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The motivation

� An isothermal model for the flow of a mixture of two

� viscous

� incompressible

� Newtonian fluids

� of equal density

� Avoid problems related to interface singularities

=⇒ use a diffuse interface model

=⇒ the classical sharp interface replaced by a thin interfacial region

� A partial mixing of the macroscopically immiscible fluids is allowed

=⇒ ϕ is the order parameter, e.g. the concentration difference

� The original idea of diffuse interface model for fluids: HOHENBERG and HALPERIN, ’77

=⇒ H-model

Later, GURTIN ET AL., ’96: continuum mechanical derivation based on microforces

� Models of two-phase or two-component fluids are receiving growing attention (e.g.,

ABELS, BOYER, GARCKE, GRÜN, GRASSELLI, LOWENGRUB, TRUSKINOVSKI, ...)
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Local Cahn-Hilliard-Navier-Stokes model

In Ω× (0,∞), Ω ⊂ Rd, d = 2, 3

ut + (u · ∇)u− ν∆u+∇π = µ∇ϕ+ v

div(u) = 0

ϕt + u · ∇ϕ = div (m(ϕ)∇µ)

µ = −ε∆ϕ+ ε−1F ′(ϕ)

� µ: chemical potential (Cahn-Hilliard), first variation of the (total Helmholtz) free energy

E(ϕ) =

∫
Ω

( ε
2
|∇ϕ|2 +

1

ε
F (ϕ)

)
dx

� F double-well potential: Helmholtz free energy density

� Singular

F (s) = −θc
2
s2 +

θ

2

(
(1 + s) log(1 + s) + (1− s) log(1− s)

)
for all s ∈ (−1, 1), with 0 < θ < θc

� Regular

F (s) = (1− s2)2 ∀s ∈ R
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Nonlocal model for binary fluid flow and phase separation

� Nonlocal free energy rigorously justified by Giacomin and Lebowitz (’97 & ’98) as

macroscopic limit of microscopic phase segregation models

E(ϕ) =
1

4

∫
Ω

∫
Ω

J(x− y)(ϕ(x)− ϕ(y))2dxdy +

∫
Ω

F (ϕ(x))dx

J : Rd → R interaction kernel s.t. J(x) = J(−x) (usually nonnegative and radial)

� Nonlocal chemical potential

µ = aϕ− J ∗ ϕ+ F ′(ϕ)

(J ∗ ϕ)(x) :=

∫
Ω

J(x− y)ϕ(y)dy a(x) :=

∫
Ω

J(x− y)dy

� First analytical results on nonlocal CH: Giacomin & Lebowitz ’97 and ’98; Gajewski ’02;

Gajewski & Zacharias ’03

� Several other contributions on nonlocal Allen-Cahn equations and phase-field systems

(notably by Bates et al. and Sprekels et al.)

S. Frigeri · 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications,
Madrid, July 7-11, 2014 · Page 4 (28)



Nonlocal model for binary fluid flow and phase separation

� Nonlocal free energy rigorously justified by Giacomin and Lebowitz (’97 & ’98) as

macroscopic limit of microscopic phase segregation models

E(ϕ) =
1

4

∫
Ω

∫
Ω

J(x− y)(ϕ(x)− ϕ(y))2dxdy +

∫
Ω

F (ϕ(x))dx

J : Rd → R interaction kernel s.t. J(x) = J(−x) (usually nonnegative and radial)

� Nonlocal chemical potential

µ = aϕ− J ∗ ϕ+ F ′(ϕ)

(J ∗ ϕ)(x) :=

∫
Ω

J(x− y)ϕ(y)dy a(x) :=

∫
Ω

J(x− y)dy

� First analytical results on nonlocal CH: Giacomin & Lebowitz ’97 and ’98; Gajewski ’02;

Gajewski & Zacharias ’03

� Several other contributions on nonlocal Allen-Cahn equations and phase-field systems

(notably by Bates et al. and Sprekels et al.)

S. Frigeri · 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications,
Madrid, July 7-11, 2014 · Page 4 (28)



Nonlocal model for binary fluid flow and phase separation

� Nonlocal free energy rigorously justified by Giacomin and Lebowitz (’97 & ’98) as

macroscopic limit of microscopic phase segregation models

E(ϕ) =
1

4

∫
Ω

∫
Ω

J(x− y)(ϕ(x)− ϕ(y))2dxdy +

∫
Ω

F (ϕ(x))dx

J : Rd → R interaction kernel s.t. J(x) = J(−x) (usually nonnegative and radial)

� Nonlocal chemical potential

µ = aϕ− J ∗ ϕ+ F ′(ϕ)

(J ∗ ϕ)(x) :=

∫
Ω

J(x− y)ϕ(y)dy a(x) :=

∫
Ω

J(x− y)dy

� First analytical results on nonlocal CH: Giacomin & Lebowitz ’97 and ’98; Gajewski ’02;

Gajewski & Zacharias ’03

� Several other contributions on nonlocal Allen-Cahn equations and phase-field systems

(notably by Bates et al. and Sprekels et al.)

