Studio Qualitativo di Funzione

Reperire un certo numero di informazioni per descrivere a livello qualitativo l'andamento del grafico di una funzione f

- 1. campo di esistenza (cioè, l'insieme di definizione)
- 2. segno: per quali x si ha $f(x) \ge 0$?
- 3. intersezioni con gli assi: (0, f(0)); per quali x si ha f(x) = 0
- 4. comportamento agli estremi del campo di esistenza
- 5. continuità
- 6. monotonia
- 7. massimi e minimi
- 8. grafico qualitativo

Campo di Esistenza

Il campo di esistenza è l'insieme di tutti i punti nei quali la funzione è definita.

Nel caso di una funzione composta si determina, caso per caso, tenendo conto degli insiemi di definizione delle funzioni base con le quali la funzione è stata costruita.

Esempio: data la funzione
$$f(x) = \frac{1}{\ln(4-x^2)}$$

• il logaritmo è definito per

$$4 - x^2 > 0 \Leftrightarrow x \in (-2, 2)$$

• il denominatore deve essere diverso da zero

$$ln(4-x^2) \neq 0 \Leftrightarrow 4-x^2 \neq 1 \Leftrightarrow x \neq \pm\sqrt{3}$$

Il campo di esistenza di f è $(-2, -\sqrt{3}) \cup (-\sqrt{3}, \sqrt{3}) \cup (\sqrt{3}, 2)$.

Comportamento agli Estremi

Se il campo di esistenza D è costituito dall'unione di più intervalli (limitati o illimitati), occorre prendere in considerazione separatamente gli estremi di ognuno di questi intervalli.

ullet Se gli estremi appartengono a D, si calcola semplicemente il valore della funzione in tali punti.

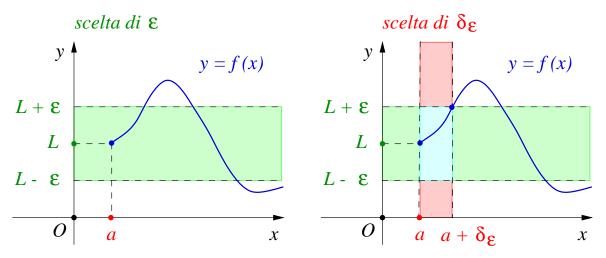
Esempi:
$$f(x) = \sqrt{x}$$
, $D = [0, +\infty)$, $f(0) = \sqrt{0} = 0$
 $f(x) = \sqrt{x(1-x)}$, $D = [0, 1]$, $f(0) = 0$, $f(1) = 0$

• Se gli estremi non appartengono a D, si introduce il concetto di limite.

Esempio:
$$f(x) = \frac{1}{x^2}$$
, $D = (-\infty, 0) \cup (0, +\infty)$
Vogliamo calcolare $\lim_{x \to 0} \frac{1}{x^2}$ $\lim_{x \to +\infty} \frac{1}{x^2}$ $\lim_{x \to -\infty} \frac{1}{x^2}$

Limite Destro Finito

Quando la variabile x assume valori "vicini" ad a (e maggiori di a), i corrispondenti valori di f(x) si avvicinano sempre più al valore L.



limite destro finito

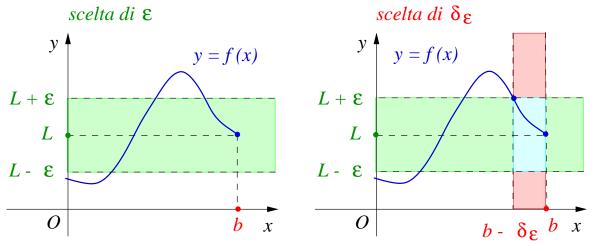
$$\lim_{x \to a^+} f(x) = L$$

Si dice che f(x) tende al limite L per x che tende ad a da destra se: per ogni $\varepsilon > 0$ esiste un $\delta_{\varepsilon} > 0$ tale che $|f(x) - L| < \varepsilon$ per ogni $x \in (a, a + \delta_{\varepsilon})$.

