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The motivation

B An isothermal model for the flow of a mixture of two
B viscous
B incompressible
B Newtonian fluids
B of equal density

B Avoid problems related to interface singularities
—> use a diffuse interface model
— the classical sharp interface replaced by a thin interfacial region

B A partial mixing of the macroscopically immiscible fluids is allowed
— ¢ is the order parameter, e.g. the concentration difference
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The motivation

B An isothermal model for the flow of a mixture of two
B viscous
B incompressible
B Newtonian fluids
B of equal density

B Avoid problems related to interface singularities
—> use a diffuse interface model
— the classical sharp interface replaced by a thin interfacial region

B A partial mixing of the macroscopically immiscible fluids is allowed
— ( is the order parameter, e.g. the concentration difference

B The original idea of diffuse interface model for fluids: HOHENBERG and HALPERIN, 77
= H-model
Later, GURTIN ET AL., '96: continuum mechanical derivation based on microforces

B Models of two-phase or two-component fluids are receiving growing attention (e.g.,
ABELS, BOYER, GARCKE, GRUN, GRASSELLI, LOWENGRUB, TRUSKINOVSKI, ...)
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Local Cahn-Hilliard-Navier-Stokes model

InQ x (0,00), Q CR% d=2,3
ur + (- V)u —vAu+ Vi = uVop + v
div(u) =0
et +u - Vo =dv (m(e)Vpu)
p=—eAp+e 'F(p)
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Local Cahn-Hilliard-Navier-Stokes model 'Zﬁ@";

InQ x (0,00), Q CR% d=2,3
ur + (- V)u —vAu+ Vi = uVop + v
div(u) =0
¢+ u- Vo =dv(m(e)Vu)
p=—cAp+e F'(p)

B ,: chemical potential (Cahn-Hilliard), first variation of the (total Helmholtz) free energy

E(g) = / (5196 + 2 F())da
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Local Cahn-Hilliard-Navier-Stokes model 'Zﬁf’g

InQ x (0,00), Q CR% d=2,3
ur + (- V)u —vAu+ Vi = uVop + v
div(u) =0
¢+ u- Vo =dv(m(e)Vu)
p=—cAp+e F'(p)
B ,: chemical potential (Cahn-Hilliard), first variation of the (total Helmholtz) free energy
€ 1
Be) = [ (5196 + LF(0))ds
Q €

B F double-well potential: Helmholtz free energy density

W Singular
0. 2 0
F(s) = —5 s + 5((1 +5)log(1 +s) + (1 — s)log(1 — s))
foralls € (—1,1),with0 < 6 < 6.
B Regular

F(s)=(1—-5s%)? VseR
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Nonlocal model for binary fluid flow and phase separation

B Nonlocal free energy rigorously justified by Giacomin and Lebowitz ('97 & '98) as
macroscopic limit of microscopic phase segregation models

B)= 1 | [ I =u)(ele) = o) dedy+ [ Plota)da

J : R? — R interaction kernel s.t. J(z) = J(—z) (usually nonnegative and radial)
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Nonlocal model for binary fluid flow and phase separation

B Nonlocal free energy rigorously justified by Giacomin and Lebowitz ('97 & '98) as
macroscopic limit of microscopic phase segregation models

E(p) = E/S;/QJ(w—y)(w(w)—w(y))dedy+LF(¢(w))dw

J : R? — R interaction kernel s.t. J () = J(—x) (usually nonnegative and radial)

B Nonlocal chemical potential
p=ap—Jxp+F(p)

(] *)(@) = /Q (@~ y)p(y)dy alz) = / J(@ — y)dy

Q
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Nonlocal model for binary fluid flow and phase separation

Nonlocal free energy rigorously justified by Giacomin and Lebowitz ('97 & '98) as
macroscopic limit of microscopic phase segregation models

B)= 1 | [ I =u)(ele) = o) dedy+ [ Plota)da

J : R? — R interaction kernel s.t. J () = J(—x) (usually nonnegative and radial)

Nonlocal chemical potential
p=ap—Jxp+F(p)

(I e)@) = [

Q

(@~ y)p(y)dy alz) = / J(@ — y)dy

Q

First analytical results on nonlocal CH: Giacomin & Lebowitz ‘97 and '98; Gajewski '02;
Gajewski & Zacharias '03

Several other contributions on nonlocal Allen-Cahn equations and phase-field systems
(notably by Bates et al. and Sprekels et al.)
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Nonlocal Cahn-Hilliard-Navier-Stokes systems

o+ u- Vo = div(m(e)Vy)
p=ap—Jxp+F(p)

us — 2div(v(p)Du) + (u- V)u + Vi = uVeo + v
div(u) =0

subject to

o _ —
a—n—O u=0 on 90 x (0,0c0)

u(0)=uo ¢0)=¢o in Q

B Mass is conserved

o0 =" / (. )z = By
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Analytical results

B Constant mobility+ regular potential

B J global weak sols in 2D-3D (Colli, F. & Grasselli, J. Math. Anal. Appl. '12)
W global attractor in 2D and trajectory attractor in 3D (F. & Grasselli, J. Dynam
Differential Equations '12)

B Constant mobility+singular potential

B 3 global weak sols in 2D-3D; global attractor in 2D and trajectory attractor in 3D (F.
& Grasselli, Dyn. Partial Differ. Equ. '12)
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Analytical results 'Zﬁf’g

