H*(Q) and assume that

(P1) P € C*(R) is nonnegative. There exist a; > 0 and some g € [1,4] such that, for all
SER, |P(s)] <au(l+]s]77h)

(F1) F = Fo + F1, with Fy, F; € C?(R). There exist o; > 0 and r € [2,6) such that

|F{'(s)] < az, as(1+]s|"™%) < F(s) < au(1+]s|"?), F(s)> as|s|—as Vs e R
(Ul) Forany T >0, u € L*(0, T; L*(Q)).
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Well-posedness (cf, [CGRS, Theorem 2.1])

Let ¢o € Hy () N H3(Q) and 0o € H(Q) and assume that

(P1) P € C*(R) is nonnegative. There exist a; > 0 and some g € [1,4] such that, for all
sER, |P'(s)] < ai(l+ s

(F1) F = Fo + F1, with Fy, F; € C?(R). There exist o; > 0 and r € [2,6) such that

IF{'(s)] < ao,  a3(14]s|"7%) < F(s) < au(1+]|s|?), F(s) > as|s|—as Vs € R
(Ul) Forany T >0, u€ L%(0, T; L*(Q)). Then

Theorem (Strong solutions)

(1) For every T > 0, the state system admits a unique strong solution:

|81l Lo (0, 313 @) 200, T:HA (@) 1L (0, T:H1 () T I8l oo (0, T (@))ML2(0, TiH2(2)

+ ”‘7”C([O,T];Hl(Q))mL2(0,T;H%,(Q))ﬁHl(O,T;LZ(Q)) < K.

E. Rocca (Universita degli Studi di Pavia) February 19, 2019 20 / 54



Well-posedness (cf, [CGRS, Theorem 2.1])

Let ¢o € Hy () N H3(Q) and 0o € H(Q) and assume that

(P1) P € C*(R) is nonnegative. There exist a; > 0 and some g € [1,4] such that, for all
sER, |P'(s)] < ai(l+ s

(F1) F = Fo + F1, with Fy, F; € C?(R). There exist o; > 0 and r € [2,6) such that

IF{'(s)] < ao,  a3(14]s|"7%) < F(s) < au(1+]|s|?), F(s) > as|s|—as Vs € R
or an >0, u€ ; . Then
(U1) Forany T >0 L2(0, T; L3(Q)). Th
Theorem (Strong solutions)
(1) For every T > 0, the state system admits a unique strong solution:
91l oo (0, 7:H3 @) N L2(0, T:HA @)A1 0, TiH1 (@) T |l Lo (0, T3 (@) L2(0, T H2 ()
+ ”UHC([O,T];Hl(Q))mL2(0,T;H%,(Q))ﬁHl(O,T;LQ(Q)) < K.

(2) Let (¢i,0i) be two strong solutions. Then there exists a constant K; > 0, depending

on ||u,-HLz(077—;L2), Q, T, ||¢o]|y3 and ||oo||y1, such that

|61 — @2l oo 0, ;1) 1200, T513) 1 0, T (1Y) + 121 — B2l 20, 751y

+ llor = o2|lc(o, 711y, TiH2) M (0, Ti2) < Kallin — w2l 200, 7:12)-

v
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Long-term dynamics
We make the following additional assumptions:
(P2) P(s) >0, forall s e R

(F2) F(s) is real analytic on R
(U2) u € LY(0,400; L2(Q)) N L?(0, +o0; L?(R)) and satisfies the decay condition

fgg(l + t)3+”||u(t)||L2(Q) < 400, for some p > 0.
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Long-term dynamics

We make the following additional assumptions:

(P2) P(s) >0, forallseR

(F2) F(s) is real analytic on R

(U2) u € LY0,+o0; L2(Q)) N L%(0, +00; L2(£2)) and satisfies the decay condition

sgg(l + t)3+”||u(t)||L2(Q) < 400, for some p > 0.
t=>

Theorem (1. The stationary problem)

For any ¢o € H*(Q), o € L?(), the state system admits a unique global weak solution
(6, 11,0): limes oo (16(8) = dos @) + [10(t) = Toolliz@) + I1(E) = poslli2@)) =0,
where (¢oo, lioo, 0o ) Satisfies the stationary problem

—Apos + F/(d’OO) = Moo, in Q
Oy oo =0, on 00

/Q(¢oo+Uoo)dXZ/Q(¢o+00)dx+/o+°o/nudxdt

with 0o and oo being two constants given by 0o = oo = |Q " [, F'($oc)dx.
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The convergence rate

Theorem (2. Convergence rate)

Moreover, under the same assumptions, the following estimates on convergence rate hold

1

— min 6 £
6(£) — boolliniay + lo(t) — ooolliz < CL+ )" ™= 8} ve>o,
1(8) = poollizg@y < €A + t) 2=z £,

Vt>0,

where C > 0 is a constant depending on ||¢o||1(q), llooll2(): |oollki(q)

llull 10,4 00:2(0)) 16l 2(0,4-00502()) @nd ;6 € (O, 1) is a constant depending on ¢ .
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An idea of the proof

The proof consists of several steps:

@ We first derive some uniform-in-time a priori estimates on the solution (¢, i, o)
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An idea of the proof

The proof consists of several steps:
@ We first derive some uniform-in-time a priori estimates on the solution (¢, i, o)

@ Then we give a characterization on the w-limit
W(¢0,00) ={(doo, 0o) € (HN(Q) N H*(Q)) x HY(Q) : I{t,} / +oo such that
(6(tn), o(tn)) = (90, 00) in H*(Q) x LX(Q)}.
And we have the following result

Theorem (3. The w-limit)

Assume (P1), (F1), (U2). For any initial datum (¢o,00) € H*(Q) x L(Q), the associated
w-limit set w(¢o, o0) is non-empty. For any element (¢poo,0oo) € w(eho, 00), Ooo is a
constant and (¢oo, 0o ) Satisfies the stationary problem. Besides, ji is a constant given
by Q| ™" [, F'(¢c)dx and the following relation holds

P(¢00) (000 — f1oo) =0, a.e. in Q.