S. Frigeri · 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications,
Madrid, July 7-11, 2014 · Page 4 (28)



Nonlocal Cahn-Hilliard-Navier-Stokes systems

ϕt + u · ∇ϕ = div (m(ϕ)∇µ)

µ = aϕ− J ∗ ϕ+ F ′(ϕ)

ut − 2div(ν(ϕ)Du) + (u · ∇)u+∇π = µ∇ϕ+ v

div(u) = 0

subject to

∂µ

∂n
= 0 u = 0 on ∂Ω× (0,∞)

u(0) = u0 ϕ(0) = ϕ0 in Ω

� Mass is conserved

ϕ(t) := |Ω|−1

∫
Ω

ϕ(x, t)dx = ϕ0
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Analytical results

� Constant mobility+ regular potential

� ∃ global weak sols in 2D-3D (Colli, F. & Grasselli, J. Math. Anal. Appl. ’12)

� global attractor in 2D and trajectory attractor in 3D (F. & Grasselli, J. Dynam

Differential Equations ’12)

� Constant mobility+singular potential

� ∃ global weak sols in 2D-3D; global attractor in 2D and trajectory attractor in 3D (F.

& Grasselli, Dyn. Partial Differ. Equ. ’12)

� Constant mobility+ regular potential

� ∃ global unique strong sols in 2D, regularity of global attractor in 2D, convergence

to equilibria of weak sols in 2D (F, Grasselli & Krejčí, J. Differential Equations ’13)

� Degenerate mobility+ singular potential

� ∃ and regularity of global weak sols in 2D-3D, global attractor in 2D (F., Grasselli &

Rocca, preprint arXiv ’13)
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Analytical results

More recent results

� Constant mobility+ regular or singular potential & degenerate mobility + singular

potential

� Uniqueness of global weak sols in 2D

� Constant mobility, nonconstant viscosity +regular potential

� ∃ global unique strong sols in 2D, regularity of global attractor in 2D, convergence to

equilibria of weak sols in 2D

� weak-strong uniqueness in 2D

� Connectedness and regularity of global attractor, ∃ exponential attractor in 2D.

Last results in: F., Gal & Grasselli, WIAS Preprint ’14
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∃ weak sols (constant mobility+regular potential)

Theorem (Colli, F. & Grasselli ’12)

Assume J ∈W 1,1(Rd) and that v ∈ L2(0, T ;H1
div(Ω)′), u0 ∈ L2

div(Ω)d, ϕ0 ∈ L2(Ω) with

F (ϕ0) ∈ L1(Ω). Then, ∀T > 0 ∃ a weak sol [u, ϕ] on [0, T ] s.t.

u ∈ L∞(0, T ;L2
div(Ω)d) ∩ L2(0, T ;H1

div(Ω)d), ut ∈ L4/d(0, T ;H1
div(Ω)′)

ϕ ∈ L∞(0, T ;L4(Ω)) ∩ L2(0, T ;H1(Ω)), ϕt ∈ L2(0, T ;H1(Ω)′)

µ ∈ L2(0, T ;H1(Ω))

which satisfies the energy inequality (identity if d = 2)

E(u(t), ϕ(t)) +

∫ t

0
(ν‖∇u(τ)‖2 + ‖∇µ(τ)‖2)dτ ≤ E(u0, ϕ0) +

∫ t

0
〈v(τ),u(τ)〉dτ

for all t > 0, where we have set

E(u(t), ϕ(t)) =
1

2
‖u(t)‖2 +

1

4

∫
Ω

∫
Ω
J(x− y)(ϕ(x, t)− ϕ(y, t))2dxdy +

∫
Ω
F (ϕ(t))

� The nonlocal term implies that ϕ is not as regular as for the standard (local) CHNS

system: ϕ ∈ L2(H1) (nonlocal), instead of ϕ ∈ L∞(H1) (local) =⇒ regularity results

and uniqueness of weak sols in 2D difficult issues
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Strong sols in 2D (constant mobility+regular potential)

� We need stronger assumptions on J . In particular J ∈W 2,1(R2) or J admissible

Definition (J. Bedrossian, N. Rodríguez & A. Bertozzi ’11)