B Constant mobility+ regular potential

B J global weak sols in 2D-3D (Colli, F. & Grasselli, J. Math. Anal. Appl. '12)
W global attractor in 2D and trajectory attractor in 3D (F. & Grasselli, J. Dynam
Differential Equations '12)

B Constant mobility+singular potential

B 3 global weak sols in 2D-3D; global attractor in 2D and trajectory attractor in 3D (F.
& Grasselli, Dyn. Partial Differ. Equ. '12)

B Constant mobility+ regular potential

B 3 global unique strong sols in 2D, regularity of global attractor in 2D, convergence
to equilibria of weak sols in 2D (F, Grasselli & Krej¢i, J. Differential Equations '13)
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Analytical results 'Zﬁf’g

B Constant mobility+ regular potential

B J global weak sols in 2D-3D (Colli, F. & Grasselli, J. Math. Anal. Appl. '12)
W global attractor in 2D and trajectory attractor in 3D (F. & Grasselli, J. Dynam
Differential Equations '12)

B Constant mobility+singular potential

B 3 global weak sols in 2D-3D; global attractor in 2D and trajectory attractor in 3D (F.
& Grasselli, Dyn. Partial Differ. Equ. '12)

B Constant mobility+ regular potential

B 3 global unique strong sols in 2D, regularity of global attractor in 2D, convergence
to equilibria of weak sols in 2D (F, Grasselli & Krej¢i, J. Differential Equations '13)
B Degenerate mobility+ singular potential

B J and regularity of global weak sols in 2D-3D, global attractor in 2D (F., Grasselli &
Rocca, preprint arXiv '13)
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Analytical results
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Analytical results

More recent results

B Constant mobility+ regular or singular potential & degenerate mobility + singular
potential

B Uniqueness of global weak sols in 2D

B Constant mobility, nonconstant viscosity +regular potential
B 3 global unique strong sols in 2D, regularity of global attractor in 2D, convergence to
equilibria of weak sols in 2D
B weak-strong uniqueness in 2D
B Connectedness and regularity of global attractor, 3 exponential attractor in 2D.

Last results in: F., Gal & Grasselli, WIAS Preprint 14
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J weak sols (constant mobility+regular potential)

Theorem (Colli, F. & Grasselli ’12)

Assume J € WHL(R?) and thatv € L2(0,T; H}, (R)'), uo € L2, (2)%, @0 € L2(Q) with
F(p0) € LY(Q). Then, YT > 0 3 a weak sol [u, ¢] on [0, T s.t.
w € L=(0,T; LE;, () N L0, T; Hy, (), we € LY4(0,T; Hyy, (?))

@ € L=(0,T; LY () N L2(0, T; H'(Q)), ¢ € L*(0,T; H'(R)')
p € L*(0,T; H())
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3 weak sols (constant mobility+regular potential) ‘ Zﬁ@

Theorem (Colli, F. & Grasselli ’12)
Assume J € WHL(R?) and thatv € L2(0,T; H}, (R)'), uo € L2, (2)%, @0 € L2(Q) with
F(p0) € LY(Q). Then, YT > 0 3 a weak sol [u, ¢] on [0, T s.t.
w € L®°(0,T; L3, (%) N L2(0, T; HY, ()1,  ue € LY4(0,T; HY,, (Q))
@ € L®(0,T; L*(Q)) N L*(0, T; H'(Q)), ¢t € L*(0,T; H'(Q)')
p € L*(0,T; H())

which satisfies the energy inequality (identity if d = 2)

t t
5(U(t),s0(t))+/0 @IV + HVH(T)IIQ)dfﬁg(UO,SOO)Jr/O ((7), u(r))dr

for allt > 0, where we have set

Ew®.¢®) = Jlu®IF+ 1 [ [ I - ow.0) s+ [ Plow)
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3 weak sols (constant mobility+regular potential) ‘ Zﬁ@

Theorem (Colli, F. & Grasselli ’12)
Assume J € WHL(R?) and thatv € L2(0,T; H}, (R)'), uo € L2, (2)%, @0 € L2(Q) with
F(p0) € LY(Q). Then, YT > 0 3 a weak sol [u, ¢] on [0, T s.t.
w € L®°(0,T; L3, (%) N L2(0, T; HY, ()1,  ue € LY4(0,T; HY,, (Q))
@ € L®(0,T; L*(Q)) N L*(0, T; H'(Q)), ¢t € L*(0,T; H'(Q)')
p € L*(0,T; H())

which satisfies the energy inequality (identity if d = 2)

t t
5(U(t),s0(t))+/0 @IV + HVH(T)IIQ)dfﬁg(UO,SOO)Jr/O ((7), u(r))dr

for allt > 0, where we have set

Ew®.¢®) = Jlu®IF+ 1 [ [ I - ow.0) s+ [ Plow)

B The nonlocal term implies that ¢ is not as regular as for the standard (local) CHNS
system: ¢ € L*(H"') (nonlocal), instead of ¢ € L°°(H") (local) == regularity results
and uniqueness of weak sols in 2D difficult issues
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Strong sols in 2D (constant mobility+regular potential) xﬁ’g

B We need stronger assumptions on J. In particular J € W2’1(R2) or J admissible

Definition (J. Bedrossian, N. Rodriguez & A. Bertozzi '11)

A kernel J € Wlloc1 (R?) is admissible if the following conditions are satisfied:

(A1) J € C3(R*\ {0});
(A2) J is radially symmetric, J () = J(|z|) and J is non-increasing;
(A3) J"(r) and J'(r)/r are monotone on (0, 70) for some 1o > 0;

