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Outline

@ Phase field models for tumour growth

Q The optimal control problem

© First order optimality conditions

© Issues with the original functional

© Ongoing projects and open problems
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Setting

Tumours grown in vitro often exhibit “layered” structures:

Normal region
___ W Hypoxic region
Necrotic region

Nutrient source

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072-1080. Scale bar 100pum = 0:1mm
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Nutrient source

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072-1080. Scale bar 100pum = 0:1mm

A continuum thermodynamically consistent model is introduced with the ansatz:

@ sharp interfaces are replaced by narrow transition layers arising due to adhesive forces
among the cell species: a diffuse interface separates tumor and healthy cell regions

@ proliferating tumor cells surrounded by (healthy) host cells, and a nutrient (e.g.

glucose)
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Advantages of diffuse interfaces in tumor growth models

Sharp interfaces = narrow transition layers - differential adhesive forces among
cell-species
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Advantages of diffuse interfaces in tumor growth models

Sharp interfaces = narrow transition layers - differential adhesive forces among

cell-species

The main advantages of the diffuse interface formulation are:

@ it eliminates the need to enforce complicated boundary conditions across the
tumor/host tissue and other species/species interfaces;

@ it eliminates the need to explicitly track the position of interfaces, as is required in
the sharp interface framework;

@ sharp interface models are no longer valid when the tumor undergoes metastasis =—
the interface has a topological change
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Optimization over the treatment time: H. Garcke, K.F. Lam, E. Rocca,
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Common treatment for tumours are
o Chemotheraphy
o Radiation therapy
o Surgery

For treatment involving drugs, the patient is given several doses of drugs over a few days,
followed by a rest period of 3 - 4 weeks, and the cycle is repeated. Goal is to shrink the

tumor into a more manageable size for which surgery can be applied.

Unfortunately, cytotoxic drugs also harms the healthy host tissues, and can accumulate in
the body. Furthermore, drug clearance may also cause damage to various vital organs
(e.g. kidneys and liver).

Worst case scenario: Cytotoxins may have cancer-causing effects, and tumour cells can
mutate to become resistant to the drug.

Thus, aside from optimising the drug distribution, we should also consider optimising the

treatment time.
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Cahn—Hilliard 4 nutrient models with source terms

The simplest phase field model is a Cahn—Hilliard system with source terms for ¢: the
difference in volume fractions (p = 1: tumor phase, ¢ = —1: healthy tissue phase):

Orp = Ap+ M,
p=V(p) - Dp.
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Cahn—Hilliard 4 nutrient models with source terms
The simplest phase field model is a Cahn—Hilliard system with source terms for ¢: the
difference in volume fractions (¢ = 1: tumor phase, ¢ = —1: healthy tissue phase):
Orp = Ap+ M,

p=V(p) - Dp.
The source term M accounts for biological mechanisms related to proliferation and
death. Introduce a Reaction-diffusion equation for the nutrient proportion o:

oo = Ao — S,
where § models interaction with the tumour cells.

o Linear kinetics [Chen, Wise, Shenoy, Lowengrub], [Garcke, Lam]

M = h(p)(Po—A), S=h(p)Co

Here h(s) is an interpolation function such that h(—1) = 0 and h(1) =1, and

> h(p)Po - proliferation of tumor cells proportional to nutrient concentration,
> h(e)A - apoptosis of tumor cells,
> h(p)Co - consumption of nutrient by the tumor cells

@ A regular double-well potential W, e.g., W(s) = 1/4(1 — s%)?
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Outline

Q The optimal control problem
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State equations

We consider the Cahn—Hilliard + nutrient model with linear kinetics and Neumann
boundary conditions:

Oep = Ap+ h(@)(Po — A= au),
n= W/((p) - A(,O7
Oro = Ao — Ch(p)o.
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State equations

We consider the Cahn—Hilliard + nutrient model with linear kinetics and Neumann
boundary conditions:

Oep = Ap+ h(@)(Po — A= au),
n= WI(QD) - A‘P7
Oro = Ao — Ch(p)o.

Here h(s) is an interpolation function such that h(—1) = 0 and h(1) =1, and

h(p)Po - proliferation of tumour cells proportional to nutrient concentration,

p)A - apoptosis of tumour cells,

h(
h(¢)Co - consumption of nutrient by the tumour cells,
h(p)au - elimination of tumour cells by cytotoxic drugs at a constant rate «,

@ u acts as a control here. In applications v : [0, T] — [0, 1] is spatially constant,
where u = 1 represents full dosage, u = 0 represents no dosage.
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Objective functional

For positive 87, 8, and non-negative SBq, Ba, Bs, we consider
(B B
Heuryi= [ [ Bolo ol + [ 2 1p(r) = ol
o Ja 2 o 2

+/Q%(1+¢(T))+/OT/Q%|U|2+BTT
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Objective functional

For positive 87, 8, and non-negative 5q, Ba, Bs, we consider

J(p,u,7): //BQIw o +/Q%Q|¢(r)—m|2

Bs T Bu e
+/Q2(1+¢(T))+/0 [ S+ rr

@ the variable 7 denotes the unknown treatment time to be optimised,
@ g is a desired evolution of the tumor over the treatment,

® (g is a desired final state of the tumor (stable equilibrium of the system),

1+o(r)
2

@ the term measures the size of the tumor at the end of the treatment,

the constant g7 penalizes long treatment times.
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Objective functional

For positive 87, 8, and non-negative 5q, Ba, Bs, we consider

J(p,u,7): //BQIw o +/Q%QI@(T)—¢Q|2

55 T /Bu 2
+ [ Faretn+ [ [ Gl

@ the variable 7 denotes the unknown treatment time to be optimised,

@ g is a desired evolution of the tumor over the treatment,

® (g is a desired final state of the tumor (stable equilibrium of the system),

1+o()
2

@ the term measures the size of the tumor at the end of the treatment,

o the constant 1 penalizes long treatment times.