A kernel J ∈W 1,1
loc (R2) is admissible if the following conditions are satisfied:

(A1) J ∈ C3(Rd \ {0});

(A2) J is radially symmetric, J(x) = J̃(|x|) and J̃ is non-increasing;

(A3) J̃ ′′(r) and J̃ ′(r)/r are monotone on (0, r0) for some r0 > 0;

(A4) |D3J(x)| ≤ Cd|x|−d−1 for some Cd > 0

Newtonian and Bessel kernels are admissible for all d ≥ 2

Lemma (J. Bedrossian, N. Rodríguez & A. Bertozzi ’11)

Let J be admissible and χ = ∇J ∗ψ. Then, for all p ∈ (1,∞), there existsCp > 0 such that

‖∇χ‖Lp(Ω) ≤ Cp‖ψ‖Lp(Ω)

S. Frigeri · 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications,
Madrid, July 7-11, 2014 · Page 9 (28)



Strong sols in 2D (constant mobility+regular potential)

� We need stronger assumptions on J . In particular J ∈W 2,1(R2) or J admissible

Definition (J. Bedrossian, N. Rodríguez & A. Bertozzi ’11)

A kernel J ∈W 1,1
loc (R2) is admissible if the following conditions are satisfied:

(A1) J ∈ C3(Rd \ {0});

(A2) J is radially symmetric, J(x) = J̃(|x|) and J̃ is non-increasing;

(A3) J̃ ′′(r) and J̃ ′(r)/r are monotone on (0, r0) for some r0 > 0;

(A4) |D3J(x)| ≤ Cd|x|−d−1 for some Cd > 0

Newtonian and Bessel kernels are admissible for all d ≥ 2

Lemma (J. Bedrossian, N. Rodríguez & A. Bertozzi ’11)

Let J be admissible and χ = ∇J ∗ψ. Then, for all p ∈ (1,∞), there existsCp > 0 such that

‖∇χ‖Lp(Ω) ≤ Cp‖ψ‖Lp(Ω)

S. Frigeri · 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications,
Madrid, July 7-11, 2014 · Page 9 (28)



Strong sols in 2D (constant mobility+regular potential)

Theorem (F., Grasselli & Krejčí ’13)

Assume that J ∈W 2,1(R2) or J admissible and that

v ∈ L2(0, T ;L2
div(Ω)2) u0 ∈ H1

div(Ω)2 ϕ0 ∈ H2(Ω)

Then, ∀T > 0 ∃ unique strong sol [u, ϕ] on [0, T ] s.t.

u ∈ L∞(0, T ;H1
div(Ω)2) ∩ L2(0, T ;H2(Ω)2), ut ∈ L2(0, T ;L2

div(Ω)2)

ϕ ∈ L∞(0, T ;H2(Ω)), ϕt ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

Only recently (F., Gal & Grasselli, WIAS Preprint ’14) we included

� Nonconstant viscosity

ν = ν(ϕ), ν loc. Lipschitz on R, 0 < ν1 ≤ ν(ϕ) ≤ ν2
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Strong sols in 2D (const. mob.+reg. pot. & nonconst. visc.)

How to handle with nonconstant viscosity to get regularity results?

� We cannot rely on NS regularity in 2D to get u ∈ L2
(
0, T ;H2(Ω)2

)
. Indeed

ϕ weak sol , u ∈ H2(Ω)2 ∩H1
div(Ω)2 =⇒ div(ν(ϕ)Du) ∈ L2−ε(Ω)2

� Approach: (nonloc CH)×µt and avoid the use of the H2− norm of u. We deduce

d

dt
‖∇µ‖2 + c0‖ϕt‖2 ≤ Q(R)

(
‖u‖2‖∇u‖2

)
‖∇ϕ‖2 + c‖u‖2‖∇u‖2‖∇ϕ‖2 +Q(R)

+ c
(
‖∇a‖2L∞(Ω) +Q(R)

)
‖∇ϕ‖2 +Q(R)

2∑
i,j=1

‖∂2
ija‖2

+ c
2∑

i,j=1

‖∂i(∂jJ ∗ ϕ)‖2 + c‖J‖2
W1,1(R2)

‖ϕt‖2H1(Ω)′ ‖ϕ‖L∞(Q) ≤ R

=⇒ ϕ ∈ L∞(0, T ;H1(Ω)), ϕt ∈ L2(0, T ;L2(Ω)), µ ∈ L∞(0, T ;H1(Ω))
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‖∇a‖2L∞(Ω) +Q(R)

)
‖∇ϕ‖2 +Q(R)

2∑
i,j=1

‖∂2
ija‖2

+ c
2∑

i,j=1

‖∂i(∂jJ ∗ ϕ)‖2 + c‖J‖2
W1,1(R2)

‖ϕt‖2H1(Ω)′ ‖ϕ‖L∞(Q) ≤ R
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Strong sols in 2D (const. mob.+reg. pot. & nonconst. visc.)
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Strong sols in 2D (const. mob.+reg. pot. & nonconst. visc.)