(A%) |D*J(z)| < Cylz|~" forsome Cy > 0

Newtonian and Bessel kernels are admissible for all d > 2
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Strong sols in 2D (constant mobility+regular potential) . "Cff’g

B We need stronger assumptions on J. In particular J € W2’1(R2) or J admissible

Definition (J. Bedrossian, N. Rodriguez & A. Bertozzi '11)

A kernel J € Wlloc1 (R?) is admissible if the following conditions are satisfied:

(A1) J € C3(R*\ {0});
(A2) J is radially symmetric, J () = J(|z|) and J is non-increasing;
(A3) J"(r) and J'(r)/r are monotone on (0, 70) for some 1o > 0;

(A4) |D3J(z)| < Cqlz|~%" forsome Cy > 0

Newtonian and Bessel kernels are admissible for all d > 2

Lemma (J. Bedrossian, N. Rodriguez & A. Bertozzi ’11)

Let J be admissible and x = V J x1). Then, forallp € (1, 00), there exists Cp, > 0 such that

IVxllzr @) < CopllllLe (o)
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Strong sols in 2D (constant mobility+regular potential)

Theorem (F., Grasselli & Krejci *13)

Assume that J € W2 (R?) or J admissible and that

v € L*(0,T; L3in()?) w0 € Hiip(Q)® o € HX(Q)
Then, VI' > 0 3 unique strong sol [u, ¢] on [0, T s.t.

w € L=(0,T; Hi;, (%) N L*(0,T; H*(Q)%),  we € L*(0,T; L3, (2)?)
@€ L0, T; HX(Q)), ¢ € L™(0,T; L*(Q)) N L(0,T; H'(Q))
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Strong sols in 2D (constant mobility+regular potential) . 4{4’3

Theorem (F., Grasselli & Krejci *13)

Assume that J € W2 (R?) or J admissible and that

v € L*(0,T; L3in()?) w0 € Hiip(Q)® o € HX(Q)
Then, VI' > 0 3 unique strong sol [u, ¢] on [0, T s.t.

w € L=(0,T; Hi;, (%) N L*(0,T; H*(Q)%),  we € L*(0,T; L3, (2)?)
@€ L0, T; HX(Q)), ¢ € L™(0,T; L*(Q)) N L(0,T; H'(Q))

Only recently (F., Gal & Grasselli, WIAS Preprint '14) we included

B Nonconstant viscosity

v=uv(p), v loc. Lipschitz on R, 0<vi <v(p) <o
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Strong sols in 2D (const. mob.+reg. pot. & nonconst. visc.) 'Zﬁf’g

How to handle with nonconstant viscosity to get regularity results?

B We cannot rely on NS regularity in 2D to get u € L? (0, T; HQ(Q)z). Indeed

@ weaksol, u € H*(Q)°N Hy\(R)? = div(v(p)Du) € L (Q)?
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Strong sols in 2D (const. mob.+reg. pot. & nonconst. visc.) 'Zﬁ@’g

How to handle with nonconstant viscosity to get regularity results?

B We cannot rely on NS regularity in 2D to get u € L> (0, T, HQ(Q)Q). Indeed

@ weaksol, u € H*(Q)°N Hy\(R)? = div(v(p)Du) € L (Q)?

B Approach: (nonloc CH) X pi; and avoid the use of the H?— norm of u. We deduce

d
21Vl + colleel® < QUR) (lulPIVul?) IVl + elull*[Vull* [ Vell* + Q(R)

2
+c(lIVallf o) + QUR)IVAl? + QR) Y (1050l

B,j=1
2
2 2 2
+e S0 1005+ Q)P+ ellTprr oy leeln gy el < B
i,j=1
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Strong sols in 2D (const. mob.+reg. pot. & nonconst. visc.) 'Zﬁf’g

How to handle with nonconstant viscosity to get regularity results?
B We cannot rely on NS regularity in 2D to get u € L> (0, T, HQ(Q)Q). Indeed
@ weaksol, u € H*(Q)°N Hy\(R)? = div(v(p)Du) € L (Q)?

B Approach: (nonloc CH) X pi; and avoid the use of the H?— norm of u. We deduce

d
21Vl + colleel® < QUR) (lulPIVul?) IVl + elull*[Vull* [ Vell* + Q(R)

2
+c(lIVallf o) + QUR)IVAl? + QR) Y (1050l

i,j=1
2

+e Y 10i050 x9)|? + el 1 @2yl lellpe (@) <R
i,j=1

— € L¥(0,T; H'(Q)), ¢ € L*(0,T;L%(Q)), pe L™(0,T; H' ()
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Strong sols in 2D (const. mob.+reg. pot. & nonconst. visc.) 'Zﬁ@"*é

B Second step: (NS) X u¢, integrate by parts in time to get

1 2 d 2 1 2 2
5 lluel” 4+ = / v(@)[Dul” +b(u, u,ue) < S[lU*+ [ [Dul’v/(0)p:
2 dt Jo 2 o
where [ := —“’—;Va — (Jxp)Ve+.
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Strong sols in 2D (const. mob.+reg. pot. & nonconst. visc.)