And the positivity of P entails immediately also 0o = fioo.
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o Finally, we prove the convergence of the trajectories and polynomial decay by means

of a proper tojasiewicz—Simon inequality:
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o Finally, we prove the convergence of the trajectories and polynomial decay by means
of a proper Lojasiewicz-Simon inequality: Given any initial datum
(¢o,00) € H(R) x L*(Q) and source term u satisfying (U2), we denote by

M = Q! (/Q(¢o+ao)dx+/o+w/ﬂudxdt)

the total mass at infinity time. Then we are able to derive the following

Theorem (Lojasiewicz—Simon Inequality)

Let (F1), (F2), (P1), (P2) and (U2) be satisfied. Suppose that (¢oo, ftoc, 0o ) Is a solution to
the elliptic stationary problem. Then there exist constants 6 € (0, %) and 3 > 0, depending on
$oo, Moo and §, such that for any (¢,0) € H3(Q) x H(Q) satisfying

¢ — boollmr(e) < B,
[ @+ 0)ax+ muig] = [ (@20 + 020 dx = mooll],
Q Q
where my, is a certain constant fulfiling |m,| < |Q|_% H“||L1(0,+oo;L2(Q))r then we have

1
e = Bl yy + ClIValliz@) + ClIVP@) (1 — o)l 2(q) + Clmul?
Z |€(¢)7 0') - £(¢007Uoo)‘1_9, where

p=—A¢+ F'(¢) and C > 0 depends on Q, $oo, Moo, [|Blln2(0, 1ollm1(0), 1Ull1(0,+00:2(0))-
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Energy minimizers with u =0
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Energy minimizers with u =0

Let us now assume u = 0. Then it follows that the total mass of the system is now

conserved:

/(¢(t)+a(t))dx: /(¢o+ao)dx, Vit >0.
Q Q
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Energy minimizers with u =0

Let us now assume u = 0. Then it follows that the total mass of the system is now
conserved:

/(¢(t)+a(t))dx: /(¢>o+ao)dx, Vit >0.
Q Q

Let m € R be an arbitrary given constant. Set

20 ={(6.0) € H(Q) x 13(@) /Q(¢+ o) dx = [Q]m).
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Energy minimizers with u =0

Let us now assume u = 0. Then it follows that the total mass of the system is now
conserved:

[ @0 +at)ax= [ @+ o)dx, Vo
Q Q
Let m € R be an arbitrary given constant. Set
Zm =1 (s, HY(Q) x L*(Q) : dx = |Q|m}.
{G.o) e @) %@ [ (0+0)ax = |2Im)

Any (¢*,0") € Zn is called

o a local energy minimizer of the total energy
1 2 1 2
Eb.0)= | |5IVeP+ F(9)| dx+ 5 [ o®dx
al2 2 Ja

if there exists a constant x > 0 such that £(¢*,0") < (¢, o), for all (¢,0) € Zm
satisfying [|[(¢ — ¢", 0 — 0™)lm(@)x2@) < X
o If x = +o0, then (¢*,0™) is called a global energy minimizer of E(¢,c) in Zp,.
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We first derive some properties for the critical points of £(¢, ) in 2.
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We first derive some properties for the critical points of £(¢, ) in Z,,. For any given
m € R, we consider the following stationary problem for (¢, u, o)

AGHF(Q)=p,  inQ
Ovp =0, on 01,

[@+a)dx=Iaim,
Q

where 1 and o are constants given by o = = Q|7 [, F'(¢) dx.
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We first derive some properties for the critical points of £(¢, ) in Z,,. For any given
m € R, we consider the following stationary problem for (¢, u, o)

D¢+ F(¢) = p, in €,
0,9 =0, on 092,
[@+a)dx=Iaim,
Q
where 1 and o are constants given by o = = Q|7 [, F'(¢) dx.

Theorem (4. Critical points)

Let assumption (F1) be satisfied. Then we have:

v
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We first derive some properties for the critical points of £(¢, ) in Z,,. For any given
m € R, we consider the following stationary problem for (¢, i, o)

~Ap+F()=p,  inQ,

0,9 =0, on 092,

/Q(¢ +o)dx = |Q|m,

where 1 and o are constants given by o = = Q|7 [, F'(¢) dx.

Theorem (4. Critical points)
Let assumption (F1) be satisfied. Then we have:

(1) If (¢*,0%) € HY(R) x R is a strong solution to the stationary problem above, then
(¢*,0") is a critical point of E(¢,0) in Zm. Conversely, if (¢*,0") is a critical point
of E(¢, ) in Zm, then ¢* € HY(Q), o™ € R satisfy the stationary problem above

4
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We first derive some properties for the critical points of £(¢, ) in Z,,. For any given
m € R, we consider the following stationary problem for (¢, i, o)

—A¢+ F'(¢) =, in Q,

0,9 =0, on 09,

[@+a)dx=Iaim,
Q
where 1 and o are constants given by o = = Q|7 [, F'(¢) dx.

Theorem (4. Critical points)
Let assumption (F1) be satisfied. Then we have:

(1) If (¢*,0%) € HY(R) x R is a strong solution to the stationary problem above, then
(¢*,0") is a critical point of E(¢,0) in Zm. Conversely, if (¢*,0") is a critical point
of E(¢, ) in Zm, then ¢* € HY(Q), o™ € R satisfy the stationary problem above

(2) If (¢%,07") is a local energy minimizer of E(¢,0) in Zm, then (¢™,0") is a critical
point of £(¢, o).

v
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We first derive some properties for the critical points of £(¢, ) in Z,,. For any given
m € R, we consider the following stationary problem for (¢, i, o)
—A¢+ F'(¢) =, in Q,
0,9 =0, on 09,
[@+a)dx=Iaim,
Q

where 1 and o are constants given by o = = Q|7 [, F'(¢) dx.