� Second step: (NS)×ut, integrate by parts in time to get

1

2
‖ut‖2 +

d

dt

∫
Ω

ν(ϕ)|Du|2 + b(u,u,ut) ≤
1

2
‖l‖2 +

∫
Ω

|Du|2ν′(ϕ)ϕt

where l := −ϕ
2

2
∇a− (J ∗ ϕ)∇ϕ+ v.

After some technical arguments we are led to

d

dt

∫
Ω
ν(ϕ)|Du|2 +

1

8
‖ut‖2

≤ Q(R, ‖ϕ0‖V , ‖u0‖)
(
‖l‖2 +

(
(‖u‖2 + ‖u‖p−2)‖∇u‖2

)
‖Du‖2

+ ‖ϕt‖2‖Du‖2 + ‖∇u‖2
)

2 < p <∞

Exploiting the regularity obtained at previous step

=⇒ u ∈ L∞
(
0, T ;H1

div(Ω)2) ∩ L2(0, T ;H2(Ω)2) ut ∈ L2(0, T ;L2
div(Ω)2)

and then also

ϕt ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ϕ ∈ L∞(0, T ;H2(Ω))
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Uniqueness of weak sol in 2D (constant viscosity)

Constant mobility + regular potentials

Theorem (F., Gal & Grasselli ’14)

Let u0 ∈ L2
div(Ω)2, ϕ0 ∈ L2(Ω) with F (ϕ0) ∈ L1(Ω). Then, ∃ a unique weak sol [u, ϕ]

corresponding to [u0, ϕ0]

Degenerate mobility + singular potential

� ϕ−dependent mobility in the original derivation of CH eq. (J.W. Cahn & J.E. Hilliard,

1971). Thermodynamically reasonable choice: m(ϕ) = k(1− ϕ2)

� Key assumption (cf. [Elliot & Garcke ’96], [Gajewski & Zacharias ’03], [Giacomin &

Lebowitz ’97,’98]): mF ′′ ∈ C([−1, 1])

Theorem (F., Gal & Grasselli ’14)

Let u0 ∈ L2
div(Ω)2, ϕ0 ∈ L∞(Ω) with F (ϕ0) ∈ L1(Ω) and M(ϕ0) ∈ L1(Ω). Then, ∃ a

unique weak sol [u, ϕ] corresponding to [u0, ϕ0]

M ∈ C2(−1, 1) is s.t. m(s)M ′′(s) = 1 for all s ∈ (−1, 1) and M(0) = M ′(0) = 0
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Uniqueness of weak sol in 2D (constant viscosity)

� Difficulty: dealing with the Korteweg force term−ϕ∇µ which, for weak sols is only in

L2(L4/3)

� Idea: by redefining the pressure π, the Korteweg force µ∇ϕ can be rewritten as

−(∇a/2)ϕ2 − (J ∗ ϕ)∇ϕ=⇒ uniqueness by means of some technical arguments

(Gagliardo-Nirenberg in 2D)

� A continuous dependence estimate for weak sols in L2
div(Ω)2 × (H1(Ω))′ also holds

‖u2(t)− u1(t)‖2 + ‖ϕ2(t)− ϕ1(t)‖2(H1(Ω))′

+

∫ t

0

(
c0‖ϕ2(τ)− ϕ1(τ)‖2 +

ν

2
‖∇(u2(τ)− u1(τ))‖2

)
dτ

≤ Γ1(t)
(
‖u02 − u01‖2 + ‖ϕ02 − ϕ01‖2(H1(Ω))′

)
+ CηΓ2(t)|ϕ02 − ϕ01|

|ϕ01|, |ϕ02| ≤ η, with Γi ∈ C(R+) depending on weak sols norms

� Uniqueness of sol and ∃ of the global attractor for the local CH with degenerate

mobility are open issues
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Uniqueness of weak sol in 2D (constant viscosity)

Consequences

� the nonlocal CHNS system generates a semigroup S(t) of closed operators:

[u(t), ϕ(t)] = S(t)[u0, ϕ0] on the (metric) phase-space

Xη = L2
div(Ω)2 × Yη Yη = {ϕ ∈ L2(Ω) : F (ϕ) ∈ L1(Ω), |ϕ̄| ≤ η}

� The global attractor in Xη for Sη(t) is connected

� Smoothing property for the difference of two sols in L2
div(Ω)2 × L2(Ω)

Theorem (F., Gal & Grasselli ’14)

For every η ≥ 0 the dynamical system
(
Xη, S(t)

)
possesses an exponential attractorMη ,

i.e., a compact set in Xη s.t.