Expectation: An optimal control will be a pair (us, ) and we will obtain two optimality
conditions.
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Regarding the terms appearing in the cost functional
Hewr)= [ [ B2lo= ool + [ B2 10(r) ~ eal’
0 Q Q

Bs T Buy 2
[ Freen+ [ S o

@ A large value of |p — ch|2 would mean that the patient suffers from the growth of
the tumor, and a large value of \u\2 would mean that the patient suffers from high
toxicity of the drug;
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Regarding the terms appearing in the cost functional

Hewr)= [ [ B2lo= ool + [ B2 10(r) ~ eal’
0 Q Q

Bs T Bu 2
[ Freen+ [ S o

@ A large value of |p — ch|2 would mean that the patient suffers from the growth of
the tumor, and a large value of \u\2 would mean that the patient suffers from high
toxicity of the drug;

@ The function ¢q can be a stable configuration of the system, so that the tumor does
not grow again once the treatment is completed or a configuration which is suitable
for surgery;

@ The variable 7 can be regarded as the treatment time of one cycle, i.e., the amount
of time the drug is applied to the patient before the period of rest, or the treatment

time before surgery;

o It is possible to replace 877 by a more general function f(7) where f : R — R* is
continuously differentiable and increasing.
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Relaxed objective functional

However, we will not study the functional

J(p, u,7) :=/0 /Q%Q |<P—<p<;>lz+/ﬂ%Q lo(r) — eal?
BS T Bu 2
221 [l
+ Q2( -|—<p(7'))+/0 Q2|“| + BrT

but a relaxed version - for mathematical reasons (explained later on)!
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Relaxed objective functional

However, we will not study the functional

J(p,u,7) //5Q|<p <p|+/’8|<p(7) pal?
[ Freen+ [0 B+

but a relaxed version - for mathematical reasons (explained later on)!

Let r > 0 be fixed and let T € (0, c0) denote a fixed maximal time in which the patient
is allowed to undergo a treatment, we define

T [ Bq I Ba
Ji(p,u,7) :=/ 7\30—300|2+* 7|<p—son|2
o Ja rJr—rJa
1 T T .
+7/ /@(1+¢)+/ /5—|u|2+677
rJ.—rJa?2 o Ja 2
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Relaxed objective functional

Let r > 0 be fixed and let T € (0, 00) denote a maximal time, we define

T 1 T 0
Ji(p, u,7) :=/ /%\‘P-@olz-F*/ /%Icp—ml2
o Ja rJr—rJa

1 T T .
+—/ %(1+¢)+/ %|U|2+5T7’-
T—rJQ 0 Q

r
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Relaxed objective functional

Let r > 0 be fixed and let T € (0, 00) denote a maximal time, we define

[ Be 1/ Ba
(o, u,7) 5:/ 7\<P—<PQ|2+* 7|€0—¢Q|2
0 Q rJr-—rJa

-I-%/Tir/n%(l-l-tp)-i-/(:/ﬂ%|U|2+5T7‘-

The optimal control problem is

min)J,(cp, u,T)

(p,u,m

subject to 7 € (0, T), u €Upg = {f € L(2x (0, T)):0< f <1}, and

Orp = Ap+ h(@)(Po—A—au)inQx (0, T) = Q,

p=V(p) - Ap in Q,

0o = Ao = Ch(p)o in Q,
0=0vp=0,0=0vu on 99 x (0, T),

¢(0) = w0, 0(0) =00 in Q.
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Well-posedness of state equations

Theorem

Let oo € H3, 00 € H* with0< 09 <1, h e Co’l(]R) N L*°(R) non-negative, and V¥ is a
quartic potential, then for every u € U,q there exists a unique triplet

© e L0, T; H)NL*(0, T; H)n H'(0, T; L*) n C°(Q),
pwe 20, T; H)nL>(0, T; L%),
o e L0, T;H)N L0, T; H)NHY (0, T;1?), 0<o<1lae inQ

satisfying the state equations.
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Well-posedness of state equations

Theorem
Let o € H?, 00 € H* with0 < g9 <1, h € C®*(R) N L*°(R) non-negative, and W is a
quartic potential, then for every u € U,q there exists a unique triplet

© e L0, T; H)NL*(0, T; H)n H'(0, T; L*) n C°(Q),

p€ L0, T; H*) N L™(0, T; L%),

o e L0, T;H)N L0, T; H)NHY (0, T;1?), 0<o<1lae inQ

satisfying the state equations.

Key points:

@ Boundedness of o comes from a weak comparison principle applied to
Oro = Ao — Ch(p)o.

@ Proof utilises a Schauder fixed point argument.
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Existence of a minimiser

o Using that ¢ € L*(0, T; L"), J, is bounded from below:

T [ Bq 1/ Ba
(o, u,7) 12/ 7|$0—800|2+* 7|<P—<PQ\2
o Ja rJr-—rJa

+%/rir/gz%(l+tp)+/()T/§Z%|u|2+ﬂTT

Bs [T Ps
> =50 | lelz = 5lellee e = —C.
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Existence of a minimiser

o Using that ¢ € L*(0, T; L"), J, is bounded from below:

55 T Bs
J(p,u,7) > — A lel > _EHQDHU(O,T;U) > -C.

@ Minimising sequence (up, 7n) € Uaa X (0, T), with corresponding state variables
(¢n, ttn, 0n) such that

lim J:(¢n, Un,7n) = inf J,(qb,w s).

n—o0 (¢p,w,s)
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Existence of a minimiser
o Using that ¢ € L*(0, T; L"), J, is bounded from below:

Bs [T Bs
J’(‘)Ov U,T) > _Z . Ja |90‘ > _EHWHU(O,T;U) > -C.
@ Minimising sequence (up, 7n) € Uaq X (0, T), with corresponding state variables
(n, ttn, 0n) such that

lim J:(¢n, tun,70) = inf Ji(0, w,s).

n— oo (¢,w,s)

@ We extract a convergent subsequence u, —* u, € L°*°(Q) and limit functions

(¢, b, 0+) satisfying the state equations and
©n — s in C°([0, T]; L) N L2(Q).