B Second step: (NS) X u¢, integrate by parts in time to get
1

d 1
o2+ 2 / o()| Dl + by, ) <
2 dt /o

<SP+ [ 1Duv (e
Q

2
where | := —%-Va — (J * p)V + v. After some technical arguments we are led to

1
Dul? + = 2
G | v@NDul - Cll

< QR llollv llwoll) (1 + ((lall® + l[ul|P~2) [ Vul|?) | Dul|*
+ el IDul? + [Vul?)  2<p<oo
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Strong sols in 2D (const. mob.+reg. pot. & nonconst. visc.)

B Second step: (NS) X u¢, integrate by parts in time to get
1

d 1
o2+ 2 / o()| Dl + by, ) <
2 dt

<SP+ [ 1Duv (e
Q

2
where | := —%-Va — (J * p)V + v. After some technical arguments we are led to

1
Dul? + = 2
G | v@NDul - Cll

S QR [leollv, |Iuo||)(\|l||2 + (el + [P =) Vel ) [ D2
+ el IDul? + [Vul?)  2<p<oo
Exploiting the regularity obtained at previous step

= u e L™(0,T; Hi;,(0)°) N L*(0, T; H*(Q)?)  we € L*(0,T; L7, (Q)%)
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Strong sols in 2D (const. mob.+reg. pot. & nonconst. visc.)

B Second step: (NS) X u¢, integrate by parts in time to get
1

d 1
o2+ 2 / o()| Dl + by, ) < L1 + / Dul ()
2 dt Jo 2 o

2
where | := —%-Va — (J * p)V + v. After some technical arguments we are led to

1
Dul? + = 2
G | v@NDul - Cll

< QR llvollv, |Iuo||)(\|l||2 + (el + llaalP=2) V) | D

+ el IDul? + [Vul?)  2<p<oo

Exploiting the regularity obtained at previous step
= u e L®(0,T; Hy;, (Q)%) N L*(0,T; H*()?)

w; € L*(0,T; L, (Q)°)
and then also

@i € L0, T; L*(Q) N L*(0,T; H'(Q)) ¢ € L™(0,T; H*(R))
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Uniqueness of weak sol in 2D (constant viscosity) 'Zﬁ@’g

Constant mobility + regular potentials

Theorem (F., Gal & Grasselli ’14)

Letug € L3;,(R)?, po € L?(Q) with F (o) € L' (). Then, 3 aunique weak sol [u, ¢
corresponding to [wo, @o]
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Uniqueness of weak sol in 2D (constant viscosity) . 4{4’3

Constant mobility + regular potentials

Theorem (F., Gal & Grasselli ’14)

Letug € L3;,(R)?, po € L?(Q) with F (o) € L' (). Then, 3 aunique weak sol [u, ¢
corresponding to [wo, @o]

Degenerate mobility + singular potential

B ¢—dependent mobility in the original derivation of CH eq. (J.W. Cahn & J.E. Hilliard,
1971). Thermodynamically reasonable choice: m () = k(1 — ¢?)

B Key assumption (cf. [Elliot & Garcke '96], [Gajewski & Zacharias '03], [Giacomin &
Lebowitz '97,98]): mF" € C([—1,1])

Theorem (F., Gal & Grasselli *14)

Letug € L3;,()?, po € L°°(Q) with F(po) € L* () and M (o) € L*(2). Then, 3 a
unique weak sol [u, @] corresponding to [uo, o]

M € C*(—1,1)isst. m(s)M"(s) = 1foralls € (—1,1) and M(0) = M'(0) =0
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Uniqueness of weak sol in 2D (constant viscosity) 'Zﬁ@"*é

B Difficulty: dealing with the Korteweg force term — 'V 1 which, for weak sols is only in
L2 (L4/3)
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Uniqueness of weak sol in 2D (constant viscosity) 'Zﬁf’g

B Difficulty: dealing with the Korteweg force term — 'V 1 which, for weak sols is only in
L2 (L4/3)

B Idea: by redefining the pressure 7, the Korteweg force 1tV ¢ can be rewritten as
—(Va/2)* — (J * ¢) Vo = uniqueness by means of some technical arguments
(Gagliardo-Nirenberg in 2D)
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Uniqueness of weak sol in 2D (constant viscosity) 'Zﬁé’g
B Difficulty: dealing with the Korteweg force term — 'V 1 which, for weak sols is only in
L2 (L4/3)
B Idea: by redefining the pressure 7, the Korteweg force 1tV ¢ can be rewritten as

—(Va/2)* — (J * ¢) Vo = uniqueness by means of some technical arguments
(Gagliardo-Nirenberg in 2D)

B A continuous dependence estimate for weak sols in L2, () x (H'(2))’ also holds
2 (8) = wr ()1 + llp2(t) = @1 (0)IFr ()
- / (elleal) = o1 (DI + LIV (a() = ws ()] dr
< T (t) (lwoz — wor||* + [loz — o1l e (yy) + CoT2(t)[Boz — Pou |

[Bo1ls [Bosl < m, with T; € C(R') depending on weak sols norms
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Uniqueness of weak sol in 2D (constant viscosity) 'Zﬁ@’g

B Difficulty: dealing with the Korteweg force term — 'V 1 which, for weak sols is only in
L2 (L4/3)

B Idea: by redefining the pressure 7, the Korteweg force 1tV ¢ can be rewritten as
—(Va/2)* — (J * ¢) Vo = uniqueness by means of some technical arguments
(Gagliardo-Nirenberg in 2D)