(i) Positively invariance: S(t)M⊂M∀t ≥ 0

(ii) Finite dimensionality: dimFM <∞
(iii) Exponential attraction: ∃J : R+ → R+ increasing and κ > 0 s.t., ∀R > 0 and

∀B ⊂ Xη with supz∈B dXη (z, 0) ≤ R there holds

dist(S(t)B,M) ≤ J(R)e−κt
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Optimal control for nloc CHNS in 2D (Jointly with E. Rocca & J. Sprekels)

Constant mobility+regular potential

Problem (CP): minimize the cost functional

J(y,v) :=
β1

2
‖u− uQ‖2L2(Q)2 +

β2

2
‖ϕ− ϕQ‖2L2(Q) +

β3

2
‖u(T )− uΩ‖2

+
β4

2
‖ϕ(T )− ϕΩ‖2 +

γ

2
‖v‖2L2(Q)2

where y := [u, ϕ] solves

(nlocCHNS)

ut − ν∆u+ (u · ∇)u+∇π = µ∇ϕ+ v

ϕt + u · ∇ϕ = ∆µ

µ = aϕ− J ∗ ϕ+ F ′(ϕ)

div(u) = 0

∂nµ = 0 u = 0 on ∂Ω

u(0) = u0 ϕ(0) = ϕ0

and the external body force density v, which plays the role of the control, belongs to a suitable

closed, bounded and convex subset of the space of controls

V := L2(0, T ;L2
div(Ω)2)
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Optimal control for nonlocal CHNS in 2D-Existence

� Introducing the space

H :=
[
L∞(0, T ;H1

div(Ω)2) ∩ L2(0, T ;H2(Ω)2)
]
× L∞(0, T ;H2(Ω))

then, the control-to-state map

S : V → H, v ∈ V 7→ S(v) := y := [u, ϕ] ∈ H

where y := [u, ϕ] is the unique strong sol to Problem (nloc CHNS) corresponding to

v ∈ V and to fixed initial data u0 ∈ H1
div(Ω)2, ϕ0 ∈ H2(Ω), is well defined

� Set of admissible controls

Vad :=
{
v ∈ V : va,i(x, t) ≤ vi(x, t) ≤ vb,i(x, t), a.e. (x, t) ∈ Q, i = 1, 2

}
with va,vb ∈ V ∩ L∞(Q)2 prescribed

� Introducing the reduced cost functional f(v) := J
(
S(v),v), for all v ∈ V , then

(CP)⇐⇒ min
v∈Vad

f(v)

Theorem

Problem (CP) admits a sol v ∈ Vad, with associated state y := [u, ϕ] := S(v)
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Optimal control for nonlocal CHNS in 2D-Existence
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

� Aim: deduce first order necessary conditions for existence of the optimal control

� We need to establish suitable differentiability properties of the control-to-state map
� To this purpose we consider the linearized system at y := [u, ϕ] := S(v)

ξt − ν∆ξ + (u · ∇)ξ + (ξ · ∇)u+∇π̃ =
(
aη − J ∗ η + F ′′(ϕ)η

)
∇ϕ+ µ∇η + h

ηt + u · ∇η = −ξ · ∇ϕ+ ∆
(
aη − J ∗ η + F ′′(ϕ)η

)
div(ξ) = 0

ξ = 0,
∂

∂n

(
aη − J ∗ η + F ′′(ϕ)η

)
= 0 on Σ := ∂Ω× (0, T )

ξ(0) = η(0) = 0

where µ = aϕ− J ∗ ϕ+ F ′(ϕ)

Proposition

For every h ∈ V the linearized problem above has a unique sol satisfying

ξ ∈ C
(
[0, T ];L2

div(Ω)2
)
∩ L2

(
0, T ;H1

div(Ω)2
)
, η ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω))

Remark. States y = [u, ϕ] need to be strong sols to (nloc CHNS)
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

Differentiability of the control-to-state operator. Set

Z :=
[
C
(
[0, T ];L2

div(Ω)2
)
∩ L2

(
0, T ;H1

div(Ω)2
)]
×
[
C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω))