Key point: All of the convergence are with respect to the interval [0, T].
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Existence of a minimiser

o Using that ¢ € L*(0, T; L"), J, is bounded from below:

55
J(p,u,7) > — |<P‘ > _7||90HL1(0 .y = —C.
@ Minimising sequence (up, 7n) € Uaa X (0, T), with corresponding state variables
(¢n, ttn, 0n) such that

lim J(@n, un,7) = inf J(o,w,s).

n—roo (p,w,s)

o We extract a convergent subsequence u, = u, € L*(Q) and limit functions
(¢, «, 0+ ) satisfying the state equations and

©n — . in C°([0, T]; %) N L2(Q).

@ As {7a}nen is a bounded sequence, we extract a convergent subsequence
™ — T« € [0, T].
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Existence of minimiser

To pass to the limit in:

T T
n /8 1 n /BQ
Jr(@n, tn, Tn) :=/ /70 lon — pal* + = 7|<pn—sosz\2
0 Q rJr—rJa

1 Tn T Y
+f/ /&(1+apn)+/ /5—|un|2+ﬂm,
r Th—r JQ 2 0 Q 2
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Existence of minimiser

To pass to the limit in:

T T
n /8 1 n /BQ
J(n; tn, ) :=/ /70 lon — pal* + = = |n = gal’
o Ja rJe,—rJa

1 Tn T Y
+f/ /&(1+gon)+/ /B—Iun|2+ﬂm,
r Th—r JQ 2 0 Q 2

X0,m1(t) = X[o.m1(t)s @ — 9@ = ©x — pq strongly in L*(Q)

we make use of

to obtain

. ™ 2 . 2 A 2
lim lon — wl™ = lim [ |on— 0ol Xp,7(t) = lox — ol -
n— oo 0 Q n— oo Q 0 Q
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Existence of minimiser

To pass to the limit in:

Tn ﬁ 1 Tn BQ
J:(@ny Un, Tn) :=/ /70 lon — ol + = ?Igon—sonf
0 Q rJem—rJa
1 Tn T .
+f/ /&(1+gon)+/ /B—Iun|2+ﬂm,
r Th—r JQ 2 0 Q 2

X0,m1(t) = X[o.m1(t)s @ — 9@ = ©x — pq strongly in L*(Q)

we make use of

to obtain

. n 2
|Im/ /Ison—wol = |Im/|s0n val” Xjo,m(t) = / /Iso* pal*.
n— oo 0 Q

Weak lower semi-continuity of the L?(Q) norm then yields

inf J,(¢,w,s) > I|m |an (¢ny tny Tn) > (s, s, Te).

(¢,w,s)

That is, (u«, 7«) is a minimiser.
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Outline

© First order optimality conditions
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Fréchet differentiability with respect to the control

We set S(u) = (¢, 1, o) as the solution operator on the interval [0, T], and introduce the
linearized state variables (¢",=",%") corresponding to w as solutions to

0:® = A=+ h()(PX — aw) + h'((p)¢(7:'cr — A — au),
== V()0 — AD,
0L = AT — C(h(p)Z + ' (p)Po),

with Neumann boundary conditions and zero initial conditions.
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Fréchet differentiability with respect to the control

We set S(u) = (¢, 1, o) as the solution operator on the interval [0, T], and introduce the
linearized state variables (", =", ") corresponding to w as solutions to

0:® = A= + h(¢)(PZ — aw) + h'(p)®(Po — A — au),
= =V(p)d - Ad,
0L = AY — C(h(p)X + H (p)do),
with Neumann boundary conditions and zero initial conditions.
Theorem
For any w € L*(Q) there exists a unique triplet (¢, =, ) with
® € L0, T; H') N L*(0, T; H*) N H(0, T; (H")*) =: X4,
= e %0, T; H') = Xo,
Y € L*(0, T; H') N H'(0, T; L*) N L*(0, T; H*) =: X3,

and

[®llx; + [I=llx, + 1 Z]lxs < Cllwlli2(q)
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Fréchet differentiability with respect to the control

We set S(u) = (¢, 1, o) as the solution operator on the interval [0, T], and introduce the
linearized state variables (¢",=",%") corresponding to w as solutions to

0:® = A=+ h()(PX — aw) + h'((p)¢(7:'cr — A — au),
== V()0 — AD,
0L = AT — C(h(p)Z + ' (p)Po),

with Neumann boundary conditions and zero initial conditions.

Expectation: The Fréchet derivative of S at u € Uy,q in the direction w is

D.S(u)w = (&%, =", T").
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Fréchet differentiability with respect to the control

We set S(u) = (¢, 1, o) as the solution operator on the interval [0, T], and introduce the
linearized state variables (", =", ") corresponding to w as solutions to

0:® = A= + h(¢)(PZ — aw) + h'(p)®(Po — A — au),
= =V(p)d - Ad,
0L = AT — C(h(p)Z + ' (p)Po),
with Neumann boundary conditions and zero initial conditions.
Expectation: The Fréchet derivative of S at u € Uy,q in the direction w is

D,S(u)w = (", =", ").

Theorem

Let U C L*(Q) be open such that U,g CU. Then S : U C L*(Q) — Y is Fréchet
differentiable, where

Y= [LZ(O, T H) N L(0, T; L%) N H(0, T; (H?)*) n C°([o, TJ; LZ)]

x 1%(Q) x [L°°(o, T; HY) N H'(0, T LZ)]
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Fréchet differentiability with respect to the control

We set S(u) = (¢, 1, o) as the solution operator on the interval [0, T], and introduce the
linearized state variables (", =", ") corresponding to w as solutions to

0:® = A= + h(p)(PZ — aw) + h'(p)®(Po — A — au),
= =V (p)d — AD,
0L = AT — C(h(p)Z + ' (p)Po),

with Neumann boundary conditions and zero initial conditions.

Expectation: The Fréchet derivative of S at u € Uy,q in the direction w is

D,S(u)w = (", =", E").