Esempi: (1)
$$\lim_{x \to 1^+} \sqrt{x-1} = 0$$
, (2) $\lim_{x \to 0^+} \frac{|x|}{x} = 1$.

Limite Sinistro Finito

Quando la variabile x assume valori "vicini" a b (e minori di b), i corrispondenti valori di f(x) si avvicinano sempre più al valore L.



limite sinistro finito

$$\lim_{x \to b^{-}} f(x) = L$$

Si dice che f(x) tende al limite L per x che tende a b da sinistra se: per ogni $\varepsilon > 0$ esiste un $\delta_{\varepsilon} > 0$ tale che $|f(x) - L| < \varepsilon$ per ogni $x \in (b - \delta_{\varepsilon}, b)$.

Esempi: (1)
$$\lim_{x \to 1^{-}} \sqrt{1 - x} = 0$$
, (2) $\lim_{x \to 0^{-}} \frac{|x|}{x} = -1$.

Limite Finito per $x \to x_0$

Se la funzione possiede sia il limite destro che il limite sinistro nel punto x_0 e se entrambi sono uguali al valore L, si dice che

$$\lim_{x \to x_0} f(x) = L \qquad \text{(limite finito)}$$

Quando la variabile x assume valori "vicini" a x_0 (diversi da x_0), i corrispondenti valori di f(x) sono "vicini" al valore L.

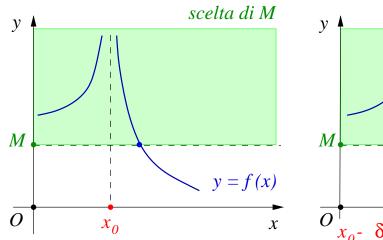
Si dice che f(x) tende al limite L per x che tende ad x_0 se:

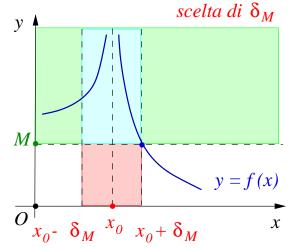
per ogni
$$\varepsilon > 0$$
 esiste un $\delta_{\varepsilon} > 0$ tale che
$$|f(x) - L| < \varepsilon \text{ per ogni } x \in (x_0 - \delta_{\varepsilon}, x_0 + \delta_{\varepsilon}) \text{ con } x \neq x_0.$$

Esempi: (1)
$$\lim_{x \to 1} (2x+1) = 3$$
, (2) $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$

Limite Infinito

Quando la variabile x assume valori "vicini" ad x_0 (diversi da x_0), i corrispondenti valori di f(x) crescono arbitrariamente.





limite infinito

$$\lim_{x \to x_0} f(x) = +\infty$$

Si dice che f(x) tende a $+\infty$ per x che tende ad x_0 se:

per ogni M>0 esiste un $\delta_M>0$ tale che f(x)>M per ogni $x\in (x_0-\delta_M,\,x_0+\delta_M)$ con $x\neq x_0.$

Esempio:
$$\lim_{x\to 0} \frac{1}{x^2} = +\infty.$$

Osservazioni sui Limiti per $x \to x_0$

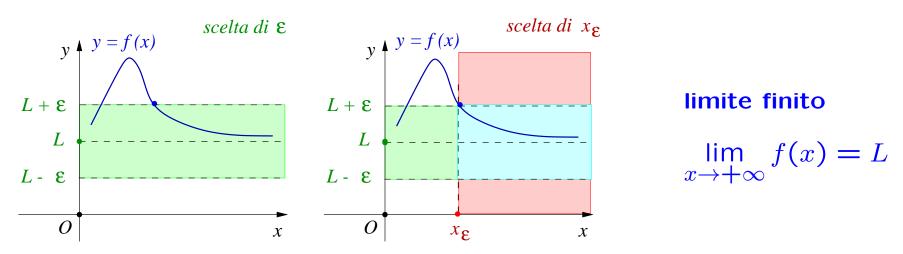
Poiché nella definizione di limite si richiede $x \neq x_0$, non ha alcuna importanza l'eventuale valore assunto dalla funzione nel punto x_0 :