]
Theorem

The control-to-state operator S : V → Z is Frechét differentiable on V and the Frechét

derivative S′(v) ∈ L(V,Z) is given by

S′(v)k = [ξk, ηk], ∀k ∈ V,

where [ξk, ηk] is the unique sol to the linearized system at [u, ϕ] = S(v) and corresponding

to k ∈ V
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

Key tool for the proof: stability estimates

Lemma (Stability estimate I — F., Gal & Grasselli ’14)

Let u0i := ui(0) ∈ H1
div(Ω)2, ϕ0i := ϕi(0) ∈ H2(Ω), vi ∈ L2(0, T ;L2

div(Ω)2) and
let [ui, ϕi] be the corresponding (unique) strong sols, i = 1, 2. Then, we have

‖u2 − u1‖2L∞(0,T ;L2
div

(Ω)2)
+ ‖u2 − u1‖2L2(0,T ;H1

div
(Ω)2)

+ ‖ϕ2 − ϕ1‖2L∞(0,T ;L2(Ω))

+ ‖ϕ2 − ϕ1‖2L2(0,T ;H1(Ω))
≤ Λ1

(
‖u20 − u10‖2 + ‖ϕ20 − ϕ10‖2 + ‖v2 − v1‖2V

)
where

Λ1 = Λ1

(
‖∇u01‖, ‖ϕ01‖H2(Ω), ‖v1‖V , ‖∇u02‖, ‖ϕ02‖H2(Ω), ‖v2‖V

)

Remak. To prove Frechét differentiability of S : V → Z we need an improved stability estimate
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

Key tool for the proof: stability estimates

Lemma (Stability estimate II)

Let u0i := ui(0) ∈ H1
div(Ω)2, ϕ0i := ϕi(0) ∈ H2(Ω), vi ∈ L2(0, T ;L2

div(Ω)2) and
let [ui, ϕi] be the corresponding (unique) strong sols, i = 1, 2. Then, we have

‖u2 − u1‖2L∞(0,T ;L2
div

(Ω)2)
+ ‖u2 − u1‖2L2(0,T ;H1

div
(Ω)2)

+‖ϕ2 − ϕ1‖2L∞(0,T ;H1(Ω))

+‖ϕ2 − ϕ1‖2L2(0,T ;H2(Ω))
≤ Λ2

(
‖u20 − u10‖2+‖ϕ20 − ϕ10‖2H1(Ω)

+ ‖v2 − v1‖2V
)

where

Λ2 = Λ2

(
‖∇u01‖, ‖ϕ01‖H2(Ω), ‖v1‖V , ‖∇u02‖, ‖ϕ02‖H2(Ω), ‖v2‖V

)

Sketch of the proof of differentiability of S : V → Z . Let v ∈ V be fixed,

y := [u, ϕ] = S(v), and consider a perturbation h ∈ V . Set

yh := [uh, ϕh] := S(v + h)

ph := uh − u− ξh, qh := ϕh − ϕ− ηh
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

� Then, ph, qh solve

pt − ν∆p+ (p · ∇)u+ (u · ∇)p+
(
(uh − u) · ∇

)
(uh − u) +∇πh

= a(ϕh − ϕ)∇(ϕh − ϕ)−
(
J ∗ (ϕh − ϕ)

)
∇(ϕh − ϕ) + (aq − J ∗ q)∇ϕ

+ (aϕ− J ∗ ϕ)∇q +
(
F ′(ϕh)− F ′(ϕ)

)
∇(ϕh − ϕ) + F ′(ϕ)∇q

+
(
F ′(ϕh)− F ′(ϕ)− F ′′(ϕ)ηh

)
∇ϕ (0.1)

qt + (uh − u) · ∇(ϕh − ϕ) + p · ∇ϕ+ u · ∇q

= ∆
(
aq − J ∗ q + F ′(ϕh)− F ′(ϕ)− F ′′(ϕ)ηh

)
(0.2)

� Let us test (0.1) by p in L2
div(Ω)2 and (0.2) by q in L2(Ω). After some technical

arguments we are led to

d

dt

(
‖ph‖2 + ‖qh‖2

)
+ ν‖∇ph‖2 + c0‖∇qh‖2 ≤ α(t)‖ph‖2 + Γ‖qh‖2 + βh(t)

Γ = Γ
(
‖∇u0‖, ‖ϕ0‖H2(Ω), ‖v‖V

)
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

and α, βh ∈ L1(0, T ) given by

α :=Γ
(
1 + ‖u‖2

H2(Ω)2

)
βh :=Γ

(
‖uh − u‖2‖∇(uh − u)‖2 + ‖ϕh − ϕ‖2‖ϕh − ϕ‖2

H1(Ω)