Consequence: For the reduced functional J,(u, 1) := J;(¢, u, 7),
Dy Jr(us, 7)[W] = 50/ /((p* —q)®"” —|—/ Buusw
0o Ja Q

o [ [ alon - a)or + ssom).
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Fréchet differentiability with respect to time

Lemma
For f € H*(0, T; L*) C C°([0, T]; L?),

D, (/OT/Q|f|2) :/Q|f(r)|2.
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Fréchet differentiability with respect to time

Lemma
For f € H'(0, T; L?) c C°([0, T]; L?),

o ([* [12) = [1ror

S, u,7) = //Bolso vol* + = /”/BQI@ eal’
+;/H/Q%(1+go)+/o 97u|u|2+ﬂr7',

Dr i) = Br + 22 o(r2) — palr )
+ 28 (o~ ga)(r)l: — ll(o — ga)(r- — )3
+ [ Stetr) = om = ).

Then, for

we have
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Fréchet differentiability with respect to time

Lemma
For f € H'(0, T; L?) c C°([0, T]; L?),

o ([* [12) = [1ror

S, u,7) = //Bleo vol* + = /ﬂ/ﬁﬂlsa eal’
+;/H/Q%(1+go)+/o /ﬂ%|u|2+ﬂw,

Dr i) = Br + 22 o(r2) — palr )
+ 28 (o~ ga)(r)l: — ll(o — ga)(r- — )3
+ [ Stetr) = om = ).

Note that the control u does not appear explicitly.

Then, for

we have
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First order optimality conditions

Introducing the adjoint system
—0tp = Bq+ V' (p.)q — Ch'(p)our + W (p.)(Po. — A~ au)p
1
+Balps = 9a) + 5 Xr.—rr) (8)(2Balx — o) + Bs),

q=Ap,
—0cr = Ar — Ch(p.)r + Ph(p«)p

with Neumann boundary conditions and final time condition r(7.) = p(7.) = 0. We have
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First order optimality conditions

Introducing the adjoint system
—0:p = Aq+ V" (p.)g — CH (ps)owr + W (ps)(Pow — A — au.)p
+ Balps —wa) + %X(T*—r,T*)(t)(QﬁQ(QD* —pa) + Bs),
q=Ap,
—0tr = Ar — Ch(ps)r + Ph(ps)p
with Neumann boundary conditions and final time condition r(7.) = p(7.) = 0. We have
Theorem
There exists a unique (p, q, r) to the adjoint system such that
p € L%(0,7.; H*) N H'(0, 7; (H*)*) N L>°(0, 7w; L) N C°([0, 7.]; L?),
q € L*(0,7.; L%),
r € L3(0, 7 H) N L=(0, 7; HY) N HY(0, 7x; L2) N C([0, 7.]; LP).
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First order optimality conditions

Introducing the adjoint system
—0:p = Aq+ V" (p.)g — CH (ps)owr + W (ps)(Pow — A — au.)p
+ Balpx — we) + %X(‘r*—r,n)(t)(zﬁﬂ(@* — ¥q) + Ps),
q=Ap,
—0tr = Ar — Ch(ps)r + Ph(ps)p
with Neumann boundary conditions and final time condition r(7.) = p(7.) = 0. We have

Theorem

The optimal control (ux,T+) satisfy

/OT/QBL,U*(V—u*)—/oT*/nh(go*)ap(v—u*) >0 VYV E Uy,

r+ E2le- — wa)(r )iz + 52 [ ou(r) = plr —r)dx

and

= % (H(‘P* - @Q)(T*)”iz = ||(<p = @Q)(T* _ r)”é) —0.
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Summary

© We introduced an optimal control problem for optimising treatment time of a cancer

therapy involving cytotoxic drugs:

Oep = Dp+ h(p)(Po — A —au), p=V(p)-Agp,
0o = Ao — Ch(y)o.

@ The (relaxed) objective functional penalises long treatment times, and contains

various tracking-type objectives:
L " BQ 2 1 T 2
Jr = 5 e —wol + o Bale — al” + Bs(1+ )
o Ja rJr—rJa
+/ Bu w2 + prr.
Q 2

@ Existence of an pair (u., 7«) for the optimal drug distribution and treatment time is

shown.

@ Two first order optimality conditions are derived.
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© Issues with the original functional
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Open related problem

1. To deal with the original functional:

soun) = [ [ FRlo— ol + [ P 1er) - pal+ [ [ Biup s o
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Open related problem
1. To deal with the original functional:

soun) = [ [ FRlo— ol + [ P 1er) - pal+ [ [ Biup s o

Then, the optimality condition for 7 is
B Ba B
0=Dr Tl = [ B2 10 = 2Q)m ) + (0 (m) = en)eon () + 5 (o) P e

+ Br.
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Open related problem

1. To deal with the original functional:
T ,B BQ T ,Bu
Hevun) = " [ Blo— ol + [ Rlotr) —al+ [* [ Z1ul+prr
0o Ja 2 Q 2 0o Ja 2

Then, the optimality condition for 7 is
_ _ Bq 2, Ba Bu 2
0=D Tl = |, B2 1(er = £Q)T )P + S (0u(r) = ) () + F () dx

+ Br.
Issues: For the above expression to be well-defined and to apply the lemma, we need

Orps € L2(0, T; L), wu. € HY(0, T; L?).
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Open related problem

1. To deal with the original functional:

soun) = [ [ FRlo— ol + [ P 1er) - pal+ [ [ Biup s o

Then, the optimality condition for 7 is
_ _ Bq 2, Ba Bu 2
0=D TNy = [ F1(0s = £Q)TI + T pa(72) = p)epe(rs) + 2 Jus(r) P dx

+ Br.
Issues: For the above expression to be well-defined and to apply the lemma, we need
Orps € L2(0, T; L), wu. € HY(0, T; L?).