$$f(x) = \begin{cases} x^2 & \text{per } x \neq 0 \\ 1 & \text{per } x = 0 \end{cases} \qquad f(0) = 1, \text{ ma } \lim_{x \to 0} f(x) = 0$$

$$g(x) = \begin{cases} \frac{1}{x^2} & \text{per } x \neq 0 \\ 0 & \text{per } x = 0 \end{cases}$$
 $g(0) = 0$, ma $\lim_{x \to 0} g(x) = +\infty$

Limite Finito per $x \to +\infty$

Quando la variabile x cresce arbitrariamente, i corrispondenti valori di f(x) sono sempre più "vicini" al valore L.



Si dice che f(x) tende al limite L per x che tende ad $+\infty$ se: per ogni $\varepsilon > 0$ esiste un $x_{\varepsilon} > 0$ tale che $|f(x) - L| < \varepsilon$ per ogni $x \in (x_{\varepsilon}, +\infty)$.

Esempi: (1)
$$\lim_{x \to +\infty} \frac{x+1}{x} = 1$$
, (2) $\lim_{x \to +\infty} e^{-x} = 0$.

Il Limite Può Non Esistere

Il limite di una funzione può non esistere:

• $f(x) = \frac{|x|}{x}$, $x \neq 0$. Non esiste il limite per $x \to 0$.

Infatti, il limite destro e limite sinistro esistono, ma sono diversi:

$$\lim_{x \to 0^+} f(x) = 1, \qquad \lim_{x \to 0^-} f(x) = -1.$$

• $f(x) = \frac{1}{x}$, $x \neq 0$. Non esiste il limite per $x \to 0$.

Infatti, i limiti destro e sinistro sono infiniti di segno opposto:

$$\lim_{x \to 0^+} f(x) = +\infty$$
, $\lim_{x \to 0^-} f(x) = -\infty$.

• $f(x) = \sin x$. Non esiste il limite per $x \to +\infty$.

Alcuni Limiti da Ricordare

- $\lim_{x \to +\infty} x^n = +\infty$ per ogni $n \in \mathbb{N}$, $n \neq 0$
- $\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{se } n \text{ è pari} \\ -\infty & \text{se } n \text{ è dispari} \end{cases}$
- $\lim_{x \to +\infty} \log_a x = \begin{cases} -\infty & \text{se } 0 < a < 1 \\ +\infty & \text{se } a > 1 \end{cases}$
- $\lim_{x \to 0^+} \log_a x = \begin{cases} +\infty & \text{se } 0 < a < 1 \\ -\infty & \text{se } a > 1 \end{cases}$

Operazioni sui Limiti

Se $\lim_{x\to x_0} f(x) = \alpha \in \mathbb{R}$ e $\lim_{x\to x_0} g(x) = \beta \in \mathbb{R}$, allora si ha:

- somma: $\lim_{x \to x_0} \left[f(x) + g(x) \right] = \alpha + \beta$
- prodotto: $\lim_{x \to x_0} [f(x) \cdot g(x)] = \alpha \cdot \beta$
- quoziente: se $\beta \neq 0$, $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\alpha}{\beta}$

Le stesse proprietà valgono nei casi $x \to +\infty$, $x \to -\infty$ oppure $x \to x_0^+$, $x \to x_0^-$.