Theorem (4. Critical points)
Let assumption (F1) be satisfied. Then we have:

(1) If (¢*,0%) € HY(R) x R is a strong solution to the stationary problem above, then
(¢*,0") is a critical point of E(¢,0) in Zm. Conversely, if (¢*,0") is a critical point
of E(¢, ) in Zm, then ¢* € HY(Q), o™ € R satisfy the stationary problem above

(2) If (¢%,07") is a local energy minimizer of E(¢,0) in Zm, then (¢™,0") is a critical
point of £(¢, o).

(3) The functional E(¢, ) has at least one minimizer (¢*,0™) € Zm such that

E(¢*, 0" = inf  E(s,
(¢.07) =, inf £(6.0)
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Lyapunov Stability with u =0
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Lyapunov Stability with u =0

Then, we can get our main result on long-term dynamics:
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Lyapunov Stability with u =0

Then, we can get our main result on long-term dynamics:

Theorem (5. Lyapunov stability)
Assume that (F1), (F2), (P1), (P2) are satisfied and u = 0. Given m € R, let (¢*,0™)

be a local energy minimizer in Z,, of

£(4,0) :/Q B|V¢>|2+F(¢)] dx+%/ﬂa2dx.
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Lyapunov Stability with u =0

Then, we can get our main result on long-term dynamics:

Theorem (5. Lyapunov stability)
Assume that (F1), (F2), (P1), (P2) are satisfied and u = 0. Given m € R, let (¢*,0™)

be a local energy minimizer in Z,, of

£(4,0) :/Q B|V¢\2+F(¢)] dx+%/ﬂa2dx.

Then, for any € > 0, there exists a constant n € (0,1) such that for arbitrary initial
datum (¢o, 00) € (Hy(Q) N H*(Q)) x H(Q) satisfying [, (¢o + 00) dx = [Qm and
lpo — " lr() + oo — o™ [l12(q) < 1, the state system admits a unique global strong
solution (¢, o) such that

lo(t) = ¢*llmr(q) + llo(t) — " lli2@) <€, VYt >0.

Namely, any local energy minimizer of £(¢, o) in Z,, is locally Lyapunov stable.
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Conclusions on long-term dynamics

@ The result on long-time behavior derived in Theorem 1 and 2 can be applied to the
global strong solution obtained in Theorem 5

o Although it is still not obvious to identify the asymptotic limit (oo, 00), We are
able to conclude that (¢oc, 0oo) also satisfies

[poo — @ [Imri) + [l0oe — 0" ll12() < €

o In particular, if (¢*,0™) is an isolated local energy minimizer then it is locally
asymptotic stable
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Assumptions for the optimal control problem

In this section we study the optimal control problem

(CP) Minimize the cost functional
.o = 52 [ 1= ool axar + 2 [ jotr) — ol ax
o Ja

+%/OT/Q|U—JQ|2dxdt+%/(1+¢T))dx+ //|u| dxdt + Brr

subject to the state system and the the control constraint

UEUa ={uel™(Q): tUmin <u< umax a.e.in Q}, 7€(0,T),
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Assumptions for the optimal control problem

In this section we study the optimal control problem

(CP) Minimize the cost functional
.o = 52 [ 1= ool axar + 2 [ jotr) — ol ax
o Ja

+%/Of/fz|a—aq|2dxdt+%/(l+¢T))dx—|— //|u| dxdt + Brr

subject to the state system and the the control constraint
UEUa ={uel™(Q): tUmin <u< umax a.e.in Q}, 7€(0,T),

where T € (0,400) is a fixed maximal time. We assume:
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Assumptions for the optimal control problem

In this section we study the optimal control problem

(CP) Minimize the cost functional
.o = 52 [ 1= ool axar + 2 [ jotr) — ol ax
o Ja

+?/OT/Q|PJQ|2dxdr+%/(1+¢T))dx+ //|u| dxdt + Brr

subject to the state system and the the control constraint
UEUa ={uel™(Q): tUmin <u< umax a.e.in Q}, 7€(0,T),
where T € (0, +00) is a fixed maximal time. We assume:
(C1) Ba, Ba, Bs, Bu, BT, aq are nonnegative constants but not all zero.
(C2) ¢, 0@ € L2(Q), da, ga € L*(Q), tmin, tmax € L(Q), and tmin < Umax, a.e. in Q.

(C3) Let Ur be an open set in L*(Q): Uag C Ur and [lull 2(qy < R, for all u € Ur.
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Existence of an optimal control
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Existence of an optimal control

From the well-posedness results it follows that the control-to-state operator S

ur— S(u):=(p,u,0)

is well-defined and Lipschitz continuous as a mapping from Ug C L?(Q) into the
following space

(L0, T (H'(2)))NL3(0, T: H'(2))) x L*(0, T (H'(2))) % (L(0, T+ (H'(2)))NL*(Q)).
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Existence of an optimal control
From the well-posedness results it follows that the control-to-state operator S

ur— S(u):=(p,u,0)
is well-defined and Lipschitz continuous as a mapping from Ug C L?(Q) into the
following space
(L0, T3 (H'(9)))NL2(0, T; HY(Q)))x L*(0, T; (H(Q)))x (L (0, T; (H'()))NL*(Q)).
The triplet (¢, i, o) is the unique weak solution to the state system with data (¢o, oo, u)

over the time interval [0, T]. For convenience, we use the notations ¢ = S1(u) and
o = S3(u) for the first and third component of S(u).
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Existence of an optimal control

From the well-posedness results it follows that the control-to-state operator S

u— S(u) == (¢, p,0)
is well-defined and Lipschitz continuous as a mapping from Ug C L?(Q) into the

following space
(L0, T3 (H'(9)))NL2(0, T; HY(Q)))x L*(0, T; (H(Q)))x (L (0, T; (H'()))NL*(Q)).

The triplet (¢, i, o) is the unique weak solution to the state system with data (¢o, oo, u)
over the time interval [0, T]. For convenience, we use the notations ¢ = S1(u) and

o = S3(u) for the first and third component of S(u). Then we prove the following result
that implies the existence of a solution to problem (CP).