+ ‖∇(uh − u)‖2‖∇(ϕh − ϕ)‖2 + ‖ϕh − ϕ‖4
H1(Ω)

+ ‖ϕh − ϕ‖2
H1(Ω)

‖ϕh − ϕ‖2
H2(Ω)

)

� Thanks to Stability estimate II we have∫ T

0

βh(t)dt ≤ Γ‖h‖4V

and so by Gronwall lemma (ph(0) = qh(0) = 0)

‖ph‖2
L∞(0,T ;L2

div
(Ω)2)

+ ν‖ph‖2
L2(0,T ;H1

div
(Ω)2)

+ ‖qh‖2
L∞(0,T ;L2(Ω))

+ c0‖qh‖2L2(0,T ;H1(Ω))
≤ Γ‖h‖4V

=⇒ ‖S(v + h)− S(v)− [ξh, ηh]‖Z
‖h‖V

≤ Γ‖h‖V → 0 as h→ 0 in V

S. Frigeri · 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications,
Madrid, July 7-11, 2014 · Page 23 (28)



Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

and α, βh ∈ L1(0, T ) given by

α :=Γ
(
1 + ‖u‖2

H2(Ω)2

)
βh :=Γ

(
‖uh − u‖2‖∇(uh − u)‖2 + ‖ϕh − ϕ‖2‖ϕh − ϕ‖2

H1(Ω)

+ ‖∇(uh − u)‖2‖∇(ϕh − ϕ)‖2 + ‖ϕh − ϕ‖4
H1(Ω)

+ ‖ϕh − ϕ‖2
H1(Ω)

‖ϕh − ϕ‖2
H2(Ω)

)
� Thanks to Stability estimate II we have∫ T

0

βh(t)dt ≤ Γ‖h‖4V

and so by Gronwall lemma (ph(0) = qh(0) = 0)

‖ph‖2
L∞(0,T ;L2

div
(Ω)2)

+ ν‖ph‖2
L2(0,T ;H1

div
(Ω)2)

+ ‖qh‖2
L∞(0,T ;L2(Ω))

+ c0‖qh‖2L2(0,T ;H1(Ω))
≤ Γ‖h‖4V

=⇒ ‖S(v + h)− S(v)− [ξh, ηh]‖Z
‖h‖V

≤ Γ‖h‖V → 0 as h→ 0 in V

S. Frigeri · 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications,
Madrid, July 7-11, 2014 · Page 23 (28)



Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

and α, βh ∈ L1(0, T ) given by

α :=Γ
(
1 + ‖u‖2

H2(Ω)2

)
βh :=Γ

(
‖uh − u‖2‖∇(uh − u)‖2 + ‖ϕh − ϕ‖2‖ϕh − ϕ‖2

H1(Ω)

+ ‖∇(uh − u)‖2‖∇(ϕh − ϕ)‖2 + ‖ϕh − ϕ‖4
H1(Ω)

+ ‖ϕh − ϕ‖2
H1(Ω)

‖ϕh − ϕ‖2
H2(Ω)

)
� Thanks to Stability estimate II we have∫ T

0

βh(t)dt ≤ Γ‖h‖4V

and so by Gronwall lemma (ph(0) = qh(0) = 0)

‖ph‖2
L∞(0,T ;L2

div
(Ω)2)

+ ν‖ph‖2
L2(0,T ;H1

div
(Ω)2)

+ ‖qh‖2
L∞(0,T ;L2(Ω))

+ c0‖qh‖2L2(0,T ;H1(Ω))
≤ Γ‖h‖4V

=⇒ ‖S(v + h)− S(v)− [ξh, ηh]‖Z
‖h‖V

≤ Γ‖h‖V → 0 as h→ 0 in V

S. Frigeri · 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications,
Madrid, July 7-11, 2014 · Page 23 (28)



Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

and α, βh ∈ L1(0, T ) given by

α :=Γ
(
1 + ‖u‖2

H2(Ω)2

)
βh :=Γ

(
‖uh − u‖2‖∇(uh − u)‖2 + ‖ϕh − ϕ‖2‖ϕh − ϕ‖2

H1(Ω)

+ ‖∇(uh − u)‖2‖∇(ϕh − ϕ)‖2 + ‖ϕh − ϕ‖4
H1(Ω)

+ ‖ϕh − ϕ‖2
H1(Ω)

‖ϕh − ϕ‖2
H2(Ω)

)
� Thanks to Stability estimate II we have∫ T

0

βh(t)dt ≤ Γ‖h‖4V

and so by Gronwall lemma (ph(0) = qh(0) = 0)

‖ph‖2
L∞(0,T ;L2

div
(Ω)2)