Operazioni sui Limiti

Se $\lim_{x\to x_0} f(x) = \alpha \in \mathbb{R}$ e $\lim_{x\to x_0} g(x) = +\infty$, allora si ha:

- somma: $\lim_{x \to x_0} \left[f(x) + g(x) \right] = +\infty$
- prodotto: se $\alpha \neq 0$, $\lim_{x \to x_0} \left[f(x) \cdot g(x) \right] = \begin{cases} +\infty & \text{se } \alpha > 0 \\ -\infty & \text{se } \alpha < 0 \end{cases}$
- quoziente: $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$

In particulare, si ha che $\lim_{x \to x_0} \frac{1}{g(x)} = 0$

Le stesse proprietà valgono nei casi $x \to +\infty$, $x \to -\infty$ oppure $x \to x_0^+$, $x \to x_0^-$.

Esercizio

Calcolare i seguenti limiti:

$$\lim_{x \to +\infty} -2\left(3 + \frac{1}{x}\right) = -6$$

$$\lim_{x \to +\infty} \left(2 - e^{-x} \right) = 2$$

•
$$\lim_{x \to +\infty} \frac{2 - e^{-x}}{3 + \frac{1}{x}} = \frac{2}{3}$$

$$\lim_{x \to +\infty} \left(-1 + \frac{1}{x} \right) e^x = -\infty$$

$$\lim_{x \to +\infty} \frac{1 + \frac{1}{x}}{e^x} = 0$$

Ampliamento di R

Per $c \in \mathbb{R}$ definiamo le seguenti operazioni:

•
$$+\infty + c = +\infty$$
, $-\infty + c = -\infty$

Questo significa che qualunque sia la funzione f che per $x \to x_0$ tende a $+\infty$, e qualunque sia la funzione g che per $x \to x_0$ tende a c, allora f + g per $x \to x_0$ tende a $+\infty$. Analogamente per $-\infty$.

- $+\infty + \infty = +\infty$, $-\infty \infty = -\infty$
- $(+\infty)\cdot(+\infty) = +\infty$, $(+\infty)\cdot(-\infty) = -\infty$, $(-\infty)\cdot(-\infty) = +\infty$
- $\frac{c}{\pm \infty} = 0$
- se inoltre $c \neq 0$,

$$(+\infty) \cdot c = \begin{cases} +\infty & \text{se } c > 0 \\ -\infty & \text{se } c < 0 \end{cases} \qquad (-\infty) \cdot c = \begin{cases} -\infty & \text{se } c > 0 \\ +\infty & \text{se } c < 0 \end{cases}$$

Operazioni sui Limiti

Il limite della somma, differenza, prodotto, quoziente di due funzioni risulta rispettivamente uguale alla somma, differenza, prodotto, quoziente (se il denominatore è diverso da zero) dei due limiti, purché non sia una delle forme indeterminate.

Se
$$\lim_{x\to x_0} f(x) = \alpha \in \mathbb{R} \cup \{\pm \infty\}$$
 e $\lim_{x\to x_0} g(x) = \beta \in \mathbb{R} \cup \{\pm \infty\}$, allora:

- somma: $\lim_{x \to x_0} \left[f(x) + g(x) \right] = \alpha + \beta$ (tranne nel caso $+\infty \infty$)
- prodotto: $\lim_{x \to x_0} f(x) \cdot g(x) = \alpha \cdot \beta$ (tranne nel caso $\pm \infty \cdot 0$)
- quoziente: $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\alpha}{\beta}$ (tranne nei casi $\frac{0}{0}$ e $\frac{\pm \infty}{\pm \infty}$)

Le stesse proprietà valgono nei casi $x \to +\infty$, $x \to -\infty$ oppure $x \to x_0^+$, $x \to x_0^-$.

Forme Indeterminate

Restano indeterminate le operazioni:

$$+\infty-\infty$$
, $0\cdot(\pm\infty)$, $\frac{\pm\infty}{\pm\infty}$, $\frac{0}{0}$

Cosa significa per esempio che $\frac{0}{0}$ è una forma indeterminata?

