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Hysteresis: a rate-independent memory effect

Hysteresis: a rate-independent memory effect (multidisciplinary
character)

Tipical hysteresis diagram in ferromagnetism (h magnetic field, m
magnetization).
Phase transitions and hysteresis: P. Krejčí, J. Sprekels (NA, 2000;
JMAA 2000; M2AS 2002; AMSA 2004); G. Gilardi, P. Krejčí, J. Sprekels
(M2AS, 2000); P. Krejčí, J. Sprekels, Z. Songmu (JDE, 2001); P. Krejčí,
J. Sprekels, U. Stefanelli (SIMA 2002; AMSA 2003)
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The stop and the Prandtl-Ishlinskii operators
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A classical hysteresis-type model for 1D elastoplasticity

Introduced by L. Prandtl and A. Yu. Ishlinskii (extensions to the
multidimensional case are possible)

The relation between (one-dimensional) strain ε and stress σ is given in
the form of the so-called Prandtl-Ishlinskii operator

σ = P[ε](t) =
∫

∞

0
sr[ε](t)ϕ(r)dr

for all ε ∈W 1,1(0,T ). Here ϕ > 0 is a nonnegative weight function not
known a priori and sr represents the one-dimensional elastic-ideally
plastic element or stop operator, with the threshold r > 0
Prandtl-Ishlinskii description of elastoplasticity: a superposition of
infinitely many stop operators having different thresholds (very
imaginative and easily understood) BUT engineers very often prefer
classical engineering approaches like the three-dimensional von Mises
or Tresca models

Motivation: the disadvantage that the weight function ϕ is not known a
priori and must be identified
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New theory of oscillating elastoplastic beams and plates

P. Krejčí, J. Sprekels, Math. Methods Appl. Sci. (2007).
R. Guenther, P. Krejčí, J. Sprekels, Z. Angew. Math. Mech. (2008).

Key point: the 3D single-yield von Mises criterion leads after a
dimensional reduction to a multi-yield Prandtl-Ishlinskii operator where
the weight function ϕ can be explicitly determined!

A plate section with grey plasticized zone.
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Motivation for material fatigue

Plastic deformations lead to energy dissipation and material fatigue,
manifested by material softening, heat release, material failure in finite
time

Very important: take into account the effects of energy exchange and
estimating the lifetime of oscillating thermoelastoplastic structures under
material fatigue

Aim: develop a thermodynamically consistent theory of oscillating
thermoelastoplastic plates under material fatigue (dynamic approach -
different from literature)

The resulting system from the theory developed by Krejčí & al:

∂ttw − ∂tt∆w+D∗2σ = g ,

σ = Bε +
∫

∞

0
srZ [ε](t)ϕ(r)dr

ε = D2w

We introduce θ > 0 (absolute temperature) and m(x, t)≥ 0 (material
fatigue)
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∂ttw − ∂tt∆w+D∗2σ = g ,

σ = Bε +
∫

∞

0
srZ [ε](t)ϕ(r)dr

ε = D2w

We introduce θ > 0 (absolute temperature) and m(x, t)≥ 0 (material
fatigue)

Michela Eleuteri Phase transitions and hysteresis: new perspectives and results



Motivation for material fatigue

Plastic deformations lead to energy dissipation and material fatigue,
manifested by material softening, heat release, material failure in finite
time

Very important: take into account the effects of energy exchange and
estimating the lifetime of oscillating thermoelastoplastic structures under
material fatigue

Aim: develop a thermodynamically consistent theory of oscillating
thermoelastoplastic plates under material fatigue (dynamic approach -
different from literature)

The resulting system from the theory developed by Krejčí & al:
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Motivation for material fatigue

Plastic deformations lead to energy dissipation and material fatigue,
manifested by material softening, heat release, material failure in finite
time
Very important: take into account the effects of energy exchange and
estimating the lifetime of oscillating thermoelastoplastic structures under
material fatigue
Aim: develop a thermodynamically consistent theory of oscillating
thermoelastoplastic plates under material fatigue (dynamic approach -
different from literature)
The resulting system from the theory developed by Krejčí & al:

∂ttw − ∂tt∆w+D∗2σ = g ,

σ = B(m)ε +
∫

∞

0
srZ [ε](t)ϕ(θ ,r)dr−β (θ −θc)1

ε = D2w

We introduce θ > 0 (absolute temperature) and m(x, t)≥ 0 (material
fatigue); aim: get an evolution equation for m consistent from the
thermodynamic point of view
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Evolution equation for the fatigue