B A continuous dependence estimate for weak sols in L2, () x (H'(2))’ also holds
2 (8) = wr ()1 + llp2(t) = @1 (0)IFr ()
- / (elleal) = o1 (DI + LIV (a() = ws ()] dr
< T1(t) (Jluwoz — wor |l + w02 — @oillFaayy) + Col2(t)[Bos — o

[Bo1ls [Bosl < m, with T; € C(R') depending on weak sols norms

B Uniqueness of sol and 3 of the global attractor for the local CH with degenerate
mobility are open issues
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Uniqueness of weak sol in 2D (constant viscosity)

Consequences
B the nonlocal CHNS system generates a semigroup S(t) of closed operators:

[u(t), ¢(t)] = S(t)[uo, o] on the (metric) phase-space
Xy = Laiw(Q)° x Yy Vo ={p e L*(Q): F(p) € L'(Q),]5] <}
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Uniqueness of weak sol in 2D (constant viscosity) 'Zﬁ@";

Consequences
B the nonlocal CHNS system generates a semigroup S(t) of closed operators:
[u(t), ¢(t)] = S(t)[uo, o] on the (metric) phase-space
Xy = Lio () x Yy Vo ={p € L*(Q) : F(p) € L'(Q), 9| < n}

B The global attractor in &, for Sy, (t) is connected
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Uniqueness of weak sol in 2D (constant viscosity) . "Cff’g

Consequences
B the nonlocal CHNS system generates a semigroup S(t) of closed operators:
[u(t), ¢(t)] = S(t)[uo, o] on the (metric) phase-space
Xy = Lgin()* x ¥y Yo ={p € L*(Q): F(p) € L'(Q).|¢| < n}
B The global attractor in &, for Sy, (t) is connected
B Smoothing property for the difference of two sols in L3;, (Q)% x L?(2)

Theorem (F., Gal & Grasselli ’14)

For everyn > 0 the dynamical system (Xn, 8 (t)) possesses an exponential attractor M,,,

i.e., a compact set in Xy s.t.
(i) Positively invariance: S(t)M C MVt > 0
(ii) Finite dimensionality: dimp M < 0o
(iii) Exponential attraction: 3.J : RT™ — R increasing and k > 0 s.t, YR > 0 and
VB C X, withsup,¢p dx, (z,0) < R there holds

dist(S(t)B, M) < J(R)e ™
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Optimal control for nloc CHNS in 2D (Jointly with E. Rocca & J. Sprekels) 'Zﬁg’“é

Constant mobility+regular potential
Problem (CP): minimize the cost functional

B1 B2 B3
J(y,v) = §||u - UQ||2L2(Q)2 + ?”SO - SDQHQLZ(Q) + 7\|U(T) — uqll’

+ 22 16(0) — pall® + Lol 0y

where y := [u, @] solves
u —vAu+ (u-V)u+ Vr = uVo +v
prtu-Vo=Ap
p=ap—Jxp+F(p)
div(u) =0
Opp=0 wu=0 ond
uw(0) =uo  ¢(0) = ¢o

and the external body force density v, which plays the role of the control, belongs to a suitable

(nlocCHNS)

closed, bounded and convex subset of the space of controls

V= L*(0,T; L%, (2)%)
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Optimal control for nonlocal CHNS in 2D-Existence 'Zﬁ@’“é

B Introducing the space
H = [L®(0,T; Hii, (%) N L0, T; H*(Q)%)] x L=(0,T; H*(Q))
then, the control-to-state map
S:VoH, veV—Sw):=y:=[up cH

where y := [u, cp] is the unique strong sol to Problem (nloc CHNS) corresponding to
v € V and to fixed initial data uo € H;, ()2, po € H*(Q), is well defined
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Optimal control for nonlocal CHNS in 2D-Existence 'Zﬁ@’“é

B Introducing the space
H = [L®(0,T; Hii, (%) N L0, T; H*(Q)%)] x L=(0,T; H*(Q))
then, the control-to-state map
S:VoH, veV—Sw):=y:=[up cH

where y := [u, cp] is the unique strong sol to Problem (nloc CHNS) corresponding to
v € V and to fixed initial data uo € H;, ()2, po € H*(Q), is well defined
B Set of admissible controls

Vaa :i={v €V vailz,t) <vi(w,t) <wveilw,t), ae (z,t) €Q, i=1,2}
with v, vy € V N L>(Q)? prescribed

S. Frigeri - 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, W
Madrid, July 7-11, 2014 - Page 17 (28) AS



Optimal control for nonlocal CHNS in 2D-Existence 'Zﬁ@’g

B Introducing the space
H = [L®(0,T; Hii, (%) N L0, T; H*(Q)%)] x L=(0,T; H*(Q))
then, the control-to-state map
S:VoH, veV—Sw):=y:=[up cH

where y := [u, cp] is the unique strong sol to Problem (nloc CHNS) corresponding to
v € V and to fixed initial data uo € H;, ()2, po € H*(Q), is well defined
B Set of admissible controls

Vaa :i={v €V vailz,t) <vi(w,t) <wveilw,t), ae (z,t) €Q, i=1,2}

with v, vy € V N L>(Q)? prescribed
B Introducing the reduced cost functional f(v) := J(S(v),v), forallv € V, then

(CP) = min f (v)
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Optimal control for nonlocal CHNS in 2D-Existence 'Cff’g

B Introducing the space
H = [L®(0,T; Hii, (%) N L0, T; H*(Q)%)] x L=(0,T; H*(Q))
then, the control-to-state map
S:VoH, veV—Sw):=y:=[up cH

where y := [u, cp] is the unique strong sol to Problem (nloc CHNS) corresponding to
v € V and to fixed initial data uo € H;, ()2, po € H*(Q), is well defined
B Set of admissible controls