If we define Uyg = {u € HY(0, T;L?):0<u<1, [Ocull2(q) < K} for fixed K > 0, and
impose g € H°, og € H°, then it is possible to obtain » € H2(0, T; L2) N W1>°(0, T; H!).
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Open related problem

1. To deal with the original functional:

soun) = [ [ FRlo— ol + [ P 1er) - pal+ [ [ Biup s o

Then, the optimality condition for 7 is
0=Dr Tl = [ 2 1(0x = 0Q)(T ) + 2 (0u(12) = p0)Peon () + 2 () dx
+ Br.
Issues: For the above expression to be well-defined and to apply the lemma, we need
derps € L2(0, T;L%), us € HY(O, T; L3).

If we define Uyg = {u € HY(0, T;L?):0<u<1, [Ocull2(q) < K} for fixed K > 0, and
impose g € H°, og € H°, then it is possible to obtain » € H2(0, T; L2) N W1>°(0, T; H!).
However, to require the a-priori boundedness of O:u is difficult to verify in applications.
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Open related problem

1. To deal with the original functional:
T IB BQ T Bu
Hevun) = " [ Blo— ol + [ Rlotr) —al+ [* [ Z1ul+prr
0o Ja 2 Q 2 0o Ja 2

Then, the optimality condition for 7 is
_ _ Bq 2, Ba Bu 2
0=D Tl = |, B2 1(er = £Q)T )P + S (0u(r) = ) () + F () dx

+ Br.
Issues: For the above expression to be well-defined and to apply the lemma, we need
Orps € L2(0, T; L), wu. € HY(0, T; L?).

If we define Upg = {u € H'(0, T;L%) : 0 < u < 1, |0 ul12(q) < K} for fixed K >0, and
impose g € H®, og € H>, then it is possible to obtain ¢ € H2(0, T; L2) n W1’°°(O7 T; Hl).
However, to require the a-priori boundedness of J:u is difficult to verify in applications.

2. To prove the convergence to stationary solutions by means of suitable Simon-Lojasiewicz
techniques: the function ¢q is a stable configuration of the system, so that the tumor does

not grow again once the treatment is completed (joint project with C. Cavaterra and H.
Wu).
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Comparison with some other models

In the phase field model we introduced

Orp = Ap+ M,
p=V(p) - Ay
oo = Ao — S,

where M accounts for biological mechanisms related to proliferation and death and S

models interaction with the tumor cells, we could choose different form of M and S:
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Comparison with some other models

In the phase field model we introduced

Orp = Ap+ M,
p=V(p) - Ay
oo = Ao — S,

where M accounts for biological mechanisms related to proliferation and death and S
models interaction with the tumor cells, we could choose different form of M and S:
@ Linear phenomenological laws for chemical reactions [Hawkins—Daarud, Prudhomme,
van der Zee, Oden], [Frigeri, Grasselli, E.R.], [Colli, Gilardi, E.R., Sprekels, Nonlinearity
(2017): optimal control without time dependence and with the control in the nutrient

equation]:

M =S = h(g)(o - p)
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Comparison with some other models

In the phase field model we introduced

Orp = Ap+ M,
p=V(p) - Ay
oo = Ao — S,

where M accounts for biological mechanisms related to proliferation and death and S
models interaction with the tumor cells, we could choose different form of M and S:
@ Linear phenomenological laws for chemical reactions [Hawkins—Daarud, Prudhomme,
van der Zee, Oden], [Frigeri, Grasselli, E.R.], [Colli, Gilardi, E.R., Sprekels, Nonlinearity
(2017): optimal control without time dependence and with the control in the nutrient

equation]:
M =S = h(g)(o - p)

o Simplified law for chemical reaction leading to a Gradient-Flow structure [E.R., R.
Scala, A rigorous sharp interface limit of a diffuse interface model related to tumor growth,
J. Nonlinear Sci. (2017)]:
M=S=2c+p—pu
Y
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© Ongoing projects and open problems
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DFRSS: A multispecies model with velocities

Typical structure of tumors grown in vitro:

Normal region
___ W Hypoxic region
|

Necrotic region

Nutrient source

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072-1080. Scale bar 100pum = 0:1mm

E. Rocca (Universita degli Studi di Pavia) May 4, 2017 26 / 39



DFRSS: A multispecies model with velocities

Typical structure of tumors grown in vitro:

Normal region
| IHypoxic region
Necrotic region

Nutrient source

Figure: Zhang et al. Integr. Biol., 2012, 4, 1072-1080. Scale bar 100pum = 0:1mm

A continuum thermodynamically consistent model is introduced with the ansatz:

@ sharp interfaces are replaced by narrow transition layers arising due to adhesive forces
among the cell species: a diffuse interface separates tumor and healthy cell regions

o proliferating and dead tumor cells and healthy cells are present, along with a
nutrient (e.g. glucose or oxigene)

@ tumor cells are regarded as inertia-less fluids: include the velocity - satisfying a
Darcy type law with Korteveg term
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M. Dai, E. Feireisl, E.R., G. Schimperna, M. Schonbek, Nonlinearity, 2017

@ ¢i, i =1,2,3: the volume fractions of the cells:

> ¢1 = P: proliferating tumor cell fraction
> ¢p = ¢p: dead tumor cell fraction

> ¢3 = ¢py: healthy cell fraction

The variables above are naturally constrained by the relation Zle Gi=pn+P=1
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M. Dai, E. Feireisl, E.R., G. Schimperna, M. Schonbek, Nonlinearity, 2017

@ ¢i,i =1,2,3: the volume fractions of the cells:
> ¢1 = P: proliferating tumor cell fraction
> ¢p = ¢p: dead tumor cell fraction
> ¢3 = ¢y: healthy cell fraction
. - : 3
The variables above are naturally constrained by the relation 7 | ¢i = ¢y + P =1

o & =¢p + P: the volume fraction of the tumor cells split into the sum of the dead
tumor cells and of the proliferating cells
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@ ¢i, i =1,2,3: the volume fractions of the cells:

> ¢1 = P: proliferating tumor cell fraction
> ¢p = ¢p: dead tumor cell fraction
> ¢3 = ¢y: healthy cell fraction
. . : 3
The variables above are naturally constrained by the relation 7 | ¢i = ¢y + P =1
o & =¢p + P: the volume fraction of the tumor cells split into the sum of the dead

tumor cells and of the proliferating cells

@ n: the nutrient concentration (it was o before)

E. Rocca (Universita degli Studi di Pavia) May 4, 2017 27 / 39



M. Dai, E. Feireisl, E.R., G. Schimperna, M. Schonbek, Nonlinearity, 2017

¢i, i = 1,2,3: the volume fractions of the cells:
> ¢1 = P: proliferating tumor cell fraction
> ¢p = ¢p: dead tumor cell fraction
> ¢3 = ¢y: healthy cell fraction

The variables above are naturally constrained by the relation Zle Gi=pn+P=1

® = ¢p + P: the volume fraction of the tumor cells split into the sum of the dead
tumor cells and of the proliferating cells

@ n: the nutrient concentration (it was o before)

e u:=u;,i = 1,2,3: the tissue velocity field. We treat the tumor and host cells as
inertial-less fluids and assume that the cells are tightly packed and they march
together

o [1: the cell-to-cell pressure
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DFRSS: The PDEs

In summary, let Q C R® be a bounded domain and T > 0 the final time of the process.
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DFRSS: The PDEs

In summary, let Q C R® be a bounded domain and T > 0 the final time of the process.
Then, in Q x (0, T), we have the following system of equations:

(Cahn — Hilliard) 0r® + div(u®) — dive(Vip) = ®S7, = —Ad + F'(d)
(Darcy) u=—V,N+puVyd, diveu= St
(Transport) 0:P + divi(uP) = ®(St — Sp)
(Reac — Diff) — An+nP = T.(n,®)
where

(Source — Tumor) St(n, P,®)=nP — X3(® — P)
(Source — Dead) So(n, P, ®) = (A + MoH(nw — n)) P — X3(® — P)
(Nutrient — Capill)  Te(n, ®) = [1(1 — Q(P)) + 12.Q(P)] (nc — n)

coupled with the boundary conditions on Q2 x (0, T): u=MN=0,n=1, V,®. v =0,

Pu - v >0 and with the initial conditions ®(0) = ®o, P(0) = Po in Q
Note: P =0 in the inflow part of the boundary u-v < 0.
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DFRSS: Assumptions on the potential F

We suppose that the potential F supports the natural bounds
0<d(t,x) <1
To this end, we take 7 = C + B3, where B € Cz(R) and
C : R — [0, 0] convex, lower-semi continuous, C($) = oo for & <0or & > 1
Moreover, we ask that
ce CY(0,1), Jim c'(@) = Jim C'(®) =00

A typical example of such C is the logarithmic potential

®log(®) + (1 — ®) log(1 — @) for ® € [0, 1],
Cc(®) =

oo otherwise
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DFRSS: Assumptions on the other data

Regarding the functions the constants in the definitions of St and Sp

(Source — Tumor) St(n, P,®) = nP — X3(® — P)
(Source — Dead) Sp(n, P, ®) = (A1 + XoH(ny — n)) P — X\3(® — P)
(Nutrient — Capill)  Tc(n, ®) = [1(1 — Q(P)) + 1. Q(P)] (nc — n)

we assume Q, H € C*(R) and
N >0fori=1,23, H>0

[1(1 — Q(®)) + 12 Q(®)] >0, 0< n. <1

Finally, we suppose Q be a bounded domain with smooth boundary in R® and impose the
following conditions on the initial data:

doc H'(Q), 0<do<1, C(do)e LNQ)

Poel’(Q), 0<Py <1 ae inQ
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DFRSS: Weak formulation
(¥, u, P, n) is a weak solution to the problem in (0, T) x Q if
(i) these functions belong to the regularity class:
€ CO([o, T]; HY(Q)) N L2(0, T; W25(Q))
C(®) € L°°(0, T; L1(R)), hence, in particular, 0 < ® < 1 a.a. in (0,T) x Q
ue L2((0, T) x QG R3), divue L®((0, T) x Q)
Me 20, T; W A(Q), ue 20, T; W, (Q))
PeL®(0,T)xQ),0<P<1 aa in(0,T)xQ
ne 20, T, W?%(Q)), 0<n<1 aa in(0,T)xQ

(ii) the following integral relations hold:
T
/ / [®Orp + Pu - Vip + plp + STyp] dx dt = —/ ®op(0,-) dx
0 Q Q
for any ¢ € C2°([0, T) x Q), where
p=—A 4+ F'(P), u=—V,MN+ puVyd
diviu =S7 a.a. in (0, T) xQ; Vi v|gg =0
-
/ / [POrp + Pu-Vxp+ ®(ST — Sp)yp] dx dt > —/ Pop(0,-) dx
0 Q Q
for any ¢ € C°([0, T) x Q), ¢lag > 0
—An+nP = Tc(n,®) a.a. in (0, T) X Q; njpg =1
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DFRSS: Existence of weak solutions

The main result of [M. Dai, E. Feireisl, E.R., G. Schimperna, M. Schonbek, Analysis of a
diffuse interface model of multispecies tumor growth, Nonlinearity, 2017]
Theorem

Let T > 0 be given. Under the previous assumptions the variational formulation of our
initial-boundary value problem admits at least one solution on the time interval [0, T]
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Comparison with some other models including velocities

o Numerical simulations of diffuse-interface models for tumor growth have been carried
out in several papers (cf., e.g., [Cristini, Lowengrub, Cambridge Univ. Press, 2010] and
more recently [Garcke, Lam, Sitka, Styles, Math. Models Methods Appl. (2016)]).

o However, a rigorous mathematical analysis of the resulting PDEs is still in its
beginning and only for one species models with regular potentials (cf. [H. Garcke,
K.F. Lam, E. Sitka, and V. Styles, Math. Models Methods Appl. (2016)]) and only very
recently on multiphase models (cf. [H. Garcke, K.F. Lam, R. Nuernberg, and E. Sitka,
arXiv:1701.06656, 2017])
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Comparison with some other models including velocities