Theorem (Existence of the optimal control)

Assume that (P1), (F1), (U1) and (C1)—~(C3) are satisfied. Let ¢o € Hy(Q) N H*(Q) and
o0 € H'(Q). Then there exists at least one minimizer (¢, 0+, U, T+) to problem (CP).
Namely, ¢ = S1(us), o« = S3(u.) satisfy

T (P, O, U, T) = JI(¢,0,w,s).

inf
(w,s) € Uyq %[0, T]
s.t. ¢ = S1(w), o = S3(w)

v
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Differentiability of the control-to-state map

We establish then the Fréchet differentiability of the solution operator S with respect to
the control u.
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Differentiability of the control-to-state map

We establish then the Fréchet differentiability of the solution operator S with respect to
the control u. For u. € Ug, let (¢« s, o) = S(us). We consider for any h € [?(Q) the
linearized system

& — An = P (¢ ) (o — ) § + P(¢)(p—n), 1= —DE+F(4.)€,
Op—Dp = —P'(¢:)(0n — pu) € = P(¢)(p =) + h
On€ = 0an = Ohp = 0, £(0) = p(0) = 0.
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Differentiability of the control-to-state map

We establish then the Fréchet differentiability of the solution operator S with respect to
the control u. For u. € Ug, let (¢, fix, 0x) = S(us). We consider for any h € [*(Q) the

linearized system
0 — D = P(¢)(0x — ) € + P(ds)(p—m),  n = —AE+F" ()€,

Op—Dp = —P'(¢:)(0n — pu) € = P(¢)(p =) + h
O0n€ = Onn = Onp = 0, f(O) = p(O) =0.

We can apply [Theorems 3.1, 3.2, CGRS] for the well-posedness of the linearized system
and the Fréchet differentiability of the control-to-state operator S with respect to u.
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Differentiability of the control-to-state map

We establish then the Fréchet differentiability of the solution operator S with respect to
the control u. For u. € Ug, let (¢, fix, 0x) = S(us). We consider for any h € [*(Q) the

linearized system

& — An = P(¢u)(0n — pe) €+ P(d)(p—m),  n = —DE+F(6:)€,

Op—Dp = —P'(¢:)(0n — pu) € = P(¢)(p =) + h

On& = 0hm = Ohp = 0, £(0) = p(0) = 0.
We can apply [Theorems 3.1, 3.2, CGRS] for the well-posedness of the linearized system
and the Fréchet differentiability of the control-to-state operator S with respect to u.
Assume (P1), (F1), (U1), (C1)~(C3), let ¢o € Hx(Q) N H3(Q) and oo € H*(Q). Then the
control-to-state operator S is Fréchet differentiable in Ug as a mapping from L?(Q) into

V= (Hl(o, T; (H3(Q))) N L(0, T; L2(Q)) N L2(0, T; H,i(Q))) x 12(Q)

x (Hl(o, T; 12(Q)) N L2(0, T H2(Q))) .
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Differentiability of the control-to-state map

We establish then the Fréchet differentiability of the solution operator S with respect to
the control u. For u. € Ug, let (¢, fix, 0x) = S(us). We consider for any h € [*(Q) the

linearized system

& — An = P(¢u)(0n — pe) €+ P(d)(p—m),  n = —DE+F(6:)€,

Op—Dp = —P'(¢:)(0n — pu) € = P(¢)(p =) + h

On& = 0hm = Ohp = 0, £(0) = p(0) = 0.
We can apply [Theorems 3.1, 3.2, CGRS] for the well-posedness of the linearized system
and the Fréchet differentiability of the control-to-state operator S with respect to u.
Assume (P1), (F1), (U1), (C1)~(C3), let ¢o € Hx(Q) N H3(Q) and oo € H*(Q). Then the
control-to-state operator S is Fréchet differentiable in Ug as a mapping from L?(Q) into

V= (Hl(o, T: (Hu(Q))) N L>=(0, T; L*(Q)) N L*(0, T; H,i(Q))) x 1*(Q)
x (Hl(o, T; 12(Q)) N L2(0, T; H2(Q))) .
For any u. € Ug, the Fréchet derivative DS(u.) € L(L*(Q),)) is defined as follows: for
any h € L3(Q), DS(u)h = (¢",1", p"), where (¢",n", p") is the unique solution to the

linearized system associated with h.
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First order optimality conditions
Define a reduced functional
T(u,7) = T(S1(u), Ss(u), u, 7).
Since the control-to-state mapping S is also Fréchet differentiable into C°([0, T]; L*(2))
with respect to u, then the reduced cost functional 7 is Fréchet differentiable in Ug.
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First order optimality conditions

Define a reduced functional
j(U,T) = J(51(u), 53(11), u, T)'

Since the control-to-state mapping S is also Fréchet differentiable into C°([0, T]; L*(2))
with respect to u, then the reduced cost functional J is Fréchet differentiable in Ug.

Theorem (Existence of solutions to the adjoint system)

Assume (P1), (F1), (U1), (C1)~(C3), ¢o € Hx(Q) N H3(Q), and a0 € H*(Q). Then the
adjoint system

— 0p+ Aq— F'(6.)q+ P(6:)(0- — 1)(r — p) = o (6- — b)
q—Ap+P(g:)(p—r)=0,  —0r — Ar+ P(¢:)(r — p) = ag(ox — 0q)
op =g =0ur =0,  r(r)=0, p(r.) = fa(9u(r) ~ ba) + 2

has a unique weak solution (p, g, r) on [0, 7]:

p € H'(0,7; (HN(Q))) N C°([0, 7]; L2(R2)) N L2(0, 7u; HA(R)),
qge ’(Qx(0,7)), reH(0,7;L2(R)N C0,7.]; H(Q)) N L*(0, 7.; H(R)).