Vaa :i={v €V vailz,t) <vi(w,t) <wveilw,t), ae (z,t) €Q, i=1,2}

with v, vy € V N L>(Q)? prescribed
B Introducing the reduced cost functional f(v) := J(S(v),v), forallv € V, then

(CP) = min f(v)

Problem (CP) admits a sol 0 € Va4, with associated state y := [w, @] := S(v)
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

B Aim: deduce first order necessary conditions for existence of the optimal control
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions 'Zﬁ@’“é

B Aim: deduce first order necessary conditions for existence of the optimal control
B We need to establish suitable differentiability properties of the control-to-state map
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions 'Zﬁ@’“é

B Aim: deduce first order necessary conditions for existence of the optimal control

B We need to establish suitable differentiability properties of the control-to-state map
B To this purpose we consider the linearized system atj := [u, | := S(v)

& —vAE+@-VE+(E-V)u+ VT = (an—J*xn+ F'(@)n)Ve+aVn+h
ne+u-Vn=—€& -Vo+ Alan— J xn+ F"(@)n)

div(¢§) =0
£=0, %(an—J*nJrF”(a)n) =0 onX:=9Qx(0,T)
£(0) =7n(0)=0

wherep = app — J x o + F'(p)
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions Zﬁ@

B Aim: deduce first order necessary conditions for existence of the optimal control

B We need to establish suitable differentiability properties of the control-to-state map
B To this purpose we consider the linearized system at j := [u, @] := S(v)

& —vAE+@-VE+(E-V)u+ VT = (an—J*xn+ F'(@)n)Ve+aVn+h
ne+u-Vn=—€& -Vo+ Alan— J xn+ F"(@)n)

div(¢§) =0
£=0, %(an—J*n—&—F”(@)n):O onY =99 x (0,T)
£0) = n(0) =0

wherep = app — J x o + F'(p)
For every h € 'V the linearized problem above has a unique sol satisfying

€€ C([0,7); L2, ()?) N L2(0,T; HY;, (2)2), n € C([0,T); LA()) N L2(0, T; H ()

div
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

B Aim: deduce first order necessary conditions for existence of the optimal control

B We need to establish suitable differentiability properties of the control-to-state map
B To this purpose we consider the linearized system at j := [u, @] := S(v)

& —vAE+@-VE+(E-V)u+ VT = (an—J*xn+ F'(@)n)Ve+aVn+h
ne+u-Vn=—€& -Vo+ Alan— J xn+ F"(@)n)

div(¢§) =0
£=0, %(an—J*n—&—F”(@)n):O onY =99 x (0,T)
£0) = n(0) =0

wherep = app — J x o + F'(p)
For every h € 'V the linearized problem above has a unique sol satisfying

€€ C([0,7); L2, ()?) N L2(0,T; HY;, (2)2), n € C([0,T); LA()) N L2(0, T; H ()

div

Remark. States § = [@, ] need to be strong sols to (nloc CHNS)
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions . Zﬁ@

Differentiability of the control-to-state operator. Set

Z = [C([0, T]; L, (%) 0 L (0, T; Hgy, (2)?)] x [C([0, T); L*(2)) N L2(0,T; H ()]

The control-to-state operator S : )V — Z is Frechét differentiable on V' and the Frechét
derivative S’ (v) € L(V, Z) is given by

S'@)k =" 7", VkeV,

where [£®, 7*] is the unique sol to the linearized system at [@, @] = S(T) and corresponding
tokecV
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions . Zﬁ@

Key tool for the proof: stability estimates

Lemma (Stability estimate | — F., Gal & Grasselli ’14)
Letwo; := u;i(0) € Hy:\ ()2, woi := ¢i(0) € H*(Q), v; € L*(0,T; L%,,(Q)?) and
let [u;, ;] be the corresponding (unique) strong sols, i = 1, 2. Then, we have

a2 = wilfee o 712, (@2) T e2 = willZao g, (0y2) + 192 = @1llo0 0,702
+ ez = @1ll720, .11 () < A1(lluzo — uioll® + o0 — w10ll® + [lvz — v1]1})

where

A1 = A1 ([Vuorll, llporll g2y, lvrllv, [[Vuozll, lleozll m2(q) lvzllv)

S. Frigeri - 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, W
Madrid, July 7-11, 2014 - Page 20 (28) AS



Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions . Zﬁ@

Key tool for the proof: stability estimates

Lemma (Stability estimate | — F., Gal & Grasselli ’14)
Letwo; := u;i(0) € Hy:\ ()2, woi := ¢i(0) € H*(Q), v; € L*(0,T; L%,,(Q)?) and
let [u;, ;] be the corresponding (unique) strong sols, i = 1, 2. Then, we have

2 = wallfom 0,703, 2 + 182 = il iy, @2y + 192 = @120 07322 )
+ ez = @1ll720, .11 () < A1(lluzo — uioll® + o0 — w10ll® + [lvz — v1]1})
where

A1 = A1 ([Vuorll, llporll g2y, lvrllv, [[Vuozll, lleozll m2(q) lvzllv)

Remak. To prove Frechét differentiability of S : VV — Z we need an improved stability estimate
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions . 4{4’;