@ Numerical simulations of diffuse-interface models for tumor growth have been carried
out in several papers (cf., e.g., [Cristini, Lowengrub, Cambridge Univ. Press, 2010] and
more recently [Garcke, Lam, Sitka, Styles, Math. Models Methods Appl. (2016)]).

o However, a rigorous mathematical analysis of the resulting PDEs is still in its
beginning and only for one species models with regular potentials (cf. [H. Garcke,
K.F. Lam, E. Sitka, and V. Styles, Math. Models Methods Appl. (2016)]) and only very
recently on multiphase models (Cf. [H. Garcke, K.F. Lam, R. Nuernberg, and E. Sitka,
arXiv:1701.06656, 2017])

@ To the best of our knowledge, the first related mathematical papers study simplified
models:

> the so-called Cahn-Hilliard-Hele-Shaw system ([J. Lowengrub, E. Titi, K. Zhao,
European J. Appl. Math., 2013], [X. Wang, H. Wu, Asymptot. Anal., 2012], [X. Wang,
Z. Zhang, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 2013]) in which the nutrient n,
the source of tumor St and the fraction Sp of the dead cells are neglected or
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Comparison with some other models including velocities

@ Numerical simulations of diffuse-interface models for tumor growth have been carried
out in several papers (cf., e.g., [Cristini, Lowengrub, Cambridge Univ. Press, 2010] and
more recently [Garcke, Lam, Sitka, Styles, Math. Models Methods Appl. (2016)]).

o However, a rigorous mathematical analysis of the resulting PDEs is still in its
beginning and only for one species models with regular potentials (cf. [H. Garcke,
K.F. Lam, E. Sitka, and V. Styles, Math. Models Methods Appl. (2016)]) and only very
recently on multiphase models (cf. [H. Garcke, K.F. Lam, R. Nuernberg, and E. Sitka,
arXiv:1701.06656, 2017])

@ To the best of our knowledge, the first related mathematical papers study simplified
models:

> the so-called Cahn-Hilliard-Hele-Shaw system ([J. Lowengrub, E. Titi, K. Zhao,
European J. Appl. Math., 2013], [X. Wang, H. Wu, Asymptot. Anal., 2012], [X. Wang,
Z. Zhang, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 2013]) in which the nutrient n,
the source of tumor St and the fraction Sp of the dead cells are neglected or

> [J. Jang, H. Wu, S. Zheng, J. Differential Equations, 2015] where St is not 0 but it’s
not depending on the other variables but just on time and space
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Perspectives and Open problems - multispecies

An ongoing project with S. Frigeri, K.-F. Lam, G. Schimperna: To study the multispecies
model introduced in [CWSL] including different mobilities and non-Dirichlet b.c.s on the
chemical potential = the main problems are:
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Perspectives and Open problems - multispecies

An ongoing project with S. Frigeri, K.-F. Lam, G. Schimperna: To study the multispecies
model introduced in [CWSL] including different mobilities and non-Dirichlet b.c.s on the
chemical potential = the main problems are:

@ we have two different Cahn-Hilliard equations with different mobilities M;:
Orpi = MiApi — div(piu) + S; and if we do not choose the Dirichlet b.c.s on p then
we need to estimate the means of u; (containing a multiwell logarithmic type
potential)

@ we need the mean values of ¢; (the proliferating and dead cells phases) in the two
Cahn-Hilliard equations to be away from the potential bareers => ad hoc estimate
based on ODEs technique

@ the choice of the right boundary conditions for u and pu;: apparently
MiV i - v+ ¢iu-v =0 on 082 works!
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Perspectives and Open problems - sharp interfaces

@ To study the sharp interface limit as € ™\, 0 in the coupled Cahn-Hilliard-Darcy

system where
De® + dive(ud) — div (Vi) =0, p = —>Ad + F'(d)

> Very partial result in [DFRSS] assuming strict convexity of 7 and St = Sp =0
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Perspectives and Open problems - sharp interfaces

@ To study the sharp interface limit as € ™\, 0 in the coupled Cahn-Hilliard-Darcy
system where
Or® + divy(uP) — divy(Vip) =0, p = —2AD + F'(®)

> Very partial result in [DFRSS] assuming strict convexity of 7 and St = Sp =0

> In S. Melchionna, E. Rocca, Interfaces and Free Boundaries, to appear: Varifold
solutions at the limit as € ™\, 0 in case we just consider the Cahn-Hilliard-Darcy system
coupling the ® equation to the u equation (neglecting the nutrient)
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@ To study the sharp interface limit as € ™\, 0 in the coupled Cahn-Hilliard-Darcy
system where
Or® + divy(uP) — divy(Vip) =0, p = —2AD + F'(®)

> Very partial result in [DFRSS] assuming strict convexity of 7 and St = Sp =0

> In S. Melchionna, E. Rocca, Interfaces and Free Boundaries, to appear: Varifold
solutions at the limit as € ™\, 0 in case we just consider the Cahn-Hilliard-Darcy system
coupling the ® equation to the u equation (neglecting the nutrient)

@ In [RS]: I-convergence for a gradient type system (neglecting velocities):

pe—Ap=20+p—p
or— Ao =-20—p+pu
p= 1V (p) —chp

E. Rocca (Universita degli Studi di Pavia) May 4, 2017 35 /39



Perspectives and Open problems - sharp interfaces

@ To study the sharp interface limit as € ™\, 0 in the coupled Cahn-Hilliard-Darcy
system where
De® + dive(ud) — div (Vi) =0, p = —>Ad + F'(d)

> Very partial result in [DFRSS] assuming strict convexity of 7 and St = Sp =0

> In S. Melchionna, E. Rocca, Interfaces and Free Boundaries, to appear: Varifold
solutions at the limit as € ™\, 0 in case we just consider the Cahn-Hilliard-Darcy system
coupling the ® equation to the u equation (neglecting the nutrient)

@ In [RS]: I-convergence for a gradient type system (neglecting velocities):
pe—Ap=20+p—p
or— Ao =-20—p+pu
p= 1V (p) —chp