Significa che se f(x) e g(x) tendono a 0 per $x \to x_0$, da questa unica informazione NON si può dedurre qual è il comportamento di $\frac{f(x)}{g(x)}$ al tendere di x a x_0 .

Esempio: consideriamo f(x) = x, $g(x) = x^3$, h(x) = 2x.

Si ha
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = \lim_{x\to 0} h(x) = 0.$$

Tuttavia,
$$\lim_{x \to 0} \frac{f(x)}{g(x)} = +\infty$$
, $\lim_{x \to 0} \frac{g(x)}{f(x)} = 0$, $\lim_{x \to 0} \frac{h(x)}{f(x)} = 2$.

Limite di un Polinomio all'Infinito

Il comportamento all'infinito di un polinomio è determinato dal termine di grado massimo.

Esempi:

$$\lim_{x \to +\infty} (2x^3 - x + 1) = \lim_{x \to +\infty} 2x^3 \cdot \left(1 - \frac{1}{2x^2} + \frac{1}{2x^3}\right) = \lim_{x \to +\infty} 2x^3 = +\infty$$

$$\lim_{x \to -\infty} (-x^4 - 2x^3 + x^2) = \lim_{x \to -\infty} -x^4 \cdot \left(1 + \frac{2}{x} - \frac{1}{x^2}\right) = \lim_{x \to -\infty} -x^4 = -\infty$$

Limite di una Funzione Razionale all'Infinito

Dati due polinomi di grado m e n

$$P(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$$

$$Q(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$$

si ha:

$$\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \lim_{x \to +\infty} \frac{a_m x^m}{b_n x^n}$$

е

$$\lim_{x \to -\infty} \frac{P(x)}{Q(x)} = \lim_{x \to -\infty} \frac{a_m x^m}{b_n x^n}$$

Esercizio

Calcolare i seguenti limiti:

•
$$\lim_{x \to +\infty} \frac{4x^3 + 5x + 3}{7x^3 - x^2 + 11} = \frac{4}{7}$$

$$\lim_{x \to -\infty} \frac{2x^3 + 5x^2 + 3}{x^5 - 3x^4 + 2x^2} = 0$$

•
$$\lim_{x \to +\infty} \frac{x^7 + 10x - 8}{x^2 + 3x + 8} = +\infty$$

•
$$\lim_{x \to +\infty} \frac{e^{3x} + 5e^x}{2e^{3x} - e^{2x} + 4} = \frac{1}{2}$$

(si può risolvere ponendo $t = e^x$)

Altri Limiti Fondamentali

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

•
$$\lim_{x \to +\infty} \frac{x^n}{a^x} = 0 \quad \forall n \in \mathbb{N}, \ a > 1$$

$$\lim_{x \to +\infty} \frac{(\ln x)^p}{x^n} = 0 \quad \forall p, n \in \mathbb{N} - \{0\} \quad \lim_{x \to 0^+} x^n (\ln x)^p = 0 \quad \forall p, n \in \mathbb{N} - \{0\}$$

$$\lim_{x \to 0^+} x^n (\ln x)^p = 0 \quad \forall p, n \in \mathbb{N} - \{0\}$$

Esercizio. Calcolare i seguenti limiti:

$$\lim_{x \to +\infty} x^5 2^x = +\infty \qquad \lim_{x \to 0^+} x^9 \ln x = 0$$

$$\lim_{x \to 0} \frac{e^{2x} - 1}{x} = \lim_{t \to 0} 2 \cdot \frac{e^t - 1}{t} = 2 \qquad \lim_{x \to 0^+} \frac{\ln(x+1)}{x^2} = \lim_{x \to 0^+} \left(\frac{\ln(x+1)}{x} \cdot \frac{1}{x}\right) = +\infty$$

Funzioni Continue

Sia I un intervallo aperto e sia $x_0 \in I$. Una funzione $f: I \to \mathbb{R}$ si dice continua nel punto x_0 se

$$\lim_{x \to x_0} f(x) = f(x_0),$$

cioè,

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0).$$

Una funzione $f:[a,b]\to\mathbb{R}$ si dice continua nell'intervallo [a,b] se

$$\lim_{x \to x_0} f(x) = f(x_0) \ \forall x_0 \in (a, b), \ \lim_{x \to a^+} f(x) = f(a) \ \text{e} \ \lim_{x \to b^-} f(x) = f(b).$$

Graficamente: una funzione definita su un intervallo è continua se è possibile disegnarne il grafico con un tratto *continuo*, senza staccare la penna dal foglio.