Key tool for the proof: stability estimates

Lemma (Stability estimate II)
Letwo; := u;i(0) € Hj:\ ()2, woi := ¢i(0) € H*(Q), v; € L*(0,T; L%,,(Q)?) and
let [u;, ;] be the corresponding (unique) strong sols, i = 1, 2. Then, we have

2 2 2
1wz = willoo 0,102, (@y2) + 142 = Willizo,rm3, ()2 12 = P1llLoc 0,711 ()
Hlez = 11720 rm2 0y < A2(lluzo — violl?+llvz0 — P10ll31 ) + llvz — v1lI3)

where

Az = Az ([Vuorll, llporll g2y, lvrllv, [[Vuozll, lleozll g2 (q) lvzllv)
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions . Zﬁ@

Key tool for the proof: stability estimates

Lemma (Stability estimate II)
Letwo; := u;i(0) € Hj:\ ()2, woi := ¢i(0) € H*(Q), v; € L*(0,T; L%,,(Q)?) and
let [u;, ;] be the corresponding (unique) strong sols, i = 1, 2. Then, we have

2 2 2
1wz = willoo 0,102, (@y2) + 142 = Willizo,rm3, ()2 12 = P1llLoc 0,711 ()
Hlez = 11720 rm2 0y < A2(lluzo — violl?+llvz0 — P10ll31 ) + llvz — v1lI3)
where

Az = Az ([Vuorll, llporll g2y, lvrllv, [[Vuozll, lleozll g2 (q) lvzllv)

Sketch of the proof of differentiability of S : V — Z. Letw € V be fixed,
Y := [u,p] = S(v), and consider a perturbation b € V. Set

y" = [u”, " = S(@+ h)

h h —_ h h h — h
pli=ul—u—€&", ¢ =9 —p—0
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

B Then, ph, qh solve

pt—VAp+(p-V)ﬁ+(ﬁ~V)p+(( " @) V) uh—ﬁ)-i-Vﬂh

=a(e" -P)V(" -p) - (T (¢" - P )V (" —B) + (aqg— J = q)VE
+(ap — JxP)Vg+ (F'(o") - ( )V (" ) F'(9)Vq
+(F'(e") - F' (@) - F'(@)n") Ve (0.1)
g+ (u" ) - V(" —9) +p- Vo +u-Vq

=Afag— T q+F' (") = F'(®) — F"(@)n") (0.2)
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

B Then, ph, qh solve

pt—vAp+(p-V)ﬁ+(ﬁ~V)p+(( h—m). V) uh—ﬁ)+Wh

=a(e" —PV(" —P) - (Jx (" -7 )V (" = @)+ (ag — T % q) VP
+(ap — JxP)Vg+ (F'(o") - ( )V (" ) F'(9)Vq

+ (F'(¢") = F'(p) — F" (") Ve (0.1)
g+ (u" —w) V(" -p)+p Ve +u- Vg

=Afag—Jxq+F'(¢") = F'(p) = F"(@)n") (0.2)

B Letustest (0.1) by pin L2;, ()2 and (0.2) by ¢ in L*(£2). After some technical

arguments we are led to

d _
S U™ 17 +11a" %) +vIVP" 1 + ol Va™ I < a(®)[p"” + Tllg™|I* + Bn (t)

=T([[Vuoll, llpoll 2 (0, I18]1v)
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

and o, Bn € L*(0,T) given by
o =D (1 + [[a]13202)
Br =T (u” — ||V (" — )| + [l¢" — BII*[| " -~ %l

+HIVE® =) PIV(e" =2)I? + o™ =Bl q) + 19" =l ) le™ =Bl (q))
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

and o, Bn € L*(0,T) given by
o =D (1 + [[a]13202)
Br =T (u” — ||V (" — )| + [l¢" — BII*[| " -~ %l

+HIVE® =) PIV(e" =2)I? + o™ =Bl q) + 19" =l ) le™ =Bl (q))

B Thanks to Stability estimate Il we have

T
/0 Bu(t)dt < T|hll}
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

and o, Bn € L*(0,T) given by
o =D (1 + [[a]13202)
Br =T (u” — ||V (" — )| + [l¢" — BII*[| " -~ %l

+HIVE® =) PIV(e" =2)I? + o™ =Bl q) + 19" =l ) le™ =Bl (q))

B Thanks to Stability estimate Il we have
r H (14
| entae <TinI
0

and so by Gronwall lemma (p™ (0) = ¢™(0) = 0)

h 2 h 2 h 2
”p HLOO(O’T;LZM(Q)Z) +l/||p ‘|L2(07T§Héiv(ﬂ)2) + Hq HL°°(0,T;L2(Q))

+ CO”‘lh”i?(o,T;Hl(Q)) < f”hH%}
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

and o, Bn € L*(0,T) given by
o =D (1 + [[a]13202)
Br =T (u” — ||V (" — )| + [l¢" — BII*[| " -~ %l

+HIVE® =) PIV(e" =2)I? + o™ =Bl q) + 19" =l ) le™ =Bl (q))

B Thanks to Stability estimate Il we have
r H (14
| entae <TinI
0

and so by Gronwall lemma (p™ (0) = ¢™(0) = 0)

h 2 h 2 h 2
”p HLOO(O’T;LZM(Q)Z) +l/||p HLZ(OvTQHéiU(QP) + Hq HL°°(0,T;L2(Q))