+ ν‖ph‖2
L2(0,T ;H1

div
(Ω)2)

+ ‖qh‖2
L∞(0,T ;L2(Ω))

+ c0‖qh‖2L2(0,T ;H1(Ω))
≤ Γ‖h‖4V

=⇒ ‖S(v + h)− S(v)− [ξh, ηh]‖Z
‖h‖V

≤ Γ‖h‖V → 0 as h→ 0 in V

S. Frigeri · 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications,
Madrid, July 7-11, 2014 · Page 23 (28)



Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

Remark. The weaker differentiability property of the control-to-state map from V with values in[
C
(
[0, T ];L2

div(Ω)2
)
∩ L2

(
0, T ;H1

div(Ω)2
)]
×
[
C([0, T ];H1(Ω)′) ∩ L2(0, T ;L2(Ω))

]
easier to establish: test (0.2) by (−∆)−1q and use only Stability estimate I

Nevertheless, with this weaker differentiability we get necessary conditions for existence of the

optimal control for the control problem associated to the “incomplete"cost functional

J(y,v) :=
β1

2
‖u− uQ‖2L2(Q)2 +

β2

2
‖ϕ− ϕQ‖2L2(Q) +

β3

2
‖u(T )− uΩ‖2

+
γ

2
‖v‖2L2(Q)2
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Optimal control for nonlocal CHNS in 2D-Necessary optimality conditions

If v ∈ Vad is an optimal control for Problem (CP), then

f ′(v)(v − v) ≥ 0 ∀v ∈ Vad

But

f ′(v) = J ′y
(
S(v),v

)
S′(v) + J ′v

(
S(v),v

)
and hence the Frechét differentiability result for S : V → Z yields

Corollary

Let v ∈ Vad be an optimal control for Problem (CP) with associated state

y = [u, ϕ] := S(v). Then

β1

∫ T

0

∫
Ω

(u− uQ) · ξh + β2

∫ T

0

∫
Ω

(ϕ− ϕQ)ηh + β3

∫
Ω

(u(T )− uΩ) · ξh(T )

+ β4

∫
Ω

(ϕ(T )− ϕΩ)ηh(T ) + γ

∫ T

0

∫
Ω

v · (v − v) ≥ 0 ∀v ∈ Vad

where [ξh, ηh] is the unique sol to the linearized system corresponding to h = v − v
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The adjoint system and first order necessary optimality conditions

Aim: eliminate ξh, ηh from the previous inequality. Hence, introduce the adjoint system

p̃t =− ν∆p̃− (u · ∇)p̃+ (p̃ · ∇T )u+ q̃∇ϕ− β1(u− uQ)

q̃t =− (a∆q̃ +∇J ∗̇∇q̃ + F ′′(ϕ)∆q̃)− u · ∇q̃

−
(
ap̃ · ∇ϕ− J ∗ (p̃ · ∇ϕ) + F ′′(ϕ)p̃ · ∇ϕ

)
+ p̃ · ∇µ− β2(ϕ− ϕQ)

div(p̃) = 0

p̃ =0,
∂q̃

∂n
= 0 on Σ

p̃(T ) = β3(u(T )− uΩ), q̃(T ) = β4(ϕ(T )− ϕΩ)

Proposition

The adjoint system has a unique weak sol p̃, q̃ satisfying

p̃ ∈ C
(
[0, T ];L2

div(Ω)2
)
∩ L2

(
0, T ;H1

div(Ω)2
)
, q̃ ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω))
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The adjoint system and first order necessary optimality conditions

Theorem

Let v ∈ Vad be an optimal control for Problem (CP) with associated state y = [u, ϕ] = S(v)

and adjoint state [p̃, q̃]. Then

γ

∫ T

0

∫
Ω

v · (v − v) +

∫ T

0

∫
Ω

p̃ · (v − v) ≥ 0 ∀v ∈ Vad

� The system (nloc CHNS), written for [u, ϕ], the adjoint system and the above variational

inequality form together the first order necessary optimality conditions

� Since Vad is a nonempty, closed and convex subset of L2(Q)2, then the above

variational inequality with γ > 0 is equivalent to

v = PVad

({
− p̃
γ

})
where PVad is the orthogonal projector in L2(Q)2 onto Vad
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Some open problems

� Optimal control for nonlocal CHNS in 2D with degenerate mobility+singular potential

� unmatched densities (Abels, Garcke & Grün ’12 for the local CHNS)

� compressible models

� non-isothermal model(s)

(Eleuteri, Rocca & Schimperna preprint ’14 for the local CHNS)

� multicomponent models
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