4
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Necessary optimality conditions

Theorem (Necessary optimality conditions)

Let (us,T+) € Uaq X [0, T] denote a minimizer to the optimal control problem (CP) with
corresponding state variables (s, pi«, 0+) = S(ux) and associated adjoint variables
(p, g, r), then it holds:

T Tx
ﬁu/ /u*(u—u*)dxdt—i—/ /r(u—u*)dxdtZO, YV u € Upg.
o Ja o Ja

Besides, setting
L(pe,00,7) = D2 / |6u(7) — d(m)P dx + B / (6-(72) — ¢a) Begha (72) dx
Q
/ jou(72) = sa(ra)Pdx + B2 / Bedu(ra) dx + B

we have
>0, ifr.=0,
£(¢*,U*7T*) :0, I'fT* € (0, T)7
<0, ifr=T.
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Interpretation of the first condition

Besides, if we extend r by zero to (7, T], then we can express the variational inequality

T T
,5’,,/ /u*(u—u*)dxdt—l—/ /r(u—u*)dxdtzo, YV u € Uyg.
o Ja o Ja

as
-
//(ﬁuu*—i—r)(u—u*)dxdtZO7 YV u € Uad,
o Ja

which allows the interpretation that the optimal control u, is the L2(Q)—projection of
—B7tr onto the set Uyg (provided that 8, > 0).
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© Recent joint work with A. Miranville and G. Schimperna
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Long-time behavior for a different model — joint work with A. Miranville
and G. Schimperna, arXiv:1810.12239v1 (2018)
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Long-time behavior for a different model — joint work with A. Miranville
and G. Schimperna, arXiv:1810.12239v1 (2018)

We consider here the long time dynamics for the following model for tumor growth:
pr = Bp = (Po— A)h(y),

p=—Ap+V'(p),
ot — Ao = —Coh(p) + Blos — o),

settled in Q X (0, +00), and complemented with the Cauchy conditions and with no-flux

(i.e., homogeneous Neumann) boundary conditions for all unknowns.
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Long-time behavior for a different model — joint work with A. Miranville
and G. Schimperna, arXiv:1810.12239v1 (2018)

We consider here the long time dynamics for the following model for tumor growth:

e — Ap = (Po — A)h(p),
p=—0p+V'(p),
ot — Ao = —Coh(p) + Blos — o),

settled in Q X (0, +00), and complemented with the Cauchy conditions and with no-flux
(i.e., homogeneous Neumann) boundary conditions for all unknowns.
@ Here h(s) is an interpolation function such that h(—1) = 0 and h(1) =1, and
> h(¢)Po - proliferation of tumor cells proportional to nutrient concentration
> h(¢)A - apoptosis of tumor cells
> h(p)Co - consumption of nutrient by the tumor cells
@ The constant os denotes the nutrient concentration in a pre-existing vasculature,
and B(os — o) models the supply of nutrient from the blood vessels if o5 > o and

the transport of nutrient away from the domain Q if s < 0.
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Long-time behavior for a different model — joint work with A. Miranville
and G. Schimperna, arXiv:1810.12239v1 (2018)

We consider here the long time dynamics for the following model for tumor growth:

e — Ap = (Po — A)h(p),
p=—0p+V'(p),
ot — Ao = —Coh(p) + Blos — o),

settled in Q X (0, +00), and complemented with the Cauchy conditions and with no-flux
(i.e., homogeneous Neumann) boundary conditions for all unknowns.
@ Here h(s) is an interpolation function such that h(—1) = 0 and h(1) =1, and

> h(¢)Po - proliferation of tumor cells proportional to nutrient concentration
> h(¢)A - apoptosis of tumor cells
> h(¢)Co - consumption of nutrient by the tumor cells

@ The constant os denotes the nutrient concentration in a pre-existing vasculature,
and B(os — o) models the supply of nutrient from the blood vessels if o5 > o and

the transport of nutrient away from the domain Q if s < 0.

@ A regular double-well potential W, e.g., W(s) = 1/4(1 — s%)?
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Long-time behavior for a different model — joint work with A. Miranville
and G. Schimperna, arXiv:1810.12239v1 (2018)
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Long-time behavior for a different model — joint work with A. Miranville
and G. Schimperna, arXiv:1810.12239v1 (2018)

The model was introduced in [Chen, Wise, Shenoy, Lowengrub (2014)] and the in [Garcke,
Lam, Sitka, Styles (2016)] in a more general framework.
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Long-time behavior for a different model — joint work with A. Miranville
and G. Schimperna, arXiv:1810.12239v1 (2018)

The model was introduced in [Chen, Wise, Shenoy, Lowengrub (2014)] and the in [Garcke,
Lam, Sitka, Styles (2016)] in a more general framework.
We prove that, under physically motivated assumptions on parameters and data,

@ the corresponding initial-boundary value problem generates a dissipative dynamical
system

@ that admits the global attractor in a proper phase space.
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Long-time behavior for a different model — joint work with A. Miranville
and G. Schimperna, arXiv:1810.12239v1 (2018)

The model was introduced in [Chen, Wise, Shenoy, Lowengrub (2014)] and the in [Garcke,
Lam, Sitka, Styles (2016)] in a more general framework.

We prove that, under physically motivated assumptions on parameters and data,

@ the corresponding initial-boundary value problem generates a dissipative dynamical
system

@ that admits the global attractor in a proper phase space.