+ CO”‘Ih”i?(o,T;Hl(Q)) < f”hH%}

S(w+ h) — S(v) — [&",n" -
— I5@th) = 5®) = &% 07z < Fypyy -0 ash 0y
IRy
S. Frigeri - 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, W

Madrid, July 7-11, 2014 - Page 23 (28) AS)



Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions 'Zﬁ@’“é

Remark. The weaker differentiability property of the control-to-state map from ) with values in
[C([0,T); LE;, (D)%) N L2(0,T; HY;, (2)2)] x [C([0,T); H*(2)) N L2(0, T3 L())]

div

easier to establish: test (0.2) by (—A)_lq and use only Stability estimate |
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions Z'ff’g

Remark. The weaker differentiability property of the control-to-state map from ) with values in
[C([0, TT; L3, (9)?) 0 L2(0, T3 Hg,, (0)%)] x [C([0, T]; H' (2)') N L2(0, T3 L*(2))]

div

easier to establish: test (0.2) by (—A)_lq and use only Stability estimate |

Nevertheless, with this weaker differentiability we get necessary conditions for existence of the
optimal control for the control problem associated to the “incomplete”cost functional

B1 Ba B3
T0.0) = 2w — gl e + 2210 — valliaigy + 22 (D) — ual?

i 2
+ §”vl|L2(Q)2
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions 'Zﬁ@’“é

If v € V,q is an optimal control for Problem (CP), then

ff@@-2)>0 Y€ Vg
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

If v € V,q is an optimal control for Problem (CP), then
f@-2)>0 Vo€ Vi
But
f'(w) = J,(S(v),v)S (v) + Jy, (S(v),v)

and hence the Frechét differentiability result for S : V — Z yields
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions . Jﬁ@

If v € V,q is an optimal control for Problem (CP), then
F@@-2)20 VYveVau
But
f'(w) = J,(S(v),v)S (v) + Jy, (S(v),v)

and hence the Frechét differentiability result for S : V — Z yields

Corollary

Letw € V,a be an optimal control for Problem (CP) with associated state
Yy = [w, ] := S(v). Then

ﬂl/OT/Qm—uQ)-g”+ﬂQAT/§Z<¢—¢Q>nh+BSA<H<T)—um-sh(T)
o [ @D a7 [ [3@-m20 wev

where [§ h, nh] is the unique sol to the linearized system correspondingtoh = v — ©
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The adjoint system and first order necessary optimality conditions

Aim: eliminate {h, nh from the previous inequality. Hence, introduce the adjoint system
P, =—vAP—(@-V)p+ (p- V' )u+qVe — fi(u —uq)

Gt =— (aAqG+ VIiVG+ F'(p)Aq) —u-Vq
—(ap-Vo—Jx(P-Vo)+ F'(@)p- V) +p- Vi — B2(P — vq)

div(p) =0
p =0, 6—3: =0 onX
p(T) = Bs(u(T) —ua), q(T) = Ps(@(T) — ¢a)
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The adjoint system and first order necessary optimality conditions

Aim: eliminate {h, nh from the previous inequality. Hence, introduce the adjoint system

po=—vApP—(u - V)p+ (P -V )u+GVE — fi(T— ug)
Gt = — (aAq+ VJ¥Vq + F”(E)A(}) —uw-Vq
—(ap-Vo—Jx(P-Vo)+ F'(@)p-VP) +p- Vi — (P — vq)
div(p) =0
g

p =0, — =0 onX
n

p(T) = B3 (u(T) —ua),  q(T) = Pa(@(T) - pa)

Proposition

The adjoint system has a unique weak sol p, q satisfying

p € C([0,T]; L3, (2)?) N L2(0,T; HY;, (2)?), g€ C([0,T); L*(Q)) N L*(0, T; H' (2))
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The adjoint system and first order necessary optimality conditions xﬁ’g

Letv € V,q be an optimal control for Problem (CP) with associated statey = [w, p] = S(D)
and adjoint state [p, q]. Then

’y/OT/QE-(v—ﬁ)—F/OT/Qf)-(U—ﬁ)EO Vv € Vaa
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The adjoint system and first order necessary optimality conditions . 4{4’3

Letv € V,q be an optimal control for Problem (CP) with associated statey = [w, p] = S(D)
and adjoint state [p, q]. Then

W/OT/Q@(U—@H/OT/Q;B-(@—@EO V0 € Vag

B The system (nloc CHNS), written for [@, @], the adjoint system and the above variational

inequality form together the first order necessary optimality conditions
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The adjoint system and first order necessary optimality conditions . 4{4’3

Letv € V,q be an optimal control for Problem (CP) with associated statey = [w, p] = S(D)
and adjoint state [p, q]. Then

W/OT/Qﬁ.(v—ﬁ)Jr/OT/Qﬁ-(v—ﬁ)zo V0 € Vag

B The system (nloc CHNS), written for [@, @], the adjoint system and the above variational

inequality form together the first order necessary optimality conditions

B Since Vg4 is a nonempty, closed and convex subset of LQ(Q)Q, then the above
variational inequality with v > 0 is equivalent to

)

where Py,_, is the orthogonal projector in L (Q)? onto Vaq
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Some open problems 'Zﬁf’g

B Optimal control for nonlocal CHNS in 2D with degenerate mobility+singular potential

B unmatched densities (Abels, Garcke & Griin '12 for the local CHNS)

B compressible models

B non-isothermal model(s)
(Eleuteri, Rocca & Schimperna preprint '14 for the local CHNS)

B multicomponent models
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