Funzioni Continue – Operazioni

Dalle proprietà delle operazioni sui limiti segue che la somma, il prodotto e il quoziente di funzioni continue sono funzioni continue.

Se f e g sono continue in x_0 , si ha:

- f + g è continua in x_0 , cioè, $\lim_{x \to x_0} [f(x) + g(x)] = f(x_0) + g(x_0)$.
- $f \cdot g$ è continua in x_0 , cioè, $\lim_{x \to x_0} \left[f(x)g(x) \right] = f(x_0)g(x_0)$.
- se g è diversa da zero vicino a x_0 , $\frac{f}{g}$ è continua in x_0 , cioè, $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \frac{f(x_0)}{g(x_0)}.$

Funzione inversa: se f è continua e invertibile, allora anche la funzione inversa f^{-1} è continua.

Funzioni Continue – Esempi

Le seguenti funzioni sono continue nei rispettivi campi di esistenza:

- 1. la funzione valore assoluto |x|
- 2. le funzioni potenza ad esponente reale x^b
- 3. i polinomi $P(x) = a_0 + a_1 x + \cdots + a_n x^n$
- 4. le funzioni razionali (cioè, quozienti di due polinomi)
- 5. le funzioni esponenziali a^x e le loro inverse (le funzioni logaritmiche $\log_a x$)
- 6. le funzioni $\sin x$, $\cos x$, $\tan x$ e le loro inverse
- 7. ...

Esempio

Calcolare
$$\lim_{x\to 2} \frac{3x^3 + x^2 + 1}{x - 1}$$
.

La funzione $f(x) = \frac{3x^3 + x^2 + 1}{x - 1}$ è una funzione razionale fratta, quindi è continua in tutti i punti dove è definita, cioè in $\mathbb{R} - \{1\}$. Pertanto

$$\lim_{x \to 2} \frac{3x^3 + x^2 + 1}{x - 1} = \frac{3 \cdot 2^3 + 2^2 + 1}{2 - 1} = 29.$$

Attenzione: NON usare la regola dei termini di grado massimo! La regola vale solo per il limite di una funzione razionale fratta per $x \to +\infty$ o per $x \to -\infty$!

Quanto vale invece
$$\lim_{x\to 1} \frac{3x^3 + x^2 + 1}{x - 1}$$
 ?

Limite di Funzione Composta

Siano f e g due funzioni per cui abbia senso $f \circ g$. Supponiamo che

$$\lim_{x \to x_0} g(x) = L$$

e che f sia continua in L. Allora si ha che

$$\lim_{x \to x_0} f(g(x)) = f\left(\lim_{x \to x_0} g(x)\right).$$

Esempi: (1)
$$\lim_{x \to +\infty} \ln\left(1 + \frac{1}{x}\right) = \ln\left(\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)\right) = \ln 1 = 0$$

(2)
$$\lim_{x \to +\infty} \sqrt{\frac{4x+1}{x}} = \sqrt{\lim_{x \to +\infty} \frac{4x+1}{x}} = \sqrt{4} = 2$$

Continuità della Funzione Composta

Supponiamo che:

- g continua in x_0 , cioè, $\lim_{x \to x_0} g(x) = g(x_0)$
- f continua in $y_0 = g(x_0)$, cioè, $\lim_{y \to y_0} f(y) = f(y_0)$