The main difference with respect to the previous model is that here we do not have the
total energy baance we had before. Here we only have

d /1 2 )
E(EHV(‘O” +/Q‘~U(<p)dx) +Vul” = /Q(PU—A)h(QD)u dx.
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Examples of functions h and W

v
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The basic assumptions on the potential

The configuration potential W lies in Clt’cl(R). Moreover its derivative is decomposed as a
sum of a monotone part 8 and a linear perturbation:

V(r)=p8(r)—Ar, A>0, reR.
We normalized so that 3(0) = 0 and further 8 complies with the growth condition
Jeg>0: |B(r)] < cg(1+V(r)) Vr eR,

which is more or less equivalent to asking W to have at most an exponential growth at
infinity.
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The basic assumptions on the potential

The configuration potential W lies in Cll’1

on (R). Moreover its derivative is decomposed as a

sum of a monotone part 8 and a linear perturbation:
V(r)=p8(r)—Ar, A>0, reR.
We normalized so that 3(0) = 0 and further 8 complies with the growth condition
Ges > 01 [B(r)] < cs(1+W(r) Vr € R,

which is more or less equivalent to asking W to have at most an exponential growth at
infinity. In order to avoid degenerate situations (such as 8 = W =0, A = 0) we also ask a
minimal growth condition at infinity for W, i.e. that

liminf 2
Irl oo ||

={>0.
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The basic assumptions on the potential

The configuration potential W lies in C1 1(]R) Moreover its derivative is decomposed as a
sum of a monotone part 8 and a linear perturbation:

V(r)=p8(r)—Ar, A>0, reR.
We normalized so that 3(0) = 0 and further 8 complies with the growth condition
g >0 [B(r)] < ca(1+V(r)) Vr R,

which is more or less equivalent to asking W to have at most an exponential growth at
infinity. In order to avoid degenerate situations (such as 8 = W =0, A = 0) we also ask a
minimal growth condition at infinity for W, i.e. that

liminf 2
Irl oo ||

=:{>0.
In order to prove uniqueness of solutions we also need that there exists ¢ > 0 such that
1B(r) = B(s)] < clr = s|(L+ |B(r)| + |B(s)]) Vr,s €R.

Note that this is still consistent with asking an at most exponential growth of .
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Assumptions on the function h and on the coefficients
The coefficients are assumed to satisfy P, A, B,C > 0, oc € (0,1).

E. Rocca (Universita degli Studi di Pavia)



Assumptions on the function h and on the coefficients

The coefficients are assumed to satisfy P, A, B,C > 0, oc € (0,1).
Next, we assume that

@ hisin C!(R), increasingly monotone and it satisfies at least h(—1) = 0 and
h(r) =1 for all r >1 = h is globally Lipschitz continuous
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Assumptions on the function h and on the coefficients

The coefficients are assumed to satisfy P, A, B,C > 0, oc € (0,1).
Next, we assume that

@ hisin C!(R), increasingly monotone and it satisfies at least h(—1) = 0 and
h(r) =1 for all r >1 = h is globally Lipschitz continuous

© There exist h > 0 and ¢ < —1 such that h(r) = —hforall r < ¢
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Assumptions on the function h and on the coefficients

The coefficients are assumed to satisfy P, A, B,C > 0, oc € (0,1).
Next, we assume that

e hisin C'(R), increasingly monotone and it satisfies at least h(—1) = 0 and
h(r) =1 for all r >1 = h is globally Lipschitz continuous

© There exist h > 0 and ¢ < —1 such that h(r) = —hforall r < ¢

Remark

The function h(yp) is assumed to satisfy h(—1) = 0 and h(1) = 1. The simplest situation
when this occurs is the "symmetric” case when we have h =0 and ¢ = —1. On the
other hand we will see in what follows that dissipativity of trajectories may not hold in

such a case. This motivates our choice to consider the possibility of having h > 0.
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Assumptions on the function h and on the coefficients

The coefficients are assumed to satisfy P, A, B,C > 0, oc € (0,1).
Next, we assume that

e hisin C'(R), increasingly monotone and it satisfies at least h(—1) = 0 and
h(r) =1 for all r >1 = h is globally Lipschitz continuous

© There exist h > 0 and ¢ < —1 such that h(r) = —hforall r < ¢

Remark

The function h(yp) is assumed to satisfy h(—1) = 0 and h(1) = 1. The simplest situation
when this occurs is the "symmetric” case when we have h =0 and ¢ = —1. On the
other hand we will see in what follows that dissipativity of trajectories may not hold in
such a case. This motivates our choice to consider the possibility of having h > 0.

Remark

We could also take h(y) = ko + ho(p), where k > 0 and hg is smooth and uniformly
bounded. This situation is somehow simpler because, at least as long as we can
guarantee that Po — A > 0, the linear part of h drives some mass dissipation effect in
the Cahn-Hilliard type equation ¢: — Ap = (Po — A)h(p).

v
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We assume the initial data to satisfy
oo € L(Q), 0<o9g<1lae. in Q,
po€ H'(Q),  W(po) € L(Q).
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We assume the initial data to satisfy

oo € L(Q), 0<op<1ae in Q
o € HY(Q),  W(po) € LY(Q).
Theorem (Well-posedness)

Then the tumor-growth model

ot — Ap = (Po — A)h(v), ¢(0) = o, Onp =0 on dQ,
p=—Bp+V(p), p=0o0ndQ,
ot — Ao = —Coh(p) + B(os — o), o(0) =00, Ono =0 ondQ
admits one and only one global in time weak solution:
@ € H'(0, T; H(Q)') n C°([0, T]; H'(Q)) N L*(0, T; H*(Q)),
Blp) € L(0, T; L*(Q)), e L0, T:H'(Q)),
o€ H'(0, T; H(Q)') n C°([o, T]; L2(Q)) N L3(0, T; HY(Q)) N L>(0, T; L™(Q));

Moreover, for any T > 0 there exists 1 > 1 such that

0<o(t,x) <or, forae (t,x)e(0,T)xQ,

where we can take o1 independent of time if B—Ch >0 andor =1 ifh=0.
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© Dissipativity and existence of the attractor
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Assumptions for dissipativity

Let the parameters in
¢t — Ap = (Po — A)h(p),
p=—Dp+V(p),
ot — Ao = —Coh(p) + B(os — o),

satisfy (where h(r) = —hforallr < p < -1)

(H1) h>0, B—-Ch>0,
Bos
(H2) B—Cﬁ<1’
Bos
(H3) A_PB—Cﬁ>0'
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Assumptions for dissipativity

Let the parameters in

¢t — Ap = (Po — A)h(p),
p=—Dp+V(p),
ot — Ao = —Coh(p) + B(os — o),

satisfy (where h(r) = —hforallr < p < -1)

(H1) h>0, B—-Ch>0,
Bos
(H2) B—Cﬁ<1’
Bos
(H3) A_PB—Cﬁ>0'

These conditions essentially prescribe h to be strictly positive, but small.
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Assumptions for dissipativity

Let the parameters in

¢t — Ap = (Po — A)h(p),
p=—Dp+V(p),
ot — Ao = —Coh(p) + B(os — o),

satisfy (where h(r) = —hforallr < p < -1)

(H1) h>0, B—-Ch>0,

Bos
(H2) B—Ch<1’
Bos
(H3) A—'PB_Ch>0.

