
Funzioni Seno e Coseno

Circonferenza di raggio 1

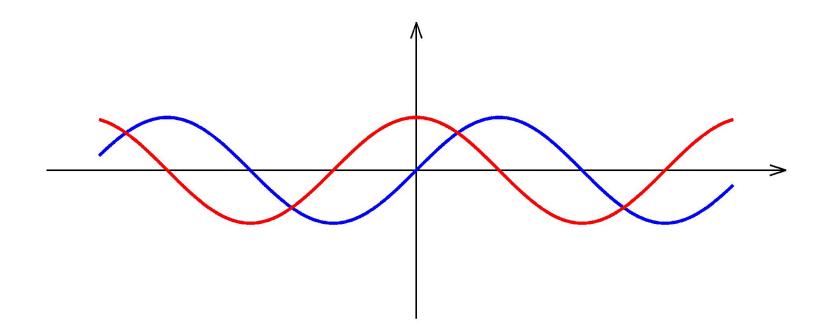
Dato $x \in \mathbb{R}$ si costruisce il punto P partendo da (1,0) e percorrendo un arco di lunghezza |x|

- in senso antiorario se x > 0
- in senso *orario* se x < 0

Per definizione $P = (\cos x, \sin x)$.

Relazione fondamentale:

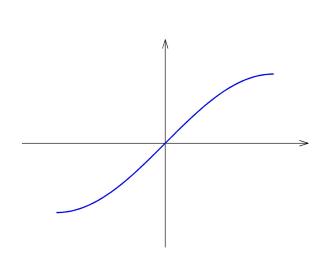
$$(\sin x)^2 + (\cos x)^2 = 1 \quad \forall x \in \mathbb{R}$$

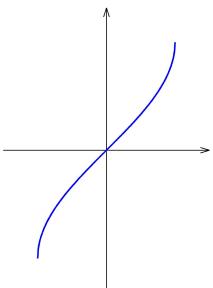

Proprietà di $\sin x$:

- periodica: $\sin(x + 2\pi) = \sin x \ \forall x \in \mathbb{R}$
- $-1 \le \sin x \le 1 \ \forall x \in \mathbb{R}$
- $\sin x > 0$ per $x \in (0, \pi)$ $\sin x < 0$ per $x \in (\pi, 2\pi)$
- è crescente in $[0,\frac{\pi}{2}]$ e in $[\frac{3\pi}{2},2\pi]$
- è decrescente in $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$
- dispari: $sin(-x) = -sin x \ \forall x \in \mathbb{R}$
- alcuni valori notevoli: $\sin 0 = \sin \pi = \sin 2\pi = 0$ $\sin \frac{\pi}{2} = 1$, $\sin \frac{3\pi}{2} = -1$

Funzioni Seno e Coseno

Dalle proprietà precedenti si ottiene il seguente grafico per $y = \sin x$. Il grafico $y = \cos x$ si ottiene per traslazione poiché si ha

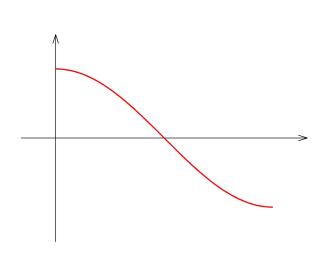

$$\cos x = \sin\left(x + \frac{\pi}{2}\right) \quad \forall x \in \mathbb{R}.$$


Funzione Arcoseno

La funzione $f(x)=\sin x$ definita per $x\in [-\frac{\pi}{2},\frac{\pi}{2}]$ a valori in [-1,1] è biunivoca.

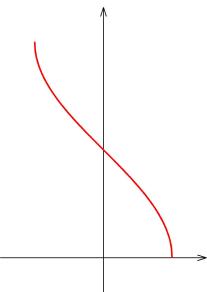
arcsin : $[-1,1] \rightarrow [-\frac{\pi}{2},\frac{\pi}{2}]$ è la sua funzione inversa.

$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-1, 1\right]$$
$$f(x) = \sin x$$



$$f^{-1}: [-1,1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$$

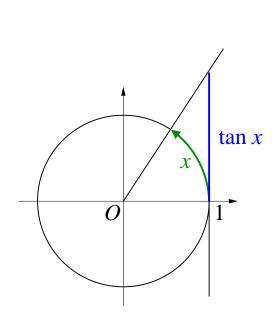
 $f^{-1}(x) = \arcsin x$


Funzione Arcocoseno

La funzione $g(x) = \cos x$ definita per $x \in [0, \pi]$ a valori in [-1, 1] è biunivoca.

 $arccos: [-1,1] \rightarrow [0,\pi]$ è la sua funzione inversa.

$$g: [0, \pi] \to [-1, 1]$$
$$g(x) = \cos x$$



$$g^{-1}: [-1,1] \to [0,\pi]$$
 $g^{-1}(x) = \arccos x$

Funzione Tangente

$$\tan x = \frac{\sin x}{\cos x} \quad \text{per ogni } x \neq \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z}$$

È una funzione periodica di periodo π e dispari.

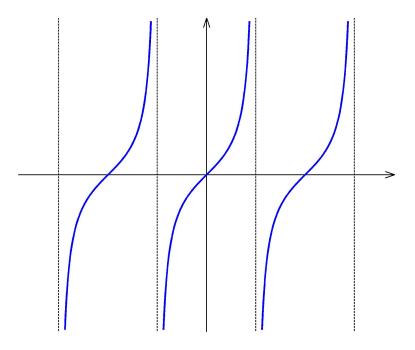
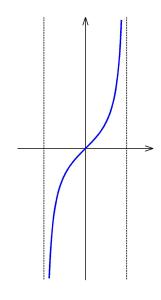
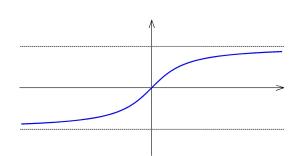



grafico di $f(x) = \tan x$


Funzione Arcotangente

La funzione $f(x)=\tan x$ definita per $x\in (-\frac{\pi}{2},\frac{\pi}{2})$ a valori in $\mathbb R$ è biunivoca. arctan : $\mathbb R\to (-\frac{\pi}{2},\frac{\pi}{2})$ è la sua funzione inversa.

$$f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R}$$

$$f(x) = \tan x$$

$$f^{-1}:\mathbb{R} o(-rac{\pi}{2},rac{\pi}{2})$$

$$f^{-1}(x) = \arctan x$$