> We assumed the regularity of the limit interface, hence there is a death time T* until
the evolution is regular. After the death time the evolution is undetermined!
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@ To study the sharp interface limit as € ™\, 0 in the coupled Cahn-Hilliard-Darcy
system where
De® + dive(ud) — div (Vi) =0, p = —>Ad + F'(d)

> Very partial result in [DFRSS] assuming strict convexity of 7 and St = Sp =0

> In S. Melchionna, E. Rocca, Interfaces and Free Boundaries, to appear: Varifold
solutions at the limit as € ™\, 0 in case we just consider the Cahn-Hilliard-Darcy system
coupling the ® equation to the u equation (neglecting the nutrient)

@ In [RS]: I-convergence for a gradient type system (neglecting velocities):

pe—Ap=20+p—p
or— Ao =-20—p+pu
1
p=zV(p) —chyp
> We assumed the regularity of the limit interface, hence there is a death time T* until
the evolution is regular. After the death time the evolution is undetermined!
> We made a technical hypothesis on the convergence of the measures
V(p®)
€

§|V<p5|2 + — 2de7-[2\_r

This is unknown in general, but is proved under higher regularity of the chemical
potential ©¢ and conjectured by Tonegawa to hold in the general case
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Many thanks to all of you for the attention!

http://matematica.unipv.it/rocca/

E. Rocca (Universita degli Studi di Pavia)



Issues with the well-posedness
The state equations
Orp = Ap+ h(p)(Po — A — au),
p=V(p) - Ay,
Oro = Ao — Ch(p)o.

satisfies the energy identity

d 1 2, 1, » 2 2 2
Gt | (W4 3190+ 3108 )+ [ (19 + 190 + ne)e o)

=&

:/Qh(go) (Po — A—au)p.
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Issues with the well-posedness
The state equations
Orp = Ap+ h(p)(Po — A — au),
p=V(p) - Ay,
Oro = Ao — Ch(p)o.

satisfies the energy identity

d 1 2,1 0 2 2 2
Gt | (W4 3190+ 3108 )+ [ (19 + 190 + ne)e o)

=&
= / h(p) (Po — A — au) p.
Q
We can estimate the right-hand side as
C
Bllulfz + S (Pl +...)  for some 6 >0,

leading to
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Issues with the well-posedness
The state equations
Orp = Ap+ h(p)(Po — A — au),
p=V(p) - Ay,
Oro = Ao — Ch(p)o.

satisfies the energy identity

o [ (w4 2196+ 1o + [ (190 + 190 + o) oF)

=&
= /Qh(<p) (Po — A—au)p.

We can estimate the right—hand side as

Sl + S(PPlolfa +...)  for some 5 > 0,

e@+ [ [ (19uP +190F)

< E&(0) + 8 |u> + other terms...) .
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Issues with the well-posedness

e@+ [ [ (19u +190P)

t
§€(0)+/ /(5|p\2+ other terms...).
o Ja

To apply Poincaré inequality to the ||u[|;2(;2) on the RHS, we need to estimate the square
of the mean of p using

n=V(p) - Dp.

If |[W'(s)] < C(1+ |s|”) for some p, then we have

lioi
@l Jo

But, to control ||g0||i§’p(L2p) in the absence of any a priori estimate, we need p = 1! le., ¥
can only be a quadratic potential [Garcke, L.].

2

<C1+ ||80||i§p(Lz,,)) + other terms ...
12(12)
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Issues with the well-posedness

If o is bounded in Q, then

| e)Pa = A~ aw| < Clul

and by the Poincaré inequality, we have

1
Il < €Il + € o5 [ -
1l Ja
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Issues with the well-posedness

If o is bounded in Q, then

| rrpe - A~ au)u\ < Clll

and by the Poincaré inequality, we have

1
el < ClIiVullp + C ’ﬁ/ﬂ‘
12 Jo

Then one obtains

e@+ [ [ (19u +190F)

t
< &(0) + C/ (6IVulla + |V (@)|l ;2 + other terms...)
0
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Issues with the well-posedness

If o is bounded in Q, then

[ #)(Pa ~ A~ aun < Clul
Q
and by the Poincaré inequality, we have
1
Il < €Il + € o5 [ -
1] Jo
Then one obtains
t
e+ [ [ (VP +17oF)
o Ja
t
< &(0) + C/ (6IVullia + W' (@)|li2 + other terms...) .
0
With an assumption like
‘\VI(S)’ < Cl\U(S) —+ C2,
we obtain a priori estimates for potentials with higher polynomial growth.
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The Schauder argument
Given ¢ € L*(Q), consider the mapping

My : 12(Q) — L™=(0, T; HY) N L*(0, T; H*) N H(0, T; L*) N L=(Q),
¢ o,
where o solves

Oto = Ao — Ch()o.
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The Schauder argument
Given ¢ € L*(Q), consider the mapping

My : 12(Q) — L™=(0, T; HY) N L*(0, T; H*) N H(0, T; L*) N L=(Q),
¢ — o,
where o solves
Oro = Ao — Ch(¢)o.
Then define the mapping
M, : L*(Q) — L™=(0, T; H*) N L*(0, T; H*) N H*(0, T; L?),
o=@,

where ¢ solves

Oep = Dp — h(@)(PMi(¢) — A—au), p=V'(p)— Agp.
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The Schauder argument
Given ¢ € L*(Q), consider the mapping

My : 12(Q) — L™=(0, T; HY) N L*(0, T; H*) N H(0, T; L*) N L=(Q),
¢ = o0,
where o solves
Oro = Ao — Ch(¢)o.

Then define the mapping

M, : L*(Q) — L™=(0, T; H*) N L*(0, T; H*) N H*(0, T; L?),

b=,

where ¢ solves

Orp = Ap — h(p)(PMi(¢) — A —au), p=V(p) - Ap.
The solution to the fixed point problem

z = My(z)

yields a triplet (¢, i, o) which solves the state equations.
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