These conditions essentially prescribe h to be strictly positive, but small.
Let also 8 have a superquadratic behavior at infinity, namely

Jkg >0,Cs >0,pg >2: B(r)signr > ka|r|?”? — Cs Vr e R.
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The spatially homogeneous case: (H1)

Starting from spatially homogeneous initial data we reduce to the following ODE system:
X'+ (A—-"PS)h(X) =0,
S"+CSh(X)+ B(S —05) =0

where X = X(t) and S = 5(t) are the spatial mean values of ¢ and o.
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The spatially homogeneous case: (H1)

Starting from spatially homogeneous initial data we reduce to the following ODE system:
X'+ (A—-"PS)h(X) =0,
S +CSh(X)+B(S—0s)=0

where X = X(t) and S = 5(t) are the spatial mean values of ¢ and o.

1) If h =0, i.e. H1) i) does not hold, and X(0) < —1 then X(t) is conserved in time.
There is no hope to prove that X(t) eventually lies in some bounded absorbing set.
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The spatially homogeneous case: (H1)

Starting from spatially homogeneous initial data we reduce to the following ODE system:
X'+ (A—=PS)h(X) =0,
S +CSh(X)+B(S—0s)=0

where X = X(t) and S = 5(t) are the spatial mean values of ¢ and o.

1) If h =0, i.e. H1) i) does not hold, and X(0) < —1 then X(t) is conserved in time.

There is no hope to prove that X(t) eventually lies in some bounded absorbing set.
2) Let us now assume h > 0. Then we have

Bos— (C+B)S < S' < Bo,—(B-Ch)S
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The spatially homogeneous case: (H1)

Starting from spatially homogeneous initial data we reduce to the following ODE system:
X'+ (A—=PS)h(X) =0,
S +CSh(X)+B(S—0s)=0

where X = X(t) and S = 5(t) are the spatial mean values of ¢ and o.

1) If h =0, i.e. H1) i) does not hold, and X(0) < —1 then X(t) is conserved in time.

There is no hope to prove that X(t) eventually lies in some bounded absorbing set.

2) Let us now assume h > 0. Then we have
Bos— (C+B)S < S' < Bo,—(B-Ch)S

If Ch > B, i.e. H1) ii) does not hold and X(0) << 0, S(0) >> 0 (in such a way that
PS — A > 0), then it follows

X' = —(PS—A)h <0,

S'=Bos+(Ch—B)S >0

and both |X| and S go increasing forever. Even if we restrict ourselves to 5(0) < 1, if
X(0) < —1 then the physical constraint S(t) € [0, 1] is not respected.
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The spatially homogeneous case: (H2)
Assume (H1): h >0, B—Ch > 0. Then, the region

Bos
S = {(X,S): a8 <

because Bos — (C + B)S < S’

<S§<
S_B—Ch

Bos

< Bos — (B —Ch)S:

/N
\
= L L 1 s<o
B-&H " \!Q,Uk N\\PO'\):QM—t
Sy \
Rax . _5__ ___:\>O_ . —7,@%{0‘(\
= T T T sho
=
X
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The spatially homogeneous case: (H2)

Assume (H1): h >0, B—Ch > 0. Then, the region

Bos Bos . .\ . . .
= : <5<
S {(X7 S) CirB = §< B_Ch is positively invariant for the dynamical process

because Bos — (C + B)S < S’ < Bos — (B — Ch)S:

7 |
ST L L) S
B | Y Y
B-E4 _
S posibisly inouont
Ba wRon
8‘\‘% T N\ |
T T T s8»>o
>
X
Now, if we want to keep the physical constraint S(t) € [0, 1], we need to assume
Bos
(H2): B_Ch <1
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The spatially homogeneous case: (H3)

Let us assume that X(0) > 1, which also implies h(X) = 1. Then, we have:

X' =(PS—A)
and condition (H3): # > BB_"csh prescribes that in SN {X > 1} we have X’ < 0:
A
\
B LJ/ l/ \l/ S <O
B-74 | ST e e T
- | X <O

l CS ?OS-\H\JQQ% oo T
Box | _ _ —l __________ M2\ O\
£+ | /l\ T T s'so

|

A >

= X
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The spatially homogeneous case: (H3)

Let us assume that X(0) > 1, which also implies h(X) = 1. Then, we have:

X' = (PS — A)

and condition (H3): # > 2%, prescribes that in SN {X > 1} we have X’ < 0:

4
B | J/ L \l/ S\<O
B-24 | ~ hemsenmamamg

| X <O

t CS ?og'\\‘iqe&é oo T
Ba --———l __________ AR’OQ\QV\
£+ | /‘\ T ’\‘ <! S0

|

) >

4 X

On the other hand when % < gj:é, dissipativity cannot hold. Indeed if
S(O) c |:BO'5 Bos
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Dissipativity and Attractor

We can define the “energy space”
X = {(p,0) € H(Q) x L™(Q) : V(p) € L'(Q)}
and we correspondingly introduce the “magnitude” of an element (p,0) € X as

1(e, )llx = Nl + llollee + [[W(P)l]er-
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Dissipativity and Attractor
We can define the “energy space”
X = {(p,0) € H(Q) x L™(Q) : V(p) € L'(Q)}
and we correspondingly introduce the “magnitude” of an element (p,0) € X as
10, o)l == Nl + llolleee + 1V (P) 12

Theorem (Dissipativity)
Under the previous compatibility conditions, there exists a positive constant Cy

independent of the initial data and a time To depending only on the X-magnitude of the
initial data such that any weak solution satisfies

l(e(t),o(t))||x < Co  for every t > Th.
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Dissipativity and Attractor
We can define the “energy space”
X = {(p,0) € H(Q) x L™(Q) : V(p) € L'(Q)}
and we correspondingly introduce the “magnitude” of an element (p,0) € X as
10, o)l == Nl + llolleee + 1V (P) 12
Theorem (Dissipativity)
Under the previous compatibility conditions, there exists a positive constant Cy

independent of the initial data and a time To depending only on the X-magnitude of the
initial data such that any weak solution satisfies

I(e(t), o(t))|lx < Co  for every t > To.