Allora $f \circ g$ è continua in x_0 , cioè,

$$\lim_{x \to x_0} f(g(x)) = f(g(x_0)).$$

Esempi: le funzioni $f_1(x) = \sqrt[3]{7 + e^x}$, $f_2(x) = \log_{10}(9 + e^{1-x})$ sono continue dove sono definite. Pertanto, ad esempio,

$$\lim_{x \to 0} \sqrt[3]{7 + e^x} = 2, \qquad \lim_{x \to 1} \log_{10}(9 + e^{1-x}) = 1$$

Esercizi sulle Funzioni Continue

Esercizio 1. Stabilire se le seguenti funzioni sono continue in \mathbb{R} :

•
$$f(x) = \begin{cases} x^2 + 1 & \text{per } x \le 1 \\ |x| + 2 & \text{per } x > 1 \end{cases}$$

•
$$g(x) = \begin{cases} \frac{|x|}{x} & \text{per } x \neq 0 \\ 1 & \text{per } x = 0 \end{cases}$$

$$h(x) = \begin{cases} \frac{e^x - 1}{x} & \text{per } x \neq 0 \\ 1 & \text{per } x = 0 \end{cases}$$

Esercizi sulle Funzioni Continue

Esercizio 2. Determinare per quale valore del parametro k la funzione

$$f(x) = \begin{cases} 3x^3 + x + 2 - k & \text{per } x \le 0\\ \sqrt{x^4 + 1} & \text{per } x > 0 \end{cases}$$

è continua nel punto x = 0.

Esercizio 3. Determinare per quale valore del parametro k la funzione

$$f(x) = \begin{cases} x^5 - 3k & \text{per } x < 1\\ 2k e^{x-1} & \text{per } x \ge 1 \end{cases}$$

è continua nel punto x = 1.

Esempi di Discontinuità

Esempio 1. $\lim_{x\to 0} f(x) \neq f(0)$

$$f(x) = \begin{cases} x^2 & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases} \qquad \lim_{x \to 0} f(x) = 0, \quad f(0) = 1.$$

Esempio 2. $\lim_{x \to 0^{-}} f(x) \neq \lim_{x \to 0^{+}} f(x)$

$$f(x) = \begin{cases} -1 & \text{se } x < 0 \\ 1 & \text{se } x \ge 0 \end{cases} \qquad \lim_{x \to 0^{-}} f(x) = -1, \quad \lim_{x \to 0^{+}} f(x) = 1.$$

Esempi di Discontinuità

Esempio 3.
$$\lim_{x\to 0^{\pm}} f(x) = \pm \infty$$

$$f(x) = \begin{cases} \frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases} \qquad \lim_{x \to 0^{-}} f(x) = -\infty, \quad \lim_{x \to 0^{+}} f(x) = +\infty.$$

Il Teorema di Weierstrass

Teorema di Weierstrass. Sia f una funzione definita e *continua* su un intervallo *chiuso* e *limitato* [a,b]. Allora esistono il massimo e il minimo assoluti di f in [a,b].

Nota. Le ipotesi sono tutte essenziali per la validità del teorema:

• $f(x) = \begin{cases} x^2 & \text{per } x \neq 0 \\ 1 & \text{per } x = 0 \end{cases}$ non ha minimo in [-1, 1].

Infatti, la funzione non è continua.

- $f(x) = \frac{1}{x}$ non ha massimo in (0,1]. Infatti, l'intervallo non è chiuso.
- $f(x) = e^x$ non ha minimo in $(-\infty, 0]$. Infatti, l'intervallo non è limitato.

Esercizio

Scrivere l'espressione esplicita di una funzione continua $f: \mathbb{R} \to \mathbb{R}$ tale che siano verificate contemporaneamente le seguenti proprietà:

- f(0) = 0,
- $\lim_{x \to +\infty} f(x) = +\infty$,
- $\bullet \lim_{x \to -\infty} f(x) = -2.$