Main assumption: proportionality between rate of fatigue ∂tm and

D = 〈σ ,∂tε〉−∂tθS [θ ,ε]−∂tF [θ ,ε]

=−1
2
〈
B′(m)ε,ε

〉
∂tm+

∫
∞

0
〈∂t(ε− srZ [ε]),srZ [ε]〉ϕ(θ ,r)dr

where F is the specific free energy and S is the specific entropy

Justified by the so-called rainflow method for cyclic fatigue
accumulation in uniaxial processes (counts closed hysteresis loops in
the loading hystory - mechanism of energy dissipation)

In multiaxial loading processes? Experimental measurements at the
point of material failure: strong temperature increase, manifested by
energy dissipation peak (temperature tests are in engineering practice
for damage analysis in high frequency regimes (e.g. in aircraft industry))( 1

C(θ)
+

1
2
〈
B′(m)ε,ε

〉)
∂tm =

∫
∞

0
〈∂t(ε− srZ [ε]),srZ [ε]〉ϕ(θ ,r)dr

B′(m)≤ 0 softening⇒ singularity! Material failure in finite time!
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The model with phase transition

Motivation:
possibility to account also for decreasing fatigue rate (in view of
engineering applications)
the material can be partially repaired by local melting

How to achieve this goal:
account for phase transition in the model
m material fatigue and χ degree of melting
the time of failure of the material can be shifted
possibly considering a sufficiently large time interval of observation (usual
engineering viewpoint) a global solution of the corresponding PDEs
system can be found

Phase transition equation in the form of melting-solidification law

γχt ∈ −∂χF [ε,θ ,χ] χ ∈ [0,1]

χ0 ∈ [0,1] some initial condition, A(x, t) :=
∫ t

0
1
γ

(
L
θc
(θ −θc)

)
(x,τ)dτ

(χt −At)(z−χ)≥ 0 for all z ∈ [0,1]
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How to achieve this goal:
account for phase transition in the model
m material fatigue and χ degree of melting
the time of failure of the material can be shifted
possibly considering a sufficiently large time interval of observation (usual
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engineering applications)
the material can be partially repaired by local melting

How to achieve this goal:
account for phase transition in the model
m material fatigue and χ degree of melting
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possibly considering a sufficiently large time interval of observation (usual
engineering viewpoint) a global solution of the corresponding PDEs
system can be found

Phase transition equation in the form of melting-solidification law

γχt ∈ −∂χF [ε,θ ,χ] χ ∈ [0,1]

χ0 ∈ [0,1] some initial condition, A(x, t) :=
∫ t

0
1
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(
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(θ −θc)

)
(x,τ)dτ

χ ∈ s[0,1][χ0,A] s[0,1] is a shifted stop
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Thermodynamical consistency

If we introduce F [ε,θ ,χ] specific free energy, S [ε,θ ,χ] specific
entropy and U [ε,θ ,χ] internal energy we are able to show that the
first and second principles of thermodynamics are satisfied

∂

∂ t
U [ε,θ ,χ]+divq = 〈σ ,εt〉 (energy conservation)

∂

∂ t
S [ε,θ ,χ]+div

q
θ
≥ 0, (Clausius-Duhem inequality)

Evolution equation for m:(
C−〈B′(m)ε,ε〉

)
mt =−h(χt)+

∫
∞

0
〈∂t(ε− srZ [ε])srZ [ε]〉ϕ(θ ,r)dr

allow the possibility of decreasing rate (i.e. mt < 0) but only in the case
if χ grows faster than the plastic dissipation rate (strong melting)

external heat source (boundary condition)
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Conclusion

Rainflow method for fatigue evaluation in elastoplastic materials
(uniaxial cyclic loading) allow to consider dissipated energy as a
measure for fatigue
The solution cannot be expected to exist globally: singularities (thermal
shocks) occur in finite time
Phase transition in the model useful to account also for decreasing
fatigue rate
The time of failure can be shifted and considering a sufficiently large
time interval of observation (usual engineering viewpoint) a global
solution of the corresponding PDEs system can be found
The resulting full system of energy and momentum balance equations is
consistent with the first and the second principles of thermodynamics;
mathematical analysis of the model is work in progress

Spring School on “Rate-independent evolutions and hysteresis mod-
elling”, Milano, May 27-31, 2013
http://www.mat.unimi.it/users/eleuteri/hystri2013.html
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