Theorem (Existence of the Attractor)

Under the previous compatibility conditions the dynamical system generated by weak
trajectories on the phase space X admits the global attractor A. More precisely, A is a
relatively compact subset of X which is also bounded in H*(Q) x H(Q) and uniformly

attracts the trajectories emanating from any bounded set B C X.
v
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0 Open problems and Perspectives
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Open problems and Perspectives

0. Open problem: In practice it would be safer for the patient (and thus more
desirable) to approximate the target functions in the L°°-sense rather than in the
L2-sense or to include a pointwise state constraint on ¢: |¢(x,T) — ¢a| < € for a.e.
x € Q, which could be reduced to [|¢(x,T) — dall;2@) < € by using possible
regularity of ¢ (if available). This leads to a more involved adjoint system...
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Open problems and Perspectives

0. Open problem: In practice it would be safer for the patient (and thus more
desirable) to approximate the target functions in the L°°-sense rather than in the
L2-sense or to include a pointwise state constraint on ¢: |¢(x,T) — ¢a| < € for a.e.
x € Q, which could be reduced to ||¢(x,T) — ¢all;2@) < € by using possible
regularity of ¢ (if available). This leads to a more involved adjoint system...

1. To study the long-time behavior of solutions in terms of attractors: with A.
Miranville and G. Schimperna (on generalizations of the model of H. Garcke et. al.
including chemotaxis), with A. Giorgini, K.-F. Lam, and G. Schimperna (attractors
for a model including velocities proposed by Lowengrub et al.).
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Open problems and Perspectives

0. Open problem: In practice it would be safer for the patient (and thus more
desirable) to approximate the target functions in the L°°-sense rather than in the
L2-sense or to include a pointwise state constraint on ¢: |¢(x,T) — ¢a| < € for a.e.
x € Q, which could be reduced to ||¢(x,T) — ¢all;2@) < € by using possible
regularity of ¢ (if available). This leads to a more involved adjoint system...

1. To study the long-time behavior of solutions in terms of attractors: with A.
Miranville and G. Schimperna (on generalizations of the model of H. Garcke et. al.
including chemotaxis), with A. Giorgini, K.-F. Lam, and G. Schimperna (attractors
for a model including velocities proposed by Lowengrub et al.).

2. The study of optimal control: for a prostate model introduced by H. Gomez et al.
and proposed to us by G. Lorenzo and A. Reali (with P. Colli and G. Marinoschi).
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Open problems and Perspectives

0. Open problem: In practice it would be safer for the patient (and thus more
desirable) to approximate the target functions in the L°°-sense rather than in the
L2-sense or to include a pointwise state constraint on ¢: |¢(x,T) — ¢a| < € for a.e.
x € Q, which could be reduced to ||¢(x,T) — ¢all;2@) < € by using possible

regularity of ¢ (if available). This leads to a more involved adjoint system...

1. To study the long-time behavior of solutions in terms of attractors: with A.
Miranville and G. Schimperna (on generalizations of the model of H. Garcke et. al.
including chemotaxis), with A. Giorgini, K.-F. Lam, and G. Schimperna (attractors
for a model including velocities proposed by Lowengrub et al.).

2. The study of optimal control: for a prostate model introduced by H. Gomez et al.
and proposed to us by G. Lorenzo and A. Reali (with P. Colli and G. Marinoschi).

3. To add the mechanics in Lagrangean coordinates in a multiphase model: for example

considering the tumor sample as a porous media (with P. Krej&i and J. Sprekels).
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Open problems and Perspectives

0.

Open problem: In practice it would be safer for the patient (and thus more
desirable) to approximate the target functions in the L°°-sense rather than in the
L2-sense or to include a pointwise state constraint on ¢: |¢(x,T) — ¢a| < € for a.e.
x € Q, which could be reduced to ||¢(x,T) — ¢all;2@) < € by using possible

regularity of ¢ (if available). This leads to a more involved adjoint system...

. To study the long-time behavior of solutions in terms of attractors: with A.

Miranville and G. Schimperna (on generalizations of the model of H. Garcke et. al.
including chemotaxis), with A. Giorgini, K.-F. Lam, and G. Schimperna (attractors
for a model including velocities proposed by Lowengrub et al.).

The study of optimal control: for a prostate model introduced by H. Gomez et al.
and proposed to us by G. Lorenzo and A. Reali (with P. Colli and G. Marinoschi).

To add the mechanics in Lagrangean coordinates in a multiphase model: for example

considering the tumor sample as a porous media (with P. Krej&i and J. Sprekels).

Include a stochastic term in phase-field models for tumor growth representing for
example uncertainty of a therapy or random oscillations of the tumor phase (with C.
Orrieri and L. Scarpa).
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Many thanks to all of you for the attention!

E. Rocca (Universita degli Studi di Pavia)



Preliminaries

o Def. By is an absorbing set for a semigroup S(t) on a metric space (X, dx) iff

> By is bdd
» VB C X bdd 3Tg >0st. S(t)BC By Vt> Tg.

o Theorem. Let S(t) be a strongly continuous semigroup on a c.m.s. (X, dx).
Moreover, if

> S(t) admits an absorbing set Bp;
» VB C X bdd 3tg > 0s.t. U, S(t)B is compact in X,

then S(t) admits a universal attractor A that is

A= ﬂ U S(t)Bo

T>